
IT Decision-Making
for

Managers & Senior Consultants: using

Value Planning Methods
a 1 day course by gilb.com

Slide Version 17 Sept 2015 12:23

http://gilb.com

Content of the Day
1 Quantification of critical values and qualities in requirements
and objectives

 2 Specification of background information to help understand
risks and priorities
 3 Impact Estimation Tables: a tool for comparing complex
options, architectures and strategies.
 4 Dynamic Decision Making: learning fast, committing late
 5 Delegation of Decision Making: to where the action and
competence is placed.
 6 Agile Contracting: decisions and commitments in smaller
increments
 7 Evo: a project planning framework for decision making

1 Quantification of critical values and
qualities in requirements and objectives

Main Idea:
Go Digital
Drop the
‘Poetry’

"In physical science the first essential step in the direction of
learning any subject is to find principles of numerical
reckoning and practicable methods for measuring some quality
connected with it.

I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about
it;
but when you cannot measure it, when you cannot express it
in numbers, your knowledge is of a meagre and unsatisfactory
kind;

it may be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the state of Science, whatever the
matter may be.”
Lord Kelvin, 1893, Lecture to the Institution of Civil Engineers, 3 May 1883

% Intelligible Plans

5

62%
5%

33%

Major Defects Minor Defects Intelligible

© Tom@Gilb.com

Real Example  
 “Platform Rationalisation Initiative”  

“Main Objectives.” 
London Multinational Bank

 • Rationalize into a smaller number of core processing platforms. This cuts
technology spend on duplicate platforms, and creates the opportunity for
operational saves. Expected 60%-80% reduction in processing cost to Fixed
Income Business levies.

• International Securities on one platform, Fixed Income and Equities
(Institutional and PB).

• Global Processing consistency with single Operations In-Tray and associated
workflow.

• Consistent financial processing on one Accounting engine, feeding a single
sub-ledger across products.

• First step towards evolution of “Big Ideas” for Securities.
• Improved development environment, leading to increased capacity to

enhance functionality in future.
• Removes duplicative spend on two back office platforms in support of

mandatory message changes, etc.

June 8, 2015
6

© Tom@Gilb.com

How can we improve such bad
specification? (‘Planguage’)

Development Capacity:
Version: 3 Sept 2009 16:26
Type: Main <Complex/Elementary> Objective for a project.
Ambition Level: radically increase the capacity for developers to do defined tasks. <- Tsg
Scale: the Calendar Time for defined [Developers] to Successfully carry out defined [Tasks].
Owner: Tim Fxxx
Calendar Time: defined as: full working days within the start to delivery time frame.

Past [2009, {Bxx, Lxx, Gxx}, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 15 days ±4 ?? <- Rob

 Goal[2011, { Bxx, Lxx, Gxx }, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 1.5 days ± 0.4 ?? <- Rob

Justification: Really good architects are very scarce so we need to optimize their use.

Risks: we use effort that should be directed to really high volume or even more critical areas

(like Main Objective).

June 8, 2015
7

The First Day of the Startup Process
Top Ten Critical Values

a quantification process

8

1.2 pictures

Example of Top Ten Critical Objectives
(Real Set, Confirmit)

Many variable Critical Values to be managed at once

10

THE QUANTIFICATION PRINCIPLE
Performance objectives,

ranging from core objectives to ‘any’ detailed performance objective
– where ‘getting better-and-better in time’ is implied –

can always be defined using ‘scales of measure’.

11

© Tom@Gilb.com

Top 10 Large Bank Project Requirements 
Quantifying the most-critical project objectives on day 1, on 1 page

P&L-Consistency&T P&L: Scale: total adjustments btw Flash/Predict
and Actual (T+1) signed off P&L. per day. Past 60 Goal: 15

Speed-To-Deliver: Scale: average Calendar days needed from New
Idea Approved until Idea Operational, for given Tasks, on given
Markets.  
Past [2009, Market = EURex, Task =Bond Execution] 2-3 months ?  
Goal [Deadline =End 20xz, Market = EURex, Task =Bond Execution] 5
days

Operational-Control: Scale: % of trades per day, where the
calculated economic difference between OUR CO and Marketplace/
Clients, is less than “1 Yen”(or equivalent).  
Past [April 20xx] 10% change this to 90% NH Goal [Dec. 20xy] 100%

Operational-Control.Consistent: Scale: % of defined [Trades] failing
full STP across the transaction cycle. Past [April 20xx, Trades=Voice
Trades] 95%  
Past [April 20xx, Trades=eTrades] 93%  
Goal [April 20xz, Trades=Voice Trades] <95 ± 2%>  
Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %

Operational-Control.Timely.End&OvernightP&L Scale: number of
times, per quarter, the P&L information is not delivered timely to the
defined [Bach-Run].  
Past [April 20xx, Batch-Run=Overnight] 1 Goal [Dec. 20xy, Batch-
Run=Overnight] <0.5> Past [April 20xx, Batch-Run= T+1] 1 Goal [Dec.
20xy, Batch-Run=End-Of-Day, Delay<1hour] 1
Operational-Control.Timely.IntradayP&L Scale: number of times per
day the intraday P&L process is delayed more than 0.5 sec.

Operational-Control.Timely.Trade-Bookings Scale: number of trades
per day that are not booked on trade date. Past [April 20xx] 20 ?

