
Requirement Relationships Tom@Gilb.com Page 1 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

Requirement Relationships: A Theory, some Principles, and a Practical Approach.

Drafted initially Sunday, 1 October 2006. © Tom@Gilb.com, 2006

Introduction:

This paper will argue that the ‘conventional ideas’ [NASA 97, INCOSE01, Raytheon06]

of how requirements relate to other entities is unnecessarily weak in relation to the

complex demands placed on a systems engineering task. We will argue that it would

improve systems engineering requirements practice if we were to invest substantially

more in effort to determine, and to specify, at least a dozen or two useful relationships for

each requirement. We will argue that the nature or variety of these relationships should

but relatively unlimited (by a standard or tool), and should be whatever is useful to the

engineering work. In addition, we need to keep the requirement relationship

specifications, together with the core requirement itself, in a reusable requirement

‘object’ (a mini database about each discrete requirement, which is tool independent).

Systematic rules and conventions, like those illustrated, will enable more-automated use

(analysis, presentation, consistency checking, reuse) of requirements, even with simple

text string searching.

The Theory:

A requirement is a client stakeholder need that a server stakeholder is planning

to satisfy.
A server stakeholder attempts to deliver some results to satisfy the needs

of a client stakeholder.
A client stakeholder states needs, approves requirements, and receives

benefits or results produced by a server stakeholder.

Less formally, and less generally, we could say:

A requirement is a stakeholder need that a developer

is planning to satisfy1

Another way to bring out the point about ‘relative requirements’ is to say that:

One person’s means is another’s ends.

A requirement relationship specification is any explicit specification that
connects a requirement to any other specification, event, condition, stakeholder
or entity.

1
 These 3 definitions were developed May 2005 after my book Competitive Engineering

went to print. I view them as an important generalization compared to what I had earlier.

Requirement Relationships Tom@Gilb.com Page 2 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

The implication of the requirement definitions above is that:
1. requirements are only requirements relative to defined stakeholders
2. requirements imply a decision to try to satisfy a stakeholder need
3. Normal requirements specifications should be specifications with a number

of strongly implied relationships (like: needs, results, benefits, costs,
stakeholders, degree of satisfaction, stakeholder priority, and many more).

4. There can be more than one stakeholder type that sponsors delivery of a
single requirement.

5. A single requirement will be associated with at least one client stakeholder,
and at least one server stakeholder – but probably more than one of each.

6. There can be more than one stakeholder type that is impacted (beneficially
or negatively) from delivery of a requirement.

7. Specific instances of a stakeholder type (example different operational
users of a system) may differ in their needs, and in their ‘degree of
satisfaction from delivery’ of a given system requirement.

Figure The multiple levels of client stakeholders. The dual roles of stakeholders in having their
needs satisfied by their ‘servers’, while themselves satisfying other (client) stakeholders.

Requirement Relationships Tom@Gilb.com Page 3 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

The ‘Requirement Relationship’ Principles:

1. THE CLIENT STAKEHOLDER PRINCIPLE: A requirement specification that

has no identified client stakeholder, is not a valid requirement . Because - we

cannot ascertain its usefulness or value to a given stakeholder.

2. THE SERVER STAKEHOLDER PRINCIPLE: A requirement specification that

has no specified, or implied, server stakeholder(s) is not yet seriously planned for

real implementation. Thus we cannot understand who will deliver it, when, or how

efficiently

3. THE REQUIREMENT RELATIONSHIPS PRINCIPLE: A single requirement

can have any useful number and types of relationships that are worth specifying.

The total costs of specification should be less than the expected benefits in the

long term for the system.

4. THE EARLY RELATIONSHIP PRINCIPLE: Failure to deal with requirement

relationships in the requirement specifications themselves will have the effect of

increasing development and maintenance costs. Because the relationships will

then more likely be sensed, and dealt with, downstream, in design, testing and

operation or even decomissioning.

5. THE DYNAMIC RELATIONSHIP PRINCIPLE: Requirement Relationships are

not static, nor are they are all determinable initially. Consequently we need to

track them as they emerge and change; we need to verify them, and we need to

analyze the consequences of any change in requirement relationships.

6. THE RELATIONSHIPS ARE ‘CRITICAL KNOWLEDGE’ PRINCIPLE: The

requirement relationship knowledge is itself far more valuable and critical than

the requirement alone. This is because it potentially helps us to impact greater

value and scope, earlier and better than we otherwise would be aware of, or

would deal with. The requirement itself might change but most relationships

might remain as useful facts

7. THE ‘REQUIREMENT REVIEW BASIS’ PRINCIPLE: All requirement review

processes are dependent on the quality and quantity of requirement relationship

information available. Otherwise we risk approving requirements in ignorance of

critical facts.

