
© Gilb.com Agility is the Tool

‘Agility is the TOOL, not the Master’ :  
Practical Agile Systems Engineering Tools  

including  
My Ten Key Agile Principles 
 and several case studies

Tom Gilb

“

tomsgilb@gmail.com
@imtomgilb

www.gilb.com
 These slides are on gilb.com downloads, and twittered at #BuildstuffLT

The Talk was videoed.

Paper: Value-Driven Development Principles and Values – Agility is the Tool, Not the Master

July 2010 Issue 3, Agile Record 2010 (www.AgileRecord.com)

http://www.gilb.com/tiki-download_file.php?fileId=431
 http://www.slideshare.net/tomgilb1/agility-is-the-tool-gilb-vilnius-9-dec-2013

Agile Principles : Agile Record Paper as Published

http://www.gilb.com/tiki-download_file.php?fileId=431
Value-Driven Development Principles and Values – Agility is the Tool, Not the Master

July 2010 Issue 3, Agile Record 2010 (www.AgileRecord.com)

http://www.gilb.com/tiki-download_file.php?fileId=431

June 9, 2014

1

mailto:tomsgilb@gmail.com
http://www.gilb.com
http://www.gilb.com/tiki-download_file.php?fileId=431
http://www.gilb.com/tiki-download_file.php?fileId=431
http://www.slideshare.net/tomgilb1/agility-is-the-tool-gilb-vilnius-9-dec-2013
http://www.slideshare.net/tomgilb1/agility-is-the-tool-gilb-vilnius-9-dec-2013
http://www.gilb.com/tiki-download_file.php?fileId=431
http://www.gilb.com/tiki-download_file.php?fileId=431

© Gilb.com

Defining ‘Agile’
• “Any set of tactics that enable

a prioritised stream of useful
results, in spite of a changing
environment”

– TsG 7 June 2013

• A focus on ‘Agile’, is the wrong
level of focus.
– Using agile tactics that ‘work’, is

a good idea.
• Focus on results, no matter

what.
• As a government minister, I was

asked to give ideas to, put it
“Value for Money”

Monday, 9 June 14 2

© Gilb.com
3Copyright: Kai@Gilb.com

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Value Management  
Process

Monday, 9 June 14 3

© Gilb.com
Copyright: Kai@Gilb.comCopyright: Kai@Gilb.com

Stakeholders

Values
Measure

Learn

Value Management  
Process

4

Solutions

DecomposeDevelop

Deliver

Scrum

Monday, 9 June 14 4

© Gilb.com

Agile World View
□ “Agility” has many dimensions other than IT
□ It ranges from leadership to technological agility
□ The focus of this brief is program management agility

☞ ☜

Agile Leaders

Agile Organization Change

Agile Acquisition & Contracting

Agile Strategic Planning

Agile Capability Analysis

Agile Program Management

Agile Tech.

Agile Information Systems

Agile Tools

Agile Processes & Practices

Agile Systems Development

Agile Project Management

5Monday, 9 June 14 5

Source:

David Rico

© Gilb.com

Agile Recap
□ Agile methods DON’T mean deliver it now & fix it

later
□ Lightweight, yet disciplined approach to development
□ Reduced cost, risk, & waste while improving quality

6

Rico, D. F. (2012). What’s really happening in agile methods: Its principles revisited? Retrieved June 6, 2012, from http://davidfrico.com/agile-principles.pdf
Rico, D. F. (2012). The promises and pitfalls of agile methods. Retrieved February 6, 2013 from
Rico, D. F. (2012). How do lean & agile intersect? Retrieved February 6, 2013, from http://davidfrico.com/agile-concept-model-3.pdf

What How Result
Flexibility Use lightweight, yet disciplined processes and artifacts Low work-in-process
Customer Involve customers early and often throughout development Early feedback
Prioritize Identify highest-priority, value-adding business needs Focus resources
Descope Descope complex programs by an order of magnitude Simplify problem

Decompose Divide the remaining scope into smaller batches Manageable pieces
Iterate Implement pieces one at a time over long periods of time Diffuse risk

Leanness Architect and design the system one iteration at a time JIT waste-free design
Swarm Implement each component in small cross-functional teams Knowledge transfer

Collaborate Use frequent informal communications as often as possible Efficient data transfer
Test Early Incrementally test each component as it is developed Early verification
Test Often Perform system-level regression testing every few minutes Early validation

Adapt Frequently identify optimal process and product solutions Improve performance

☜☜☜☜

☜☜☜☜

☞☞
☞☞

☞☞☞☞

Monday, 9 June 14 6

Source:
David Rico

© Gilb.com

14 PITFALLS OF AGILE METHODS  
● Change – Use of top-down, big-bang organization change, adoption, and institutionalization. 
● Culture – Agile concepts, practices, and terminology collide with well-entrenched traditional methods.