Front-Office-Trade-Management-Efficiency Scale: Time from Ticket
Launch to trade updating real-time risk view  
Past [20xx, Function = Risk Mgt, Region = Global] ~ 80s +/- 45s ??  
Goal [End 20xz, Function = Risk Mgt, Region = Global] ~ 50% better?
Managing Risk – Accurate – Consolidated – Real Time

Risk.Cross-Product Scale: % of financial products that risk metrics
can be displayed in a single position blotter in a way appropriate for
the trader (i.e. – around a benchmark vs. across the curve).  
Past [April 20xx] 0% 95%. Goal [Dec. 20xy] 100%
Risk.Low-latency Scale: number of times per day the intraday risk
metrics is delayed by more than 0.5 sec. Past [April 20xx, NA] 1%
Past [April 20xx, EMEA] ??% Past [April 20xx, AP] 100% Goal [Dec.
20xy] 0%
Risk.Accuracy
Risk. user-configurable Scale: ??? pretty binary – feature is there or
not – how do we represent?  
Past [April 20xx] 1% Goal [Dec. 20xy] 0%
Operational Cost Efficiency Scale: <Increased efficiency (Straight
through processing STP Rates)>
Cost-Per-Trade Scale: % reduction in Cost-Per-Trade  
Goal (EOY 20xy, cost type = I 1 – REGION = ALL) Reduce cost by 60%
(BW)  
Goal (EOY 20xy, cost type = I 2 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E1 – REGION = ALL) Reduce cost by x %  
Goal (EOY 20xy, cost type = E 2 – REGION = ALL) Reduce cost by 100%  
Goal (EOY 20xy, cost type = E 3 – REGION = ALL) Reduce cost by x %

June 8, 2015
12

TWELVE TOUGH QUESTIONS
• 1. Why isn't the

improvement quantified?
• 2. What is degree of the risk

or uncertainty and why?
• 3. Are you sure? If not, why

not?
• 4. Where did you get that

from? How can I check it
out?

• 5. How does your idea affect
my goals, measurably?

• 6. Did we forget anything
critical to survival?

• 7. How do you know it works that
way? Did it before?

• 8. Have we got a complete
solution? Are all objectives
satisfied?

• 9. Are we planning to do the
'profitable things' first?

• 10. Who is responsible for failure
or success?

• 11. How can we be sure the plan
is working, during the project,
early?

• 12. Is it ‘no cure, no pay’ in a
contract? Why not?

http://www.gilb.com/tiki-download_file.php?fileId=24

http://www.gilb.com/tiki-download_file.php?fileId=24

2 Specification of background information to
help understand risks and priorities

15

In addition to ‘Core’ specification,
the Value Driven planning language allows you to specify many other value-related things

 in a single requirement

Figure: *682. Some Examples Of Core, Background, And Administrative Parameters. (Source ‘Value Planning’ Diagram 4.3, Aug 2015)

Design Strategy
Relationships

16

3 Impact Estimation Tables:
a tool for comparing complex options,

architectures and strategies.

Various Risks to Plans

18

Design Strategy Risks

19

Cost Risks

20

21

Risk Tools in Impact Estimation

Abstract and Concrete Value Strategies

22

© Gilb.com 2015

Richard Smith’s Planning Tool 
which we are using on BCS Courses

Great for ‘First Week’ and all later weeks followup

23
https://app.needsandmeans.com

Day 3 of Project
Startup

• How do the
strategies/
architecture

• deliver value
for your
quantified
value
requirements
?

Citigroup, London

A Real London Impact Estimation Table
Made one day, to get £50,000,000 next day

25

4 Dynamic Decision Making: learning fast,
committing late

Estimating the Power of suggested architecture
together with related costs

Function

< Goal 1 >

< Goal 2 >

 |------money| >

| ------ time| >

Strategy A

Strategy B

Strategy A

Strategy B

Value to date

Value to date

Strategy A

Strategy B

Strategy A

Strategy B

Performance
Gap

Resource
Remaining

Width =
Cost estimate

Width =
Impact Estimate

20% Snapshot:
Design to Cost Dynamically.

The point being that unexpected residual resources
may force you to choose unexpectedly different

architecture, in order to achieve deadline and budget

28

0

20

40

60

80

Value % Cost % Time %

Estimated Actual

25 Balls in The Air: Concurrent Engineering

Computing Real Time Priority

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 31

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 32

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 33

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 34

Design is an
iterative process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 35

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom 
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther
by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to
ensure that software technical management is consistent with cost management. The method [illustrated in this book by
Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing
'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each
increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the
appropriate balance between cost and design for a single increment, but they iterate through a series of increments, thus
reducing the complexity of the task, and increasing the probability of learning from experience, won as each increment
develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

11 September 2014 36

 an estimate to complete
the remaining
increments is

computed.

© Gilb.com11 September 2014 37
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

Richard Smith

A story of devs
 refusing to be told how to design
 by Bank IT architects. Focussing
on a few critical value measurable
Objectives;
 and delivering on time for full
user satisfaction: 100%
success
Using Agile Evo: The Engineering
Agile Method

© Gilb.com

Previous IT Project Management Methods:  
No ‘Value delivery tracking’. 
No change reaction ability

• “However, (our old project management methodology)
main failings were that

• it almost totally missed the ability to track delivery of
actual value improvements to a project's stakeholders,

• and the ability to react to changes
– in requirements and
– priority
– for the project's duration”

11 September 2014 38

Richard Smith

© Gilb.com

We only had the illusion of control.  
But little help to testers and analysts

• “The (old) toolset generated lots of charts and
stats

• that provided the illusion of risk control.
• But actually provided very little help to the

analysts, developers and testers actually doing the
work at the coal face.”

