[bookmark: _WNSectionTitle_4][bookmark: _WNTabType_3]	09/10/2014 22:02
 ‘Planguage: an 'engineering' language and process for real software and Systems engineering - not 'programming'

By Tom Gilb

ABSTRACT
‘Planguage’ is a general-purpose, systems engineering, planning language; for any system, including software systems. Planguage scope is requirements, design, project management, and quality control.
 It has been developed and practiced for decades (since 1960s). It is open source; anybody can use it for anything, in whole or part, freely.
 It is a large integrated ‘toolbox’, containing hundreds of distinct tools. Any set of these tools can be added to any other set of tools, or any framework. In particular, it is suitable as a set of ‘practices’ to evolve one’s own method within a stable Kernel.
 Planguage was designed to be interpreted by computers. The earliest automation was done by Prof. Lech Krzanik in 1978-9, on an Apple II in Forth, and published in his PhD Thesis, as well as in ‘Principles of Software Engineering’ (1988, ‘Aspect Engine’). Many automated tools have been made since, by Kai Gilb, and our clients, to support it’s use.
 Planguage was also designed to be ‘translated’ easily into any nation’s language. It includes a graphical representation language, as part of this.
 The central distinguishing characteristic of Planguage is it’s ability to directly integrate any quality (any ‘-ility’, not just reliability) statement quantitatively into the requirements, the designs, the project management, and the quality-control methods it contains.
 The second distinguishing characteristic of Planguage is that it allows and encourages very ‘rich’ planning specification of the background information for each individual requirement and design. This supports risk management, change management and dynamic prioritization.
 A third distinguishing characteristic is a systematic devotion to clarity and intelligibility of specification. Ambiguity, and lack of testable clarity is unacceptable. Even for ‘soft’ characteristics. Metrics, measurability and frequent numeric feedback about performance and costs is a primary notion.
 Planguage, with its project management component. ‘Evo’ (Evolutionary Value Delivery) is recognized as the ‘grandfather’ of Agile methods. Both in terms of earliest publication (1970s, 1980s [10]), and by Agile method developers. [10 B]
The two largest scale adoptions of Planguage were at HP (from 1988), and is at Intel (over 17,000 engineers, over 10 years). A body of literature exists for this.
 Other noteworthy adoptions documentable, but often less than Corporate, sometime lasting only a few years include IBM (Corporate Quality Policy, CMM 4), ICL (1982, top management, sw product development), Boeing (1990, aircraft engineering QC, Process Error Prevention method), McDonnell Douglas (aircraft engineering, 1998-90), Citigroup (2003-2006), Credit Suisse, JP Morgan, Union Bank of Switzerland, Philips Medical Systems, Ericsson (ERA, 1990s), Nokia & Symbian, Microsoft (Test). There are many smaller and lesser known organizations and single projects for which we have published case studies.

BASIC DEFINITIONS
Here are my personal definitions, as defined in my book Competitive Engineering [2].

Let me start by defining ‘engineering’, in general:
‘Engineering’ is
• an Evolutionary Process,
• using practical Principles,
• in order to determine,
• and identify the Means to deliver,
• the best achievable Performance and Cost levels balance,
• for optimal Stakeholder satisfaction,
• in a complex risk-filled environment. [1, 2H1]

‘Software’
“Software refers to the ‘non-hardware’ aspects or components of a system. It specifically includes computer programs, data (computer readable files and databases), and software documentation and plans (any form of specification or plans made by people concerning software).” [2H1]

Software engineering is the discipline of making software systems deliver the required value to all stakeholders. [2H2]

A System:
A system is any useful subset of the universe that we choose to specify. It can be conceptual or real. [2H2]

In the systems planning language ‘Planguage’ [2], a system can be described fundamentally by a set of attributes. The attributes are of the following types
function: ‘what’ the system does
performance: ‘how good’ (quality, resource saving, workload  capacity)
resource: ‘at what cost’ (resource expenditure)
design: ‘by what means.’ 

In addition, other factors describing various aspects of the system can be specified. These include:  requirements, dependencies, risks, and priorities. All these specifications (the attributes and the additional factors) need to be qualified by time, place and event conditions. 