 ● Acquisition – Using traditional, fixed-price contracting for large agile delivery contracts and projects.

● Misuse – Scaling up to extremely complex large-scale projects instead of reducing scope and size. 
● Organization – Unwillingness to integrate and dissolve testing/QA functional silos and departments.

● Training – Inadequate, insufficient, or non-existent agile training (and availability of agile coaches). 
● Infrastructure – Inadequate management and development tools, technologies, and environment. 
● Interfacing – Integration with portfolio, architecture, test, quality, security, and usability functions. 
● Planning – Inconsistency, ambiguity, and non-standardization of release and iteration planning. 
● Trust – Micromanagement, territorialism, and conflict between project managers and developers. 
● Teamwork – Inadequate conflict management policies, guidelines, processes, and practices. 
● Implementation – Inadequate testing to meet iteration time-box constraints vs. quality objectives. 
● Quality - Inconsistent use of agile testing, usability, security, and other cost-effective quality practices.

● Experience - Inadequate skills and experience (or not using subject matter experts and coaches).

• (Note. Firms may prematurely "revert" to inexorably slower and more expensive traditional methods or
"leap" onto lean methods that may not adequately address common pitfalls of adopting agile methods.)

• Source: David Rico http://davidfrico.com/agile-pros-cons.pdf 2012

Monday, 9 June 14 7

http://davidfrico.com/agile-pros-cons.pdf

+

© Gilb.com Agility is the Tool

Value Driven Scrum

System
Owner
• Stakeholders Values
• Business Values
• System Functions

Product
Owner
• Build
• Test
• Maintain
• Detailed Technical Design

June 9, 2014

8

+

© Gilb.com Agility is the Tool

9

Business Goals Training Costs User Productivity
Profit -10% 40%
Market Share 50% 10%
Resources 20% 10%

Stakeholder
Val. Intuitiveness Performance

Training Costs -10% 50 %
User Productivity 10 % 10%
Resources 2 % 5 %

Product Values GUI Style Rex Code Optimize
Intuitiveness -10% 40%
Performance 50% 80 %
Resources 1 % 2 %

Prioritized List
1. Code
Optimize
2. Solution 9
3. Solution 7

We measure
improvements
Learn and Repeat

Copyright: Kai@Gilb.com

Value Decision Tables

Scrum Develops

Jeffsutherland
Twitter: Very cool
product backlog
management
by Tom and Kai
Gilb http://ad.vu/
2h4d Sat 28
March 2009

June 9, 2014

https://twitter.com/jeffsutherland
https://twitter.com/jeffsutherland
http://ad.vu/2h4d
https://twitter.com/jeffsutherland/status/1403518620

+

© Gilb.com Agility is the Tool 10Copyright: Kai@Gilb.com

Jeffsutherland Twitter: Very cool product backlog management
by Tom and Kai Gilb http://ad.vu/2h4d Sat 28 March 2009

June 9, 2014

10

https://twitter.com/jeffsutherland
https://twitter.com/jeffsutherland
http://ad.vu/2h4d
https://twitter.com/jeffsutherland/status/1403518620

© Gilb.com Agility is the Tool

1. Control projects by quantified critical-few results. 1 Page total !

 (not stories, functions, features, use cases, objects, ..)
2. Make sure those results are business results, not technical

Align your project with your financial sponsor’s interests!

3. Give developers freedom, to find out how to deliver those results

4. Estimate the impacts of your designs, on your quantified goals

5. Select designs with the best impacts in relation to their costs, do them

first.

6. Decompose the workflow, into weekly (or 2% of budget) time boxes

7. Change designs, based on quantified experience of implementation

8. Change requirements, based in quantified experience, new inputs

9. Involve the stakeholders, every week, in setting quantified goals

10. Involve the stakeholders, every week, in actually using increments

June 9, 2014 11

Gilb’s Ten Key Agile Principles  
to avoid bureaucracy and give creative freedom  

(see Polish & Eng. Paper on this!) Core, Agilerecord.com, Gilb.com

Copyright 2004-13 Gilb, may be used citing source

© Gilb.com Agility is the Tool

Main Idea:
 Get early, and frequent, real, stakeholder net-value - delivered

June 9, 2014 12

Gilb’s Agile Principles  
to avoid bureaucracy and give creative freedom (1 sentence summary)

Deliver
Value !

© Gilb.com Agility is the Tool

 (not stories, functions, features, use cases, objects, ..)