11 September 2014 39

Richard Smith

© Gilb.com

The proof is in the pudding;

• “The proof is in the pudding;
• I have used Evo

• (albeit in disguise sometimes)
• on two large, high-risk projects in front-office investment

banking businesses,
• and several smaller tasks. “

11 September 2014 40

Richard Smith

© Gilb.com

Experience: if top level requirements
are separated from design, the

‘requirements’ are stable!

• “On the largest critical project,
• the original business functions & performance objective

requirements document,
• which included no design,
• essentially remained unchanged
• over the 14 months the project took to deliver,….”

11 September 2014 41
 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard Smith

Richard Smith

© Gilb.com

Dynamic (Agile, Evo) design testing:  
not unlike ‘Lean Startup’

• “… but the detailed designs
– (of the GUI, business logic, performance characteristics)

• changed many many times,
• guided by lessons learnt
• and feedback gained by
• delivering a succession of early deliveries
• to real users”

11 September 2014 42

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”, Richard Smith

Richard Smith

© Gilb.com

It looks like the stakeholders liked the top
level system qualities,  

on first try

– “ In the end, the new system responsible for 10s of
USD billions of notional risk,

– successfully went live
– over one weekend
– for 800 users worldwide,
– and was seen as a big success
– by the sponsoring stakeholders.”

11 September 2014 43

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006” , Richard Smith

Richard Smith

5 Delegation of Decision Making:
to where the action and competence is

placed.

Copyright Tom@Gilb.com 2014

How?

• Make developers responsible
– for delivery of the ‘quantified’ critical requirements

• (Performance, Qualities, cost, deadline)

• Give them the freedom to decide the right designs
– With immediate responsibility to measure that they are delivering the

results
• Get the ‘unprofessional’ users and customers ‘off their

backs’
– Avoid receiving features and stories

• which are usually amateur design, by people who have no overview or
responsibility or design ability (users and customers, and managers)

• Elevate your talent by becoming a real ‘software
ENGINEER’
– With coding-expert craftsmanship, as your basic talent

11 September 2014 45

Copyright Tom@Gilb.com 2014

Background 1970-1980  
MANAGERS FAIL

• Michael Fagan and Ron Radice co-invent
‘Software Inspection’
– The intent was to collect data on bugs and

defects
– Use it to find frequent common causes
– To improve development processes
– The attitude was explicitly

• ‘managers should manage’ (MEF to TsG)
– THEY FAILED TO GET REAL PROCESS

IMPROVEMENT

11 September 2014 46

Copyright Tom@Gilb.com 2014

1980  
The ‘Troops’ succeed, where the Generals Failed

• Robert Mays and Carol L. Jones, at IBM Research
Triangle Park, NC

• Invent ‘Defect Prevention Process’ ! Ch 17
• Major idea:

– Delegate power to devs to
• Analyze their OWN defects
• And fix their OWN process

• THAT WORKED

11 September 2014 47

Copyright Tom@Gilb.com 201411 September 2014 48

Software Process Improvement at
Raytheon

• Source : Raytheon Report 1995
– http://resources.sei.cmu.edu/library/

asset-view.cfm?assetid=12403 (this is a
header to the download) Tested May
2014

– Search “Dion & Raytheon” (Dion is
Florida retired in 2014)

– http://resources.sei.cmu.edu/
asset_files/TechnicalReport/
1995_005_001_16415.pdf

• An excellent example of process
improvement driven by
measurement of improvement

• Main Motor:
– “Document Inspection”, Defect

Detection
• Main Driver:

– “Defect Prevention Process” (DPP)

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12403
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12403

Copyright Tom@Gilb.com 2014

Cost of Quality over Time: Raytheon 95

The individual learning curve
??

Cost of Rework
(non-conformance)

Cost of
Conformance

End 1988 End 1994

43% Start of Effort

5%

Bad
Process
Change

11 September 2014 49

Copyright Tom@Gilb.com 2014

Raytheon 95 Software Productivity 2.7X better

+

170%

Productivity

1988 199411 September 2014 50

Copyright Tom@Gilb.com 201411 September 2014 51

Achieving Project Predictability:
Raytheon 95

140%

100%

1988 19941990

Cost At Completion / Budget %

Copyright Tom@Gilb.com 2014

Examples of Process Improvements: Raytheon 95

• Process Improvements Made
• Erroneous interfaces during integration and test -

– Increased the detail required for interface design during the
requirements analysis phase and preliminary design phase - Increased
thoroughness of inspections of interface specifications

• Lack of regression test repeatability -
– Automated testing - Standardized the tool set for automated testing -

Increased frequency of regression testing
• Inconsistent inspection process -

– Established control limits that are monitored by project teams - Trained project
teams in the use of statistical process control - Continually analyze the inspection
data for trends at the organisation level

• Late requirements up-dates -
– Improved the tool set for maintaining requirements traceability - Confirm the requirements mapping at each

process phase

• Unplanned growth of functionality during Requirements Analysis
– - Improved the monitoring of the evolving specifications against the customer baseline - Continually map the

requirements to the functional proposal baseline to identify changes in addition to the passive monitoring of code
growth - Improved requirements, design, cost, and schedule tradeoffs to reduce impacts

11 September 2014 52

Copyright Tom@Gilb.com 201411 September 2014 53

Overall Product Quality: Raytheon 95  
(Bug density going down by 3:1) 

Defect Density Versus Time

Copyright Tom@Gilb.com 201411 September 2014 54

Return On Investment

• $7.70 per $1 invested at Raytheon
• Sell your improvement program to top

management on this basis
• Set a concrete target for it

– PLAN [Our Division, 2 years hence] 8 to 1

Copyright Tom@Gilb.com 2014

The DPP Process

11 September 2014 55

Copyright Tom@Gilb.com 2014

What’s Going on Here?