8. THE RISK MANAGEMENT PRINCIPLE: The Risk Management process is

continuously dependent on the quality of requirement relationship information.

All requirement relationship specifications help us to identify and manage risks.

9. THE ‘BUTTERFLY EFFECT’ PRINCIPLE: Even one single fault in a

requirement relationship specification can be the root cause of project or system

failure. It is impossible to be sure that even a single missing or incorrect

requirement relationship specification will be unable to severely or critically

damage your engineering effort.

10. THE DESIGN RELATIONSHIP PRINCIPLE: All architecture and design

specifications must follow the same relationship specification principles, as their

‘near cousins’, requirements. This is because, all ‘solutions, means, designs,

architectures, and strategies’ are themselves also requirements, as viewed by

other stakeholders.

Requirement Relationships Tom@Gilb.com Page 4 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

 Illustration: This shows the four main system attribute types: resource, function, performance and design.

It also shows the processes, which implement the functions. Using Planguage, the complex relationships

amongst these four different types can be specified. For example, a specific performance level might apply

only to a handful of functions; rather than the entire system. Or, a function might be implemented by

several processes. Or, different resources can be specifically allocated to different functions. [source: CE

2005, Figure 3.3]:

The Practical Implementation:

Here are some practical examples of describing requirement relationships using the

planning language ‘Planguage’.

Classes of Requirement Relation Specification

Requirement Relationships Tom@Gilb.com Page 5 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

Diagram showing how to express the relationships amongst attributes, between attribute and design idea

and, amongst design ideas.

The ‘linking’ terms include: Consists Of, Includes, Impacts, Is Impacted By, Supports, Is Supported By and,

Is Part Of. Note: Not all potential types of relationships are shown. [Source: Gilb CE 2005, Figure 2.5]

Some Planguage parameters which define relationships between requirements and

other system concepts:

•Authority

•Source

•Owner

•Author

•Implementer

•Impacts

•Supports

Requirement Relationships Tom@Gilb.com Page 6 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

•Supported By

•Version

•Derived From

•Sub-component of

•Sub-components {list}

•Dependencies

•Contract

•Test Case

•Scenario

•Model

•And more!

Some Illustrative Classes of Requirement Relationship ‘Exploitation Areas’ (1, 2, 3,

…), and some ‘Planguage’ specification concept examples (a, b, c, …)

1. Design Support (for the requirement in question)

a. Impacted By (a design)

b. Supported By (a design)

2. Requirement Support (for this particular requirement)

a. Contract Specification

b. Stakeholder

c. Stakeholder Need (from which this requirement is derived)

d. Source

3. Risk Management:

a. Dependencies

b. Issues

c. Risks

d. Risk Resolution

4. Prioritization

a. Source

b. Authority

c. Funding

d. Dependencies

e. Risks

5. Economics:

a. Estimated Development Cost.

b. Cost Uncertainty.

c. Evidence (for cost estimate).

d. Source of Evidence

e. Credibility Level

f. Impact (% of Target, Real level)

6. Development Support: they help us in projects, and in maintenance of systems.

a. Contract

b. Test Cases

Requirement Relationships Tom@Gilb.com Page 7 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

c. Tester

d. Implementation Owner

e. Specification Owner

f. Release

7. Systems Analysis

a. Benchmarks: Past, Record, Trend, Wish

b. Scale (of measure definition)

8. Project Control

a. Constraints: Survival Level, Fail Level

b. Targets: Goal level, Stretch level

c. Qualifiers (for Levels): (when, where, event)

d. Meter (specified test processes in development and handover)

9. Architecture Control

a. Constraints: Survival Level, Fail Level

b. Targets: Goal level, Stretch level

c. Qualifiers (for Levels): (when, where, event)

d. Estimated Impacts (Impact, ± Uncertainty).

e. Design Constraint

The classes (1, 2, … 9) of requirements relationship information above are themselves

not finite. Any useful set of categories could be used. The above list illustrates some

possibilities. Similarly, the examples of Planguage specifications (a, b, c, …) are not

exhaustive, for any one relationship class, but are illustrative of the specification tools we

can apply. The Competitive Engineering handbook [CE] is voluminous in defining and

exemplifying these concepts in detail.

Requirement Relationships Tom@Gilb.com Page 8 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

EXAMPLE OF REQUIREMENT SPECIFICATION WITH MANY RELATIONSHIPS

Example: on the left hand side we show a realistic set of rules (from [CE]) that are a best practice

standard for scalar requirement specification, and can also be used for quality control of a specification.