1. Control projects by quantified critical-
few results. 1 Page total !

June 9, 2014 13

© Gilb.com Agility is the Tool

NOT LIKE THIS! Project Objectives  
‘Unquantified few’

! Defined Scales of
Measure:
◦ Demands
comparative
thinking.
◦ Leads to
requirements that
are unambiguously
clear
◦ Helps Team be
Aligned with the
Business

June 9, 2014 14

1. Central to The Corporations business strategy is to be the world’s
premier integrated <domain> service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the last
data is acquired to time align, depth correct, splice, merge,
recompute and/or do whatever else is needed to generate the
desired products

4. Make the system much easier to understand and use than has
been the case for previous system.

5. A primary goal is to provide a much more productive system
development environment than was previously the case.

6. Will provide a richer set of functionality for supporting next-
generation logging tools and applications.

7. Robustness is an essential system requirement (see rewrite in
example below)

8. Major improvements in data quality over current practices

Real Example of Lack of CLARITY

This lack of clarity cost them $100,000, 000

www.Gilb.com Version June 9, 2014 15

More like this! (Real Example).

<- Business

Objectives

Quantified

www.Gilb.com 16

Real EXAMPLE of Objectives/Strategy definitions  
US Army Example: PERSINSCOM: Personnel System

! Example of one of the Objectives:
Customer Service:
Type: Critical Top level Systems Objective
Gist: Improve customer perception of quality of service

provided.
Scale: Violations of Customer Agreement per Month.
Meter: Log of Violations.
Past [Last Year] Unknown Number !State of PERSCOM

Management Review
Record [NARDAC] 0 ? ! NARDAC Reports Last Year
Fail : <must be better than Past, Unknown number>

!CG
Goal [This Year, PERSINCOM] 0 “Go for the Record” !

Group SWAG

 .
June 9, 2014

© Gilb.com Agility is the Tool

 Align your project with your financial sponsor’s interests!

Principle 2.  

Make sure those results  
are business results, not JUST technical

June 9, 2014 17

5

The Strategic Objectives (CTO level)  
Example from Ericsson Base Stations
●the Fundamental

Objectives (Profit, survival)
●Software Productivity:
● Lines of Code Generation Ability

●Lead-Time:
●Predictability.
●TTMP: Predictability of

Time To Market:
●Product Attributes:
●Customer Satisfaction:
●Profitability:

Productivity Slides incl Ericsson
http://www.gilb.com/dl559

6

‘Means’ Objectives which support Strategic Objectives:  
all quantified in practice,  

see URL below

◦ Support the Strategic
Objectives
●Complaints:
●Feature Production:
●Rework Costs:
●Installation Ability:
●Service Costs:
●Training Costs:
●Specification Defectiveness:
●Specification Quality:
●Improvement ROI:

"Let no man turn aside,
ever so slightly,

from the broad path of honour,
on the plausible pretence

 that he is justified by the goodness
 of his end.

All good ends can be worked out
 by good means." 
Charles Dickens

Productivity Slides incl Ericsson
http://www.gilb.com/dl559

http://en.wikipedia.org/wiki/Charles_Dickens

© Gilb.com Agility is the Tool June 9, 2014 20

Simple Product Owner (Ambler)

http://www.agilemodeling.com/essays/productOwner.htm

http://www.agilemodeling.com/essays/productOwner.htm

© Gilb.com Agility is the Tool

Background: this policy defines the expectations for a ‘Product
Owner’ (PO) for serious, critical, large, and complex systems.

1. This implies that it is not enough to manage a simple stream
(Backlog) of ‘user stories’ fed to a programming team.
2. It is necessary to communicate with a systems engineering team,
developing or maintaining the ‘Product’.

System implies management of all technological components,
people, data, hardware, organization, training, motivation, and
programs.
Engineering: means systematic and quantified, ‘real’ engineering
processes, where proactive design is used to manage system
performance (incl. all qualities) attributes and costs.

June 9, 2014 21

‘Advanced Product Owner’ Policy: System ‘Requirements
Engineer’ (RE). 

New idea being drafted by TG for a Client Bank, 7.12.2013

© Gilb.com Agility is the Tool

1. COMPLETE REQUIREMENTS:
The RE (Requirements Engineer) is responsible for absolutely all requirements specification that the system must be aware of, and be
responsible for to all critical or relevant stakeholders.

In particular, the RE is not narrowly responsible for requirements from users and customers alone. They are responsible for all other
stakeholders, such as operations, maintenance, laws, regulations, resource providers, and more.

2. QUALITY REQUIREMENTS:

The RE is responsible for the quality level, in relation to official standards, of all requirements they transmit to others.
They are consequently responsible for making sure the quality of incoming raw requirements, needs, values, constraints etc. is good
enough to process. No GIGO.
 If input is not good quality, they are responsible for making sure it is better quality, or at least clearly annotated where there is doubt,
incompleteness, ambiguity and any other potential problems, they cannot resolve yet.

3. ARCHITECTURE:

The Requirements Engineer is NOT responsible for any architecture or design process itself. This will be done by professional engineers
and architects.
They are however very much responsible for a complete and intelligible quality set of requirements, transmitted to the designers and
architects.
The are also responsible for transmitting quality-controlled architecture or design specifications to any relevant system builders. These are
the designs which are input requirements to builders. Effectively they are ‘design constraints requirements’.