• 1,000 programmers
– Later joined by 1,000 merged new programmers
– Are

• Analyzing their own bugs and spec defects
• Suggesting their own work environment changes
• And reducing their 43% rework by 10 X

• Power has been delegated to the
programmers

11 September 2014 56

Copyright Tom@Gilb.com 2014

Improving the Reliability Attribute  
Primark, London (Gilb Client) 

see case study Dick Holland, “Agent of Change” from Gilb.com 
Using, Inspections, Defect Prevention, and Planguage for Management Objectives

Maj

min

Errors/

Custo

19 19

5

5
5711 September 2014

Copyright Tom@Gilb.com 2014

Positive Motivation: 
Personal Improvement

80 Majors Found
(~160-240 exist!)

40

23

8
00

20

40

60

80

100

0 1 2 3 4 5

Defects/Page

February April

Inspections of Gary’s Designs

“Gary” at  
McDonnell-Douglas

“We find an hour of doing Inspection
is worth ten hours of company
classroom training.”

A McDonnell-Douglas line manager
“Even if Inspection did not have all
the other measurable quality and
cost benefits which we are finding,
then it would still pay off for the
training value alone.”

A McDonnellDouglas Director

5811 September 2014

Copyright Tom@Gilb.com 2014Half-day Inspection Economics. Gilb@acm.org

Prevention + Pre-test Detection  
is the most effective and efficient

• Prevention data based on state of the art prevention experiences (IBM RTP), Others
(Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an
environment where prevention is also being used, IBM MN, Sema UK, IBM UK)

\

50%

70%
80%
90%

<-Mays & Jones 50% prevented(IBM) 1990

<- Mays 1993, 70% prevented

1 2 3 4 5 6

 "Prevented"

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

 "Detected
Cheaply"

100%Use

5911 September 2014

Copyright Tom@Gilb.com 2014Half-day Inspection Economics. Gilb@acm.org

IBM MN & NC DP Experience
• 2162 DPP Actions implemented

– between Dec. 91 and May 1993 (30 months)<-Kan
• RTP about 182 per year for 200 people.<-Mays 1995

– 1822 suggested ten years (85-94)
– 175 test related

• RTP 227 person org<- Mays slides
– 130 actions (@ 0.5 work-years
– 34 causal analysis meetings @ 0.2 work-years
– 19 action team meetings @ 0.1work-years
– Kickoff meeting @ 0.1 work-years
– TOTAL costs 1% of org. resources

• ROI DPP 10:1 to 13:1, internal 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

6011 September 2014

Copyright Tom@Gilb.com 2014

The ICL Bill of Rights  
for Company Communication (by TsG) 

1. You have a right to
know precisely what is

expected of you.
2. You have a right to

clarify things with
colleagues,

anywhere in the
organization.

3. You have a right to
initiate clearer

definitions
 of objectives and

strategies.
4. You have a right to get

objectives presented
 in measurable,

quantified formats.
5. You have a right to

change your objectives
and strategies,

for better performance.

6. You have the right to try out new ideas
 for improving communication.

007. You have the right to fail when trying,
but also to kill failures quickly.

8. You have a right to constructively
challenge
higher-level objectives and strategies.

9. You have a right to be judged objectively
on your performance against measurable
objectives.

10. You have a right to offer constructive
help
to colleagues to improve communication.

11 September 2014 61

Copyright Tom@Gilb.com 2014

Summary DPP 
Managers: 0 Devs : 1

• Developers are better at managing their own
work environment, than their managers are

• ‘Directors’ should NOT design the work
environment

• Developers should ‘evolve the environment’
– through practical deep personal insights,
– and take responsibility for their own work situation

11 September 2014 62

Copyright Tom@Gilb.com 2014

Case: Delegating Software product
design to the Developers

11 September 2014 63

© Tom @ Gilb.com

We gave them a 1 day briefing on
our Evo method and Planguage

That’s all they needed to succeed!
They were Real engineers

September 11, 2014 64

Copyright Tom@Gilb.com 2014

Customer Successes in Corporate Sector

11 September 2014 65

Copyright Tom@Gilb.com 2014

 Real Example of 1 of the 25 Quality Requirements

Usability.Productivity:

Scale for quantification: Time in minutes to set up
a typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

66
Trond Johansen

11 September 2014

Copyright Tom@Gilb.com 2014

Shift: from Function to Quality

• Our new focus is on the daily operations of our
Market Research users,
– not a list of features. that they might or might not like.

50% never used!
–
– We KNOW that increased efficiency, which leads to more

profit, will please them.

– The ‘45 minutes actually saved x thousands of customer
reports’
• = big $$$ saved

• After one week we had defined more or less all the
requirements for the next version (8.5) of Confirmit.

11 September 2014 67

© Tom @ Gilb.com

Quantified Value Delivery Project Management in a Nutshell 
Quantified Value Requirements, Design, Design Value/cost estimation,
Measurement of Value Delivery, Incremental Project Progress to Date

Cumul
ative

weekly

Prior
ity

Next

C
onstra

Targ
E

stim
a

W
eekl

September 11, 2014 68

© Tom @ Gilb.com

Every user, every day, was using an average of 65 minutes to 
set up a report

September 11, 2014 69

Usability.Productivity
Scale for quantification: Time in minutes to set up a
typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.com

 The worst acceptable case requirement, for the next quarterly world
release, is 35 minutes, or better; less is ‘intolerable’

September 11, 2014 70

Usability.Productivity
Scale for quantification: Time in minutes to set up a
typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.com

The committed target level requirement, the ‘Goal’,  
is to get the user task down to 25 minutes or better.