One the right hand side we see a teaching example of using the rules to define a quality requirement,

together with a number of associated relationships. The ‘actual requirement’ might be thought of as the

‘Goal’ statement, near the bottom. All other specification elements could be classified as requirement

relationship parameters in Planguage. This is nowhere near a complete set of possible relationships for a

requirement (see more that could be added here in the template below). But it is close to common industrial

practice with our clients. [Source CE Teaching slides, 2006].

The Qualifier Conditions as Relationships

Notice, in the example above, a statement like:

“Catastrophe [2007, China, If China is still in WTO] 77%”

The ‘[2007, China, If China is still in WTO]’ is called a ‘qualifier’ in Planguage.

A statement ‘qualifier’ has a list of conditions that all must be ‘true’, for the statement to

be ‘effective’. ‘Effective’ means to be a valid and effective requirement at a given

moment, for example, as opposed to a requirement specification that is NOT presently

valid in all qualifier conditions. Not effectively ‘due’ at a given evaluation moment. In

this example, the year must be ‘2007’ (a ‘deadline’ concept), the Country must be

‘China’, and a condition is that China is still in the World Trade Organization. Clearly, all

qualifier conditions describe important relationships for this constraint requirement.

Requirement Relationships Tom@Gilb.com Page 9 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

‘Catastrophe’ (in the example above) is a ‘really bad’ level to be at, as the name implies:

essentially total and irrecoverable failure of the system.

Implied Relationships in A Scale Definition

Notice in the above example,

Scale: the probability that all Critical Stakeholders have no objection to buying (and

would buy in spite of the info) in to the Manufacturing Ethics Reality if they should get

full factual information about it.

Notice that there are some clearly specified relationships here with:

• Critical Stakeholders

• Manufacturing Ethics Reality

• factual information

This Scale-of-measure definition is automatically reused for a large number of

specifications below it, that need a consistent scale of measure definition, and don’t want

to repeat the detail of it. For example, the parameters Goal, Past, Fail, Trend, Wish,

Stretch, Meter.

So, this means that all those requirement specification parameters have a predefined

relationship to their Scale.

We can go one step further. And I almost invariably practice this in daily industrial use.

We can parameterize the Scale itself:

Scale: the probability that all defined [Stakeholders] have no objection to buying (and

would buy in spite of the info) in to a defined [Ethics Statement: default = the

Manufacturing Ethics Reality] if they should get defined [Info] about it.

This statement makes it clear that this requirement has a relationship to three major

classes of things:

• Stakeholders

• Ethics Statement

• Info

These classes are generic ideas, and can be defined sets, like:

Stakeholders: defined as: {Buyers, Product Reviewers, Official Government Product

Approvers, Corporate Purchasers, Individual Purchasers, Standards Approvers }.

And the specific relationship can be defined in any other statement, using a suitable

qualifier:

Goal [Stakeholders = Buyers, Ethics Statement = All Our Corporate Policies, Info = Full

Non-Confidential Web Disclosure, Deadline = End 2008, Market = Asia, IF = WTO

member] 80%

Requirement Relationships Tom@Gilb.com Page 10 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

The simplicity and flexibility of this structure makes it possible to define very complex

requirement relationships in an extendible (new relationships later), direct, automatically

traceable (“display all ‘Stakeholders = Buyers’ requirements”) and intelligible, way.

Here below is a template (‘with hints’) of the type we use to remind engineers about

useful, corporate, encouraged, specification process options, for describing some

relationship for a function requirement:

Example: this electronic template [CE, Function Chapter] will give some examples of requirement

relationships for a non-scalar requirement like a function. The text in <brackets> is a deletable ‘hint’ as to

how to fill out the required information, if you choose to use the parameter. This is not a complete list of

Requirement Relationships Tom@Gilb.com Page 11 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

Planguage parameters that could be used to describe relationships. In addition to textbook parameters

defining Planguage, the process user is at liberty to invent, on the spot, any useful relationship parameters,

independently of any initial Planguage textbook suggestions. For example, we could add something like

‘Outsourced To:’ to the list above if relevant.

Relationship of Requirements to their Supporting ‘Design’ using Impact Estimation

Tables:

Figure: An Impact Estimation Table (teaching example, here) can be used to chart a many-to-many

relationship between any set of requirements, and any set of corresponding designs. This can be repeated

at any levels of system consideration, from top to bottom of a system. It can be used to relate systems within

a ‘systems of systems’. The basis for the estimates should be specified in annotations to each estimate.

Source: CE. Details of the impact estimation method will be found in CE and in papers at Gilb.com. In

simple terms a 100% impact means that the means is estimated to reach the required Goal level ‘on time’

(more specifically, with respect to all qualifier conditions including deadline.).