4. PRIORITY INFORMATION:

The Requirements Engineer is NOT responsible for prioritization of requirements.
Prioritization is done dynamically at the project management (PM) level, based on prioritization signals in the requirements, and on
current feedback and experience in the value delivery cycles (Sprints).
The primary responsibility of the Requirements Engineer, is to systematically and thoroughly collect and disseminate all relevant priority
signals, into the requirement specification; so that intelligent prioritization can be done at any relevant level, and at any time.

June 9, 2014 22

‘Advanced Product Owner’ Policy:  
System ‘Requirements Engineer’ (RE).

New idea being drafted by TG for a Client Bank, 7.12.2013

© Gilb.com Agility is the Tool June 9, 2014 23

Product Owner at Scale (Ambler)

http://www.agilemodeling.com/essays/productOwner.htm

http://www.agilemodeling.com/essays/productOwner.htm

© Gilb.com Agility is the Tool

3. Give developers freedom,  
to find out how to deliver those results

June 9, 2014 24

© Gilb.com Agility is the Tool

Principle 4. Estimate the impacts  
of your designs, on your quantified goals

If you cannot, then your knowledge is of a
meagre and unsatisfactory kind (Lord Kelvin)

!

June 9, 2014 25

Quantified Value Delivery Project Management in a Nutshell (Confirmit Case, Norway)  
Quantified Value Requirements, Design, Design Value/cost estimation, Measurement of Value
Delivery, Incremental Project Progress to Date

Cumulative

weekly

progress

metric

Priority

Next
week

Warning

metrics
based

C
onstraint

Target
E

stim
ates

W
eekly

Testing

www.Gilb.com Version June 9, 2014 27

REAL EXAMPLE: Strategy Impact Estimation:  
for a $100,000,000 Organizational Improvement Investment

Cost Benefit/Cost

ratio

Technical StrategiesObjectives

Strategy

Impacts

on

Objectives

"Benefits"

358 !

© Gilb.com Agility is the Tool

5. Select designs with the best impacts  
in relation to their costs, 
 do them first.

June 9, 2014 28

© Gilb.com 29

Impact Estimation: Value Decision Table  
Decomposes Architecture by Value, and Value/Cost “Efficiency”

9 June 2014

29.5:1

© Gilb.com Agility is the Tool

Principle 6. Decompose the workflow, 
 into weekly (or 2% of budget) time boxes

Decomposition of Projects:
How to Design Small
Incremental Steps INCOSE
2008
http://www.gilb.com/tiki-
download_file.php?fileId=41

!

June 9, 2014 30

© Gilb.com

1 1 1 1 1 1 Unity  

◦1% increase at least
◦1 stakeholder
◦1 quality or value
◦1-week delivery
cycle

◦1 function focus
◦1 design used

9 June 2014 31

http://www.gilb.com/tiki-download_file.php?fileId=451
111111 Unity Method slides

© Gilb.com

Decomposition Principles  
A Teachable Discipline

How to decompose systems into small evolutionary steps:

 some principles to apply:
1• Believe there is a way to do it, you just have not found it yet!
2• Identify obstacles, but don't use them as excuses: use your imagination to get rid of
them!
3• Focus on some usefulness for the user or customer, however small.
4• Do not focus on the design ideas themselves, they are distracting, especially for
small initial cycles. Sometimes you have to ignore them entirely in the short term!
5• Think; one customer, tomorrow, one interesting improvement.
6• Focus on the results (which you should have defined in your goals, moving toward
target levels).
7• Don't be afraid to use temporary-scaffolding designs. Their cost must be seen in the
light of the value of making some progress, and getting practical experience.
8• Don't be worried that your design is inelegant; it is results that count, not style.
9• Don't be afraid that the customer won't like it. If you are focusing on results they
want, then by definition, they should like it. If you are not, then do!
10• Don't get so worried about "what might happen afterwards" that you can make no
practical progress.
11• You cannot foresee everything. Don't even think about it!
12• If you focus on helping your customer in practice, now, where they really need it,
you will be forgiven a lot of ‘sins’!
13• You can understand things much better, by getting some practical experience (and
removing some of your fears).
14• Do early cycles, on willing local mature parts of your user community.
15• When some cycles, like a purchase-order cycle, take a long time, initiate them
early, and do other useful cycles while you wait.
16• If something seems to need to wait for ‘the big new system’, ask if you cannot
usefully do it with the ‘awful old system’, so as to pilot it realistically, and perhaps
alleviate some 'pain' in the old system.
17• If something seems too costly to buy, for limited initial use, see if you can
negotiate some kind of ‘pay as you really use’ contract. Most suppliers would like to
do this to get your patronage, and to avoid competitors making the same deal.
18• If you can't think of some useful small cycles, then talk directly with the real
‘customer’ or end user. They probably have dozens of suggestions.
19• Talk with end users in any case, they have insights you need.
20• Don't be afraid to use the old system and the old ‘culture’ as a launching
platform for the radical new system. There is a lot of merit in this, and many people
overlook it.
I have never seen an exception in 33 years of doing this with many varied cultures.
Oh Ye of little faith!

http://www.gilb.com/tiki-download_file.php?fileId=41
9 June 2014 32

© Gilb.com

Rene Descartes on Focus
! “We should bring the whole

force of our minds
◦ to bear upon the most minute and

simple details
◦ and to dwell upon them for a long

time
◦ so that we become accustomed to

perceive the truth clearly and
distinctly.”