September 11, 2014 71

Usability.Productivity
Scale for quantification: Time in minutes to set
up a typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.com

The weekly ‘value delivery cycle’ resource is 110 work-hours 
(4 days, effective time for the team of 3 to 4 people)

September 11, 2014 72

Work Hours available
 this weekly delivery cycle.

For 4 people.
110 effective hours

© Tom @ Gilb.com

The developer team can choose the requirement they want to prioritize,
and work on, this week. They chose the 0.0 (no improvement yet, in last 8

weeks) of the ‘Productivity requirement

September 11, 2014 73

The team chooses to work on a weak
point.

This is ‘dynamic prioritization’ –
Decisions based on the weekly ‘state

of play’

 0.0

© Tom @ Gilb.com

Every user, every day, was using an average of 65 minutes to 
set up a report. We want a 40 minute improvement to that,  

to 25 minutes

September 11, 2014 74

Usability.Productivity
Scale for quantification: Time in minutes to set up a
typical specified Market Research-report

Past Level [Release 8.0]: 65 mins.,

Tolerable Limit [Release 8.5]: 35 mins.,

Goal [Release 8.5]: 25 mins.

© Tom @ Gilb.com

The team has a 30 minute ‘design’ meeting, to suggest designs which
might help move from 65 minutes for the task, towards the 25 minute Goal

level

September 11, 2014 75

© Tom @ Gilb.com

‘Recoding’ is the name of 1 of 12 suggested, brainstormed, designs for
saving user effort, by any member of the developer team

September 11, 2014 76

© Tom @ Gilb.com

‘Recoding’ was estimated, by the suggester, to save 20 minutes time for
the users

September 11, 2014 77

© Tom @ Gilb.com

‘Recoding’ was also estimated to take the entire 4 day delivery cycle
available. No time left to add more solutions, in order to try to get closer to

the target, on this delivery cycle.

September 11, 2014 78

© Tom @ Gilb.com

And 20 minutes saving, was the best ‘impact’ estimated from the 12 total
suggestions made by the team members. So ‘Recoding’ (of marketing

codes) was chosen as the best thing to do that week.

September 11, 2014 79

© Tom @ Gilb.com

And 20 minutes saving, is equivalent to 50% of the way betweem Past and
Goal (65 – 25 = 40, 20/40 = 50%). 

This is another way of expressing the expected impact of Recoding

September 11, 2014 80

© Tom @ Gilb.com

The team commits to the ‘Recoding’ solution. They code, test and
handover to Microsoft usability Labs in Washington State, who volunteered

to independently measure all the Usability designs.

September 11, 2014 81

© Tom @ Gilb.com

The result was a saving, or improvement of 38 minutes, or 95% of the way
to the target requirement of 25 minutes

September 11, 2014 82

© Tom @ Gilb.com

This was not good enough for Trond Johansen. 
And he did not want to use 1 of the 3 remaining weeks to release (10, 11, 12th weeks) in order to get

to 100% of the target.  
So, he asked one team member to spend the weekend tuning the ‘Recoding’ solution.  

And he managed to get the timing down to 20 minutes.  
12.5% more than the 25 minutes targeted.  

 Thus total impact is 112.5%

September 11, 2014 83

© Tom @ Gilb.com

And the priority flag turns Green (no priority, Goal reached)

September 11, 2014 84

Copyright Tom@Gilb.com 2014

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement 
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a

year. Total development staff = 13

9
8

3
3

11 September 2014 85

Copyright Tom@Gilb.com 2014

Confirmit Evo Weekly Value Delivery Cycle

11 September 2014 86

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit product qualities 1st Qtr

• Only 5 highlights of the 25 impacts are listed here

Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-
report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report
set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Release 8.5

Copyright Tom@Gilb.com 2014

Developers love ‘Empowered
Creativity’

• EVO has resulted in
– increased motivation and
– enthusiasm amongst developers,
– it opens up for empowered creativity

• Developers
– embraced the method and
– saw the value of using it,
– even though they found parts of Evo

difficult to understand and execute
(without training)

Trond Johansen
11 September 2014 88

 
Initial Customer Feedback  
on the new Confirmit 9.0

November 24th, 2004

Copyright Tom@Gilb.com 2014

Initial perceived value of the new release  
(Base 73 people)

Base: 73

11 September 2014 90

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit 9.0 product qualities 
Results from the second quarter of using Evo. 1/2

Productivity

Intuitiveness

Product quality

Time reduced by

38%
Time in minutes for a defined advanced
user, with full knowledge of 9.0
functionality, to set up a defined
advanced survey correctly.

Probability
increased by

175%

Probability that an inexperienced user
can intuitively figure out how to set up a
defined Simple Survey correctly.

Customer value Description

Productivity

Product quality

Time reduced by

83% and

error tracking
increased by 25%

Time (in minutes) to test a defined survey and
identify 4 inserted script errors, starting from
when the questionnaire is finished to the time
testing is complete and is ready for production.
(Defined Survey: Complex survey, 60 questions,
comprehensive JScripting.)