Design Ideas

Requirements

Central

Youth

Facts

London

Diploma

Events

Discounts

Sum for

Requirement

Performance
Requirements

Participation 80%

±50%

60%

±70%

0%

±50%

0%

±50%

30%

±50%

20%

±50%

30%

±50%

220%

±370%

Representation 80%

±50%

80%

±50%

10%

±50%

0%

±50%

10%

±50%

20%

±50%

50%

±40%

250%

±340%

Information 0%

±50%

20%

±40%

80%

±50%

0%

±20%

20%

±50%

0%

±50%

0%

±30%

120%

±290%

Conviction 0%

±10%

20%

±50%

60%

±30%

80%

±50%

10%

±50%

80%

±50%

0%

±50%

250%

±290%

Influence 0%

±50%

40%

±40%

60%

±50%

0%

±50%

80%

±50%

80

%±5%

0%

±50%

260%

±340%

Fun 50%

±50%

40%

±50%

10%

±50%

0%

±0%

0%

±0%

80%

±50%

0%

±0%

180%

±200%

Sum of
Performance

210%

±

260%

260%

±

300%

220%

±

280%

80%

±

220%

150%

±

250%

280%

±

300%

80%

±

220%

Resource
Requirements

Financial Cost 20%

±30%

1%

±1%

1%

±1%

1%

±1%

1%

±5%

30%

±50%

30%

±50%

111%

±135%

Performance
to Cost Ratio

210/20

260/1

220/1

80/1

150/1

280/30

80/30

Requirement Relationships Tom@Gilb.com Page 12 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

Summary:

The complexity of systems engineering would seem to require a far more precise and

detailed specification of the relationships a requirement is known to have to all other

system concepts. The planning language , ‘Planguage’, has been developed to cope with

this need in a simple way.

The advantage of this extension to conventional requirement specification

methods is that we encourage the engineer and systems architect to gather data on these

relationships early, rather than later downstream. This should reduce costs and delays

caused by much later recognition of the relationships.

 Planguage, used as a relationship language, effectively encourages persistent

‘specification existence’ of systems analysis information, so that it is not lost; for fruitful

use in the requirements.

It is ‘always’ available when conditions change, to help us make smarter decisions about

design, architecture, contracting, risks, priorities, and project management.

It serves as a better and more formal system-wide memory of critical relationships.

Systematic rules and conventions, such as those illustrated from Planguage, will enable

more-automatic use of requirements, even with simple text string searching.

 The language used does not require any permissions or special tools, and will work both

with simple text processors and more-advanced requirements tools.

Planguage will allow and support generation of any text view or graphical view we might

find useful, from the raw requirement information.

Requirement Relationships Tom@Gilb.com Page 13 of 13

Version: Oct 1 2006 (Initial Draft). Intent = INCOSE 2007

References:

CE: Gilb, Tom, Competitive Engineering, A Handbook For Systems

Engineering, Requirements Engineering, and Software Engineering

Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann. A sample chapter will be found at Gilb.com.

Gilb.com: www.gilb.com. our website has a large number of free

supporting papers (with many references of course), slides, book
manuscripts, case studies and other artifacts which would help the

reader go into more depth

NASA 97:William M. Wilson, Effective!Requirements Specifications

http://satc.gsfc.nasa.gov/support/STC_APR97/write/writert.html

INCOSE 01: Can Requirements Specifications Be Replaced By Databases?

http://www.incose.org/symp2001/archive/program/panels/p3_6.html

Raytheon06: Rick Steiner: Systems Modeling Language (SysML) and Mission

Assurance
How Raytheon’s role in defining SysML can lead to better systems
http://wwwxt.raytheon.com/technology_today/2006_i1/feature_3.html

Author Bio:

Tom Gilb is an international consultant, teacher and author. His 9
th

 book is ‘Competitive

Engineering: A Handbook For Systems Engineering, Requirements Engineering,

and Software Engineering Using Planguage’ (January 2005 Publication, Elsevier) which

is a definition of the planning language ‘Planguage’.

He works with major multinationals such as Bosch, Qualcomm, HP, IBM, Nokia, Ericsson,
Motorola, US DOD, UK MOD, Symbian, Philips, BAe, Intel, Citigroup and many others. See

www.Gilb.com for much more detail, and free publications on Planguage.

His Planguage is a major innovation in systems engineering planning. It has been adopted by
several major multinationals. Philips Medical Systems uses it widely. Intel has trained over 6,000
engineers in Planguage. Citigroup has adopted it for IT projects. HP made an early version of it
the corporate standard for product quality specification. Symbian has adopted it for marketing
and technical requirements.
Contact: Tom @ Gilb . c o m