! Rene Descartes, Rules for the Direction of the Mind,
1628

9 June 2014 33

© Gilb.com

! That which remains quiet, is easy to
handle.

! That which is not yet developed is easy to
manage.

! That which is weak is easy to control.
! That which is still small is easy to direct.
! Deal with little troubles before they

become big.
! Attend to little problems before they get

out of hand.
◦ For the largest tree was once a sprout,

! the tallest tower started with the first
brick,

! and the longest journey started with the
first step.

◦ From Lao Tzu in Bahn, 1980 (also quoted in Gilb, Principles of Software Engineering
Management page 96), Penguin book

Tao Te Ching (500BC)

9 June 2014 34

© Gilb.com Agility is the Tool

Principle 7.  

Change designs,  

based on  
quantified experience of implementation

Design is the
servant of the
requirement.
If it does not

work
 ‘fire’ it.

!

June 9, 2014 35

Lean Startup

Lean Startup: High Unknowns

9 June 2014 36http://www.slideshare.net/venturehacks/the-lean-startup-2

Value Management (Gilb, Evo)

37

Copyright: Kai@Gilb.com

© Gilb.com

20 Sept, 2011 Report on Gilb Evo
method (Richard Smith, Citigroup)

! http://rsbatechnology.co.uk/blog:8
! Back in 2004, I was employed by a large investment bank in their FX e-commerce IT department as a business analyst.
! The wider IT organisation used a complex waterfall-based project methodology that required use of an intranet application to

manage and report progress.
! However, it's main failings were that it almost totally missed the ability to track delivery of actual value improvements to a

project's stakeholders, and the ability to react to changes in requirements and priority for the project's duration.
! The toolset generated lots of charts and stats that provided the illusion of risk control. but actually provided very little help to the

analysts, developers and testers actually doing the work at the coal face.
! The proof is in the pudding;

◦ I have used Evo (albeit in disguise sometimes) on two large, high-risk projects in front-office investment banking businesses, and
several smaller tasks.

◦ On the largest critical project, the original business functions & performance objective requirements document,
which included no design, essentially remained unchanged
over the 14 months the project took to deliver,

◦ but the detailed designs (of the GUI, business logic, performance characteristics) changed
many many times, guided by lessons learnt and feedback gained by delivering a succession of early deliveries to real
users.

◦ In the end, the new system responsible for 10s of USD billions of notional risk, successfully went live
over one weekend for 800 users worldwide, and was
seen as a big success by the sponsoring stakeholders.

9 June 2014 38

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”

http://rsbatechnology.co.uk/blog:8
http://rsbatechnology.co.uk/blog:8

© Gilb.com

Dynamic (Agile, Evo) design testing:  
not unlike ‘Lean Startup’

! “… but the detailed designs
◦ (of the GUI, business logic, performance characteristics)

! changed many many times,
! guided by lessons learnt
! and feedback gained by
! delivering a succession of early deliveries
! to real users”

9 June 2014 39

 “ I attended a 3-day course with you and Kai whilst at Citigroup in 2006”,
Richard Smith

Richard Smith

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 40

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 41

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 42

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 43

Design is an

iterative process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 44

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 45

 an estimate to
complete the remaining

increments is
computed.

© Gilb.com Agility is the Tool

Principle 8. Change requirements,  
based on quantified experience,  
new inputs: intelligent tradeoff.

Reduce the level or
delivery time, of lower-
priority requirements,
 in order to deliver

high priority
requirements

on time,
within budget, or at

Goal levels.

!

June 9, 2014 46

© Gilb.com 2011

REAL EXAMPLE: Cleanroom Method, developed by IBM’s
Harlan Mills (1970-80) EARLY AGILE !!!  

! “Software Engineering began to emerge in FSD” (IBM Federal Systems Division,
from 1996 a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970]
in a continuing evolution that is still underway:

! Ten years ago general management expected the worst from software projects –
cost overruns, late deliveries, unreliable and incomplete software

! Today [Ed. 1980!], management has learned to expect on-time, within
budget, deliveries of high-quality software. A Navy helicopter ship
system, called LAMPS, provides a recent example. LAMPS software was a four-year
project of over 200 person-years of effort, developing over three million, and
integrating over seven million words of program and data for eight different
processors distributed between a helicopter and a ship in 45 incremental deliveries
[Ed. Note 2%!]s. Every one of those deliveries was on time and under budget

! A more extended example can be found in the NASA space program,
! - Where in the past ten years, FSD has managed some 7,000 person-years of

software development, developing and integrating over a hundred million bytes of
program and data for ground and space processors in over a dozen projects.