Customer value Description

9111 September 2014

Copyright Tom@Gilb.com 2014

Evo’s impact on Confirmit 9.0 product qualities 
 Results from the second quarter of using Evo. 2/2

Number of responses
increased by 1400%

Number of responses a database can contain
if the generation of a defined table should be
run in 5 seconds.

Performance

Number of panelists
increased by 700%

Ability to accomplish a bulk-update of X
panelists within a timeframe of Z second

Scalability

Performance

Product quality

Number of panelists
increased by

1500%

Max number of panelists that the system can
support without exceeding a defined time for
the defined task, with all components of the
panel system performing acceptable.

Customer value Description

9211 September 2014

Copyright Tom@Gilb.com 2014

Case:  
Delegating  

Developer Environment  
 to Developers  

using Multimensional Engineering

11 September 2014 93

© Tom @ Gilb.com

Technical debt  
From Wikipedia, the free encyclopedia

Technical debt

consequences
of poor software
architecture and
software
development
within a codebase.

Causes of technical debt
1. Business pressures
2. Lack of process or

understanding
3. Lack of building loosely

coupled components,
4. Lack of test suite,
5. Lack of documentation,
6. Lack of collaboration
7. Parallel
8. Delayed Refactoring

September 11, 2014 94

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Codebase
http://en.wikipedia.org/wiki/Codebase

© Tom @ Gilb.com

There is a smarter way

September 11, 2014 95

• But it means we have to become real
software engineers,

• Not just- - - softcrafters*

• * coders, developers, programmers.
– Term coined in
– “Principles of Software Engineering Management”, 1988, Gilb

Copyright Tom@Gilb.com 2014

Code quality – ”green” week 
Empowered Creativity: for Maintainability

• Instead of Refactoring 1 day a week (failed)
• Let the Dev Teams engineer using ‘agile’ (Evo): Design Dev Quality in to their own process
• To meeting their own internal stakeholder Quality Objectives
• 1 week a month

Speed

Maintainability

Nunit Tests

PeerTests

TestDirectorTests

Robustness.Correctness

Robustness.Boundary
Conditions

ResourceUsage.CPU

Maintainability.DocCode

SynchronizationStatus

11 September 2014 96

Copyright Tom@Gilb.com 2014

Same Process as for their External
(User, Customer) stakeholders

• 1. define better quality dev and testing environment
QUANTITATIVELY
– Scale of measure and Goal level

• 2. Figure out, brainstorm ANY systems engineering
design or architecture to get to their self determined
improvement goals
– Not just code refactoring, but any tools, processes, motivations,

hardware etc that WORK
• 3. Implement, measure

– Keep the stuff that works
– Dump the stuff that does not MEASURABLY work

• 4. Keep on trucking’ (monthly, forever, or …)
– DONE is when devs have no further improvement needs

11 September 2014 97

Copyright Tom@Gilb.com 2014

The Monthly ‘Green Week’
 User Week 1
• Select a Goal
• Brainstorm Designs
• Estimate Design

Impact/Cost
• Pick best design
• Implement design
• Test design
• Update Progress to

Goa

User Week 2
• Select a Goal
• Brainstorm Designs
• Estimate Design

Impact/Cost
• Pick best design
• Implement design
• Test design
• Update Progress to

Goa

User Week 3
• Select a Goal
• Brainstorm

Designs
• Estimate Design

Impact/Cost
• Pick best design
• Implement

design
• Test design
• Update Progress

to Goa

Developer
Week 4
• Select a Goal
• Brainstorm

Designs
• Estimate

Design Impact/
Cost

• Pick best
design

• Implement
design

• Test design
• Update

Progress to
Goal

11 September 2014 98

Copyright Tom@Gilb.com 2014

Conclusion: Technical Debt
• Developers

Acting like real software engineers
Can engineer technical debt reduction

 It is NOT about refactoring, and patterns
 though if they work measurably best, we can use them.
 But, did you ever see measurement or re they just belief systems?

 It is about mature teams, with common goals, and practical experience, taking
charge of their own fate

If management resists, I suggest going on strike!
Why should we suffer agonizing technical debt, wasting 50% or more of our work
hours,

Surely we have better things to do!

11 September 2014 99

Copyright Tom@Gilb.com 2013

Cleanroom

11 September 2014 100

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills
1970-1980 they reported:  

IBM SJ 4/80

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from 1996 a
part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a continuing
evolution that is still underway:

• Ten years ago general management expected the worst from software projects – cost
overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget, deliveries
of high-quality software. A Navy helicopter ship system, called LAMPS, provides a recent
example. LAMPS software was a four-year project of over 200 person-years of effort,
developing over three million, and integrating over seven million words of program and
data for eight different processors distributed between a helicopter and a ship in 45
incremental deliveries [Ed. Note 2%!]s. Every one of those deliveries was on
time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program and data
for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

September 11, 2014 101

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills (1980) they reported:  
PERFECT SOFTWARE PROJECTS: by Feedback  

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about
1970] in a continuing evolution that is still underway:

• Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

• Today [Ed. 1980!], management has learned to expect on-time, within budget,
deliveries of high-quality software. A Navy helicopter ship system, called
LAMPS, provides a recent example. LAMPS software was a four-year project of
over 200 person-years of effort, developing over three million, and integrating
over seven million words of program and data for eight different processors
distributed between a helicopter and a ship in 45 incremental deliveries [Ed.
Note 2%!]s. Every one of those deliveries was on time and under budget

• A more extended example can be found in the NASA space program,
• - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes
of program and data for ground and space processors in over a dozen projects.

• - There were few late or overrun deliveries in that decade, and none at all in
the past four years.”

September 11, 2014 102

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the past

four years

6 Agile Contracting:
decisions and commitments

 in smaller increments

Contract Framework

Result Contract Structure

Old way and new Way

Tom@Gilb.com

WHAT IS A FLEXIBLE CONTRACT?

WHAT IS A FLEXIBLE CONTRACT?
A ‘flexible contract’ is an adaptive, outcome-based contract, which is intended to maximize the delivery of customer value. It
achieves this in several ways:

The contract focuses on outcomes (that is, business objectives), which are less susceptible to change than output (such as
features). By focusing on outcomes the contract also creates shared goals between the customer and supplier, which helps to
align their interests and motivation.
The supplier is given the freedom to achieve the target outcomes in any way it deems effective as long as it honors the terms of
the contract and stays within any constraints specified by the customer.

The fees (or at least part of the fees) should be payable on the achievement of target outcomes. The supplier is incentivized to
achieve the target outcomes in the most cost-effective way, which is also of benefit to the customer.

The contract is structured as a master services agreement for the full version, or the ‘lite’ version using the Terms and Conditions,
under which short-term statements of target outcomes (SOTOs) are called off. SOTOs work in the same way as a Statement of
Work, but instead of ‘work’ in the form of outputs and activities, we measure outcomes achieved. The parties can respond to
acquired knowledge and changes in the environment in subsequent SOTOs.

In respect of each SOTO the supplier addresses each target outcome by means of short feedback cycles. So the parties can learn
rapidly what works and what doesn’t by measuring outcomes achieved progressively. 

The contract adopts lightweight contractual provisions. This is made possible because the parties only commit to one SOTO at a
time, so the financial exposure of the customer to the supplier is minimized. This in turn means that the contract is easier to
understand and requires less administrative cost, both to create and to manage. The contract is deliberately NOT focused on the
activities of the supplier or the technical processes by which this value is delivered. 

26 May 2015
107

Define what you want, as you go, in small
increments.

Learn what works

Focus on business results, not ‘code’

Pay for real value delivered

Prioritize high value results early.

Very low risk

Not tied in to suppliers who cannot deliver

Tom@Gilb.com

SOTO Specification  
(from contract template)  

short-term Statements Of Target Outcomes

26 May 2015
108

Tom@Gilb.com

(from contract template)  

26 May 2015
109

Tom@Gilb.com

Credits for most slides to
• www.flexiblecontracts.com

• https://www.linkedin.com/groups/Flexible-
Agile-contracts-7460556/about

• www.mobiusmodel.org

• I have been working together with Susan
Atkinson and Gabrielle Benefield for several
years regarding these ideas.

• So it is no surprise that they are very
complimentary to the Evo and Planguage
methods in my writings, such as

• Competitive Engineering (2005), and Value
Planning (2014, manus)

26 May 2015
110Forthcoming Book

http://www.flexiblecontracts.com
https://www.linkedin.com/groups/Flexible-Agile-contracts-7460556/about
http://www.mobiusmodel.org

References 
www.flexiblecontracts.com

• [1] Highly recommended in-depth analysis of good and bad agile
practices, even if you are NOT in the public sector: Wernham, Brian.
Agile Project Management for Govern- ment. Maitland and Strong.

• [2] Gilb, Tom. “The Top 10 Critical Requirements are the Most Agile
Way to Run Agile Projects”. Agile Record, Au- gust 2012, 11: pp. 17–
21. http://www.gilb.com/dl554

• [3] Gilb, Tom. “No Cure No Pay.”
• http://www.gilb.com/tiki-download_file.php?fileId=38
• [4] Gilb, Tom. “Chapter 5: Scales of Measure.” Competitive

Engineering.
• http://www.gilb.com/tiki-download_file.php?fileId=26
• [5] This initiative is a draft idea and would welcome coopera- tion

and feedback from people who would like to try it out in practice!
www.flexiblecontracts.com

• [6] Gilb, Tom. “Real Architecture Engineering.” Lecture slides from
ACCU Bristol, April 2013. 
http://www.gilb.com/dl574

7 Evo:
a project planning framework

 for decision making

www.Gilb.com HomeIn House 113

’Evo’ defined

A project management process delivering
evolutionary results  
‘high-value-first’ progress

 towards the desired goals, and
 seeking to obtain, and use, realistic, early
feedback.

”Complete focus on early rapid delivery of stakeholder value”

www.Gilb.com HomeIn House 114

Evo characteristics
• frequent delivery of system changes (steps)
• steps delivered to stakeholders for real use
• feedback obtained from stakeholders to determine next step(s)
• the existing system is used as the initial system base
• small steps (ideally between 2%-5% of total project financial cost and

time)
• steps with highest value and benefit-to-cost ratios given highest priority

for delivery
• feedback used ‘immediately’ to modify long term plans and
requirements and, also

• to decide on the next step total systems approach (‘change anything
that helps’) -

• results-orientation (‘delivering the results’ is prime concern)

www.Gilb.com HomeIn House 115

How does EVO 
differ from waterfall/prototyping?  

In a nutshell
Early visible results in the business.

www.Gilb.com HomeIn House 116

How does EVO 

In more detail:
1. Weekly result delivery focus: real action
2. Results at beginning of project
3. Total systems thinking - not ‘IT’
4. More intimate concern for business needs
5. Proof of ability to deliver value
6. Staff priority deployment flexibility
7. Value/cost ratio much more visible

www.Gilb.com HomeIn House 117

How does Evo differ from Incremental? 
(see next slide for text summary)

Source: A Strategy for Acquiring Large and Complex Systems. Dr. Helmut Hummel, Bonn September 23 2002, see note for paper, Email:
hummel@iabg.de

Stable Requirements

System Architecture

3rd Increment

2nd Increment

Core Increment

?
Initial

Requirements

Feedback

Feedback

Core Increment

2nd Increment

3rd Increment

Final System

mailto:hummel@iabg.de

www.Gilb.com HomeIn House 118

How does Evo differ from Incremental?