! - There were few late or overrun deliveries in that decade, and none at all in the past
four years.”

June 9, 2014 47

© Gilb.com 2011

In the Cleanroom Method, developed by IBM’s Harlan Mills (1980) they reported  
 note: real Agile large scale from 1970-80!  

! “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from 1996
a part of Lockheed Martin Marietta) “some ten years ago [Ed. about 1970] in a
continuing evolution that is still underway:

! Ten years ago general management expected the worst from software projects – cost
overruns, late deliveries, unreliable and incomplete software

! Today [Ed. 1980!], management has learned to expect on-time, within budget, deliveries of
high-quality software. A Navy helicopter ship system, called LAMPS, provides a recent
example. LAMPS software was a four-year project of over 200 person-years of effort,
developing over three million, and integrating over seven million words of program and
data for eight different processors distributed between a helicopter and a ship in 45
incremental deliveries [Ed. Note 2%!]s. Every one of those deliveries was on time and
under budget

! A more extended example can be found in the NASA space program,
! - Where in the past ten years, FSD has managed some 7,000 person-years of software

development, developing and integrating over a hundred million bytes of program and
data for ground and space processors in over a dozen projects.

! - There were few late or overrun deliveries in that decade, and none at all in the past
four years.”

June 9, 2014 48

in 45 incremental deliveries

were few late or overrun
deliveries in that decade,
and none at all in the

past four years

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost

Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management farther by introducing
design-to-cost guidance. Design, development, and managerial practices are applied in an integrated way to ensure that software technical
management is consistent with cost management. The method [illustrated in this book by Figure 7.10] consists of developing a design,
estimating its cost, and ensuring that the design is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by sacrificing 'planned
capability.' When a satisfactory design at cost target is achieved for a single increment, the 'development of each increment can proceed
concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking the appropriate
balance between cost and design for a single increment, but they iterate through a series of increments, thus reducing the complexity of
the task, and increasing the probability of learning from experience, won as each increment develops, and as the true cost of the increment
becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 49

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 50

of developing a design,
estimating its cost, and
ensuring that the design

is cost-effective

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 51

iteration process
trying to meet cost

targets by either
redesign or by

sacrificing 'planned
capability’

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 52

Design is an

iterative process

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 53

but they iterate through a series of
increments,

thus reducing the complexity of the
task,

and increasing the probability of
learning from experience

Copyright Tom@Gilb.com 2013

Quinnan: IBM FSD Cleanroom  
Dynamic Design to Cost
Quinnan describes the process control loop used by IBM FSD to ensure that cost targets are met.

'Cost management. . . yields valid cost plans linked to technical performance. Our practice carries cost management
farther by introducing design-to-cost guidance. Design, development, and managerial practices are applied in an
integrated way to ensure that software technical management is consistent with cost management. The method
[illustrated in this book by Figure 7.10] consists of developing a design, estimating its cost, and ensuring that the design
is cost-effective.' (p. 473)

 He goes on to describe a design iteration process trying to meet cost targets by either redesign or by
sacrificing 'planned capability.' When a satisfactory design at cost target is achieved for a single increment, the
'development of each increment can proceed concurrently with the program design of the others.'

'Design is an iterative process in which each design level is a refinement of the previous level.' (p. 474)

 It is clear from this that they avoid the big bang cost estimation approach. Not only do they iterate in seeking
the appropriate balance between cost and design for a single increment, but they iterate through a series of increments,
thus reducing the complexity of the task, and increasing the probability of learning from experience, won as each
increment develops, and as the true cost of the increment becomes a fact.

'When the development and test of an increment are complete, an estimate to complete the remaining increments is
computed.' (p. 474)
Source: Robert E. Quinnan, 'Software Engineering Management Practices', IBM Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77
This text is cut from Gilb: The Principles of Software Engineering Management, 1988

9 June 2014 54

 an estimate to
complete the

remaining increments
is computed.

© Gilb.com Agility is the Tool

Principle 9. Involve the stakeholders,  
every week, in setting quantified goals

It is much easier to determine
requirements with a little hindsight!

The eternal cycle of stakeholder
priorities

June 9, 2014 55

© Tom @ Gilb.com

Concurrent Quantified ‘Empowered Creativity’ * 
The Software Engineers can use ANY design that they
believe delivers the planned value.  
And keep what really works

Confirmit Product

Team 1 Team 2 Team 3 Team 4

* Empowered Creativity: Term coined by Trond Johansen, Confirmit,
2003

June 9, 2014 56

© Tom@Gilb.com Top10 Method

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement  
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a
year. Total development staff = 13

9
8

3
3

Monday, 9 June 14 57

© Tom @ Gilb.com

Evo’s impact on Confirmit product qualities 1st Qtr
! Only 5 highlights of the 25 impacts are listed here

Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-
report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report
set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced
programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous
respondents executing a survey with a click rate of 20 sec and an response
time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Release 8.5

© Gilb.com Agility is the Tool June 9, 2014 59

10. Involve the stakeholders,  
every week,  

in actually using increments

© Tom @ Gilb.com

Quantified Value Delivery Project Management in a Nutshell 
Quantified Value Requirements, Design, Design Value/cost estimation,
Measurement of Value Delivery, Incremental Project Progress to Date

Cumulative

weekly

progress

metric

Priority

Next
week

Warning

metrics
based

C
onstraint

Target
E

stim
ates

W
eekly

Testing

June 9, 2014 60

© Tom @ Gilb.com

EVO Plan Confirmit 8.5 in Evo Step Impact Measurement  
4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a
year. Total development staff = 13

9
8

3
3

June 9, 2014 61

© Tom@Gilb.com Top10 Method

Code quality – ”green” week, 2005 
“Refactoring by Proactive Design Engineering!”

! In these ”green” weeks, some of the deliverables will be less
visible for the end users, but more visible for our QA department.

! We manage code quality through an Impact Estimation table.
Speed

Maintainability

Nunit Tests

PeerTests

TestDirectorTests

Robustness.Correctness

Robustness.Boundary
Conditions

ResourceUsage.CPU

Maintainability.DocCode

SynchronizationStatus

Monday, 9 June 14 62

© Tom @ Gilb.com

Raising the Levels of Maintainability 
like ‘Mean Time To Fix a Bug’

Current
Level

Minimum
Future
Level

Competiti
ve and

economic
Goal level

June 9, 2014 63

© Tom @ Gilb.com

Raising the Levels of Maintainability 
Multiple Attributes of Technical Debt

June 9, 2014 64

Portability Scalability
Adaptability Testability

www.gilb.com

Broader ‘Maintainability’ Concepts  
ALL quantified, with a defined Scale of measure in CE-5

June 9, 2014 65

www.gilb.com

1. The Conscious Design Principle:

• “Maintainability must be
consciously designed into a
system:
• failure to design to a set
of levels of maintainability

• means the resulting
maintainability is both
bad and random. ”

• © Tom Gilb (2008, INCOSE Paper)
● http://www.gilb.com/tiki-download_file.php?fileId=138

June 9, 2014 66

www.gilb.com

The ‘Maintainability’ Generic  
Breakdown into Sub-problems

1. Problem Recognition Time.
 How can we reduce the time from bug

actually occurs until it is recognized and
reported?

2. Administrative Delay Time:
 How can we reduce the time from bug

reported, until someone begins action on
it?

3. Tool Collection Time.
How can we reduce the time delay to collect

correct, complete and updated
information to analyze the bug: source
code, changes, database access, reports,
similar reports, test cases, test outputs.

4. Problem Analysis Time.
 Etc. for all the following phases defined,

and implied, in the Scale scope above.

5. Correction Hypothesis Time

6. Quality Control Time

7. Change Time

8. Local Test Time

9. Field Pilot Test Time

10. Change Distribution Time

11. Customer Installation Time

12. Customer Damage Analysis Time
13. Customer Level Recovery Time

14. Customer QC of Recovery Time

June 9, 2014 67

Source: Competitive Engineering Ch 5
 & Ireson (ed.) Reliability Handbook, 1966

www.gilb.com

An Example of Specifying 1 Attribute  

Restore Speed:
Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do so), the system

shall be able to restore the system to a previously saved state in less than 10
minutes. <-6.1.2 HFA.

Scale: Duration from Initiation of Restore to Complete and verified state of a defined
[Previous: Default = Immediately Previous]] saved state.

 Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

Goal [Initial and all subsequent
released and Evo steps] 1 minute?

Fail [Initial and all subsequent released
and Evo steps] 10 minutes. <- 6.1.2
HFA

Catastrophe: 100 minutes.
 June 9, 2014 68

© Tom @ Gilb.com

Let’s Vote
1. How many of you
would prefer to keep
doing conventional
‘softcrafter’ refactoring;
even if the results were
not measurable

2. How many of you
think you ought to try to
engineer measurable
software maintainability
results into your
systems
◦ Even if your boss is not

smart enough to ask
you, or support you
doing it?

June 9, 2014 69

© Tom @ Gilb.com

Further Reading: AgileRecord.com

June 9, 2014 70

© Gilb.com Agility is the Tool

My 10 Agile Values?