Evo
Focus on business
value

Ability to learn rapidly
Quantified value
tracking

Cooperation with users
continuous

Incremental
Focus on construction

No intent to learn or change plans

No value tracking

No plan to cooperate with users

www.Gilb.com HomeIn House 119

What are the major benefits of Evo? 

Management control of value
Management control of costs
Enforcing business thinking

Instead of IT thinking
Flexibility for management to re-prioritize
projects and spend

Improves system maintenance culture
Because you ‘maintain’ at each step
Very low risk to do it and see if it works

www.Gilb.com HomeIn House 120

Value Added Paradigm

Project Start

Project Cost

Value Added with Iterations

Value Added
without Iterations

Project End

Figure 1. Value Added by Iterative Delivery versus Non-iterative.Courtesy: Erik Simmons, Intel Oregon

A View of the ‘Evo’ Agile for values Project Management Process

121
http://www.gilb.com/dl487
The Evo ‘Standard’ Process Description

http://www.gilb.com/dl487

Value Decomposition

122

Value Delivery Cycle
Decomposition

123

www.Gilb.com HomeIn House 124

What are the major technology process changes?

You need clear, quantified requirements to ‘evolve’
towards - ‘stakeholders view’ requirements

Test process: changes - rapid, early
User involvement continuous
Teamwork towards one user result
Open Ended Architecture to Evo in
Backroom and Frontroom management

www.Gilb.com HomeIn House 125

How do you best manage it?

Motivate development team by results
Empower stakeholders to think value
Train development in Evo
Equip with Evo ‘tools’ (templates etc)
Support and advise (new) teams
Feed budget to teams with best value

www.Gilb.com HomeIn House 126

What are the pitfalls?

Failing to focus on real value
Failing to use value/cost priority
Failure to train and support after training
Giving up too early and falling back on old habits
Lack of management commitment
Lack of management support
Defeatism: giving up rather than cracking problems.

www.Gilb.com HomeIn House 127

What are the pre-requisites? 
 (eg componentised architecture) 

Clear management policy
Evo tools (standards)
Trained Project Management
Reward structure
Long term quantified objectives
Evo plan for Evo method
Enthusiastic volunteer projects
Open architecture is useful but not a start condition!

www.Gilb.com HomeIn House 128

Are there types of apps/users that EVO  
might not be appropriate for?  

In principle no, but
Some projects will have greater benefits
Even ‘old’ failing projects can be ‘saved’ by Evo
restructuring

Bigger projects will have more benefit
There may be some projects with ‘constraints’ (like dates
for laws or consortium agreements) so you can’t really
deliver much before a distant time.

© Gilb.com

20 Sept, 2011 Report on Gilb Evo method
(Richard Smith, Citigroup)

ON STABILITY OF ‘REAL REQUIREMENTS’
AND INSTABILITY OF ‘DESIGN’ AND ‘ARCHITECTURE

• http://rsbatechnology.co.uk/blog:8
• Back in 2004, I was employed by a large investment bank in their FX e-commerce IT department as a business analyst.
• The wider IT organisation used a complex waterfall-based project methodology that required use of an intranet application

to manage and report progress.
• However, it's main failings were that it almost totally missed the ability to track delivery of actual value improvements to a

project's stakeholders, and the ability to react to changes in requirements and priority for the project's duration.
• The toolset generated lots of charts and stats that provided the illusion of risk control. but actually provided very little help

to the analysts, developers and testers actually doing the work at the coal face.
• The proof is in the pudding;

– I have used Evo (albeit in disguise sometimes) on two large, high-risk projects in front-office investment banking businesses, and
several smaller tasks.

– On the largest critical project, the original business functions & performance objective requirements document,
which included no design, essentially remained unchanged over the 14
months the project took to deliver,

– but the detailed designs (of the GUI, business logic, performance characteristics) changed many
many times, guided by lessons learnt and feedback gained by delivering a succession of early deliveries to real users.

– In the end, the new system responsible for 10s of USD billions of notional risk, successfully went live
over over one weekend for 800 users worldwide, and was
seen as a big success by the sponsoring stakeholders.

129 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

http://rsbatechnology.co.uk/blog:8
http://rsbatechnology.co.uk/blog:8

© Gilb.com 2015

Richard Smith’s Planning Tool 
which we are using on BCS Courses

Great for ‘First Week’ and all later weeks followup

130
https://app.needsandmeans.com

End Game

The Fundamental Principles of
Value-Driven IT Systems ‘Engineering’.

1. Values are multiple and simultaneous: unavoidable.

2. All technical solutions contain multiple values and

costs.

3. All values and costs have unknowns, uncertainties and

risks.

4. Value delivery must work incrementally, with feedback

and change.

132

© Gilb.com 2015

Free Book Manuscript

• Tinyurl.com/ValuePlanning (a live dropbox)
• Manuscript 104 subchapters
• Drafted Summer/Fall 2014
• Major 50% Edit Summer 2015, Ongoing in Fall
• Feedback appreciated
• Aimed at ‘management’

• (not IT or Engineers)

133