June 9, 2014�71

● Simplicity
● 1. Focus on real stakeholder values

● Communication
● 2. Communicate stakeholder values quantitatively
● 3. Estimate expected results and costs for weekly steps

● Feedback
● 4. Generate results, weekly, for stakeholders, in their environment
● 5. Measure all critical aspects of the improved results cycle.
● 6. Analyze deviation from your initial estimates

● Courage
● 7. Change plans to reflect weekly learning
● 8. Immediately implement valued stakeholder needs, next week

● Don’t wait, don’t study (analysis paralysis), don’t make excuses.
● Just Do It!

● 9. Tell stakeholders exactly what you will deliver next week
● 10. Use any design, strategy, method, process that works quantitatively well -

to get your results
● Be a systems engineer, not a just programmer (a ‘Softcrafter’).
● Do not be limited by your craft background, in serving your paymasters

Copyright 2004-8 Gilb, may be used citing source

 “Values for Value”
 http://www.gilb.com/tiki-download_file.php?fileId=448

 Agile Record 2010, www.agilerecord.com, October 2010, Issue 4

© Gilb.com Agility is the Tool

●Ecstatic Stakeholder!

June 9, 2014�72

© Gilb.com

That’s All Folks!

● Discussion?
● I am here all Conference and incl My

Friday ‘Evo’ Seminar
● And love to talk with you!

● Remarks? Questions?
● Email me if you like

● For free digital copy of this
book, and 4 of my Agile papers,
and the Evo book

● Email me subject “Book”
● Tom@Gilb.com
● If you want to agree a meeting, email

me
● or text +47 92066705
●
● This talk is NOW at Gilb.com/

Downloads (Slides)

17 Feb 201073

mailto:Tom@Gilb.com

© Gilb.com

Agile Credibility
● Agile ‘Grandfather’ (Tom)

● Practicing ‘Agile’ IT Projects since 1960
● Preaching Agile since 1970’s (CW UK)
● Acknowledged Pioneer by Agile Gurus and Research

● Beck, Sutherland, Highsmith, Cohn, Larman etc.
● Ask me for details on this! I am too shy to show it here!

● Agile Practice
● IT: for decades (Kai and Tom)
● Organisations: for Decades (Citigroup, Intel, HP, Boeing)

● Books:
● Principles of Software Engineering Management (1988)

the book Beck and others refer to
● Competitive Engineering (2005)
● Evo: (Kai, evolving, 55 iterations)

Monday, 9 June 14�74

© Gilb.com Agility is the Tool

OK I am not that shy! 
(the most influential!)

Agile References:

"Tom Gilb invented Evo, arguably the first Agile process. He and his son Kai have been working with me in Norway to align what they
are doing with Scrum.

Kai has some excellent case studies where he has acted as Product Owner. He has done some of the most innovative things I have
seen in the Scrum community."

Jeff Sutherland, co-inventor of Scrum, 5Feb 2010 in Scrum Alliance Email.

“Tom Gilb's Planguage referenced and praised at #scrumgathering by Jeff Sutherland. I highly agree" Mike Cohn, Tweet, Oct 19 2009

“I’ve always considered Tom to have been the original agilist. In 1989, he wrote about short iterations (each should be no more than
2% of the total project schedule). This was long before the rest of us had it figured out." Mike Cohn http://
blog.mountaingoatsoftware.com/?p=77

Comment of Kent Beck on Tom Gilb’s book , “Principles of Software Engineering Management”: “ A strong case for evolutionary
delivery – small releases, constant refactoring, intense dialog with the customer”. (Beck, page 173).

In a mail to Tom, Kent wrote: “I'm glad you and I have some alignment of ideas. I stole enough of yours that I'd be disappointed if we
didn't :-), Kent” (2003)

Jim Highsmith (an Agile Manifesto signatory) commented: “Two individuals in particular pioneered the evolution of iterative
development approached in the 1980’s – Barry Boehm with his Spiral Model and Tom Gilb with his Evo model. I drew on Boehm’s and
Gilb’s ideas for early inspiration in developing Adaptive Software Development. …. Gilb has long advocated this more explicit
(quantitative) valuation in order to capture the early value and increase ROI” (Cutter It Journal: The Journal of Information
Technology Management, July 2004page 4, July 2004).

June 9, 2014�75

© Gilb.com

TWELVE TOUGH QUESTIONS
1. Why isn't the improvement
quantified?
2. What is degree of the risk
or uncertainty and why?
3. Are you sure? If not, why
not?
4. Where did you get that
from? How can I check it out?
5. How does your idea affect
my goals, measurably?
6. Did we forget anything
critical to survival?

7. How do you know it works that
way? Did it before?
8. Have we got a complete solution?
Are all objectives satisfied?
9. Are we planning to do the
'profitable things' first?
10. Who is responsible for failure or
success?
11. How can we be sure the plan is
working, during the project, early?
12. Is it ‘no cure, no pay’ in a
contract? Why not?

Monday, 9 June 14�76 There is a detailed paper on these questions at Gilb.com

http://www.gilb.com/tiki-download_file.php?fileId=24