Systems Engineering [2H2] is an engineering process
 encompassing and managing all relevant system stakeholders requirements, as well as all design solutions, and necessary technology, economic and political areas. The fundamental purposes of systems engineering are to:
optimize the system solution at the highest level of stakeholder concerns,
synchronize all contributing disciplines to contribute efficiently to the final system characteristics,
consider the entire system life cycle needs,
manage risks for the entire system and the entire system life.

The big problem in software disciplines and current software culture, is total lack of engineering. It all seems to boil down to ‘programming’. I am also concerned that there is so much focus on ‘code’, that other essential elements of the software, such as data and planning (requirements, architecture), and user instruction (dialogue interfaces, training, handbooks), not to mention contracts and requests for proposals seem to disappear from the map.

The fact that these same code-focused cultures, also show little to no interest in the wider system, of people, and hardware, is hardly surprising.

Value Centricity
I believe, a healthy departure, for discussion of these things, is to agree on the highest purposes of it all. I believe this can be summed up with a simple idea:’ Value’.

I believe, all of us have one central purpose, or ‘meaning’ with our profession: delivery of stakeholder values.

If software cannot contribute to values delivery: get rid of it.
If systems cannot contribute to values delivery: get rid of them.

It is not about ‘building’ software or systems: it is all about improving multiple value requirements, for multiple stakeholders, while using multiple resources wisely – ‘efficiently’ (‘value for money’).

If we can deliver the necessary value streams to stakeholders without any ‘building’ whatsoever: then we should do so. If we cannot deliver value with software or systems that we ‘build’, then we should never have built them, and we should destroy them.

There is of course a huge vested industrial interest in ‘building’ systems and software. We need to convert this interest into a new vested interest: delivering stakeholder value efficiently.

This must be consumer and stakeholder led. The ‘builders’ have shown themselves incapable of such a transition, as long as the consumers have been willing to pay extravagantly for failed systems. Governments might conceivably lead the way [4]; and enlightened companies. [3]

There is one fundamental ‘technical’ problem standing in the way. Defining the values measurably.

The vast majority of managers, through lack of suitable training and culture, are completely incapable of articulating (quantitatively) their primary and critical ‘values’. [5]

Planguage: Articulation and integration of values
Our ‘Planning Language’ [2, 6], ‘Planguage’ (pronounced ‘Plan-guage’) is a direct practical solution to this problem, of lacking articulation of stakeholder values. It puts quantified and testable value requirements at the center of software/systems engineering. Everything else in Planguage is there to support giving the right values to the right stakeholders and the least resource use, for the entire system life cycle.

In addition, there is a fundamental Planguage culture that these values need to be delivered early, frequently, incrementally, with measurement for learning and feedback, directing the ensuing project work.

Planguage as a set of optional planning tools
Planguage can be viewed as a fairly complete planning package for software and systems engineering. But in fact it consists of a very large number of components and sub-components. They are all systems engineering tools, and although they generally work best together, they can be used separately, and integrated into almost any other set of systems engineering tools.

In practice that gradual adoption is the normal and best route to adoption. Evolutionarily. Making sure the ones you take into use work well, and are adopted warmly by professionals.

Some overviews of Planguage

[image:]
Diagram 1: Planguage concepts. The *nnn number refers to a formal definition of the concept in the Planguage Concept Glossary. [2H1]

Planguage consists of a number of planning disciplines in the areas of requirements, design, and project management. These support multiple quantified value objectives, cost management, and risk management. They apply to software projects, IT projects, and any other systems engineering projects. They treat software, and all of its artifacts in essentially the same way they treat any other system components or systems. They focus on delivering multiple values to multiple stakeholders, while managing limited or budgeted resources to do so.

They enable the system planners to deal with the entire life cycle of the system.

That means Planguage can be equally well used to plan long term maintenance capability, as well a short term performance and security or usability.

[image:]
Diagram 2: Planguage has a well defined and thought out set of concepts for requirements.

 In particular Planguage integrates quality requirements (-ilities, how well) with all other requirement types. It also allows and encourages thorough and rich requirement specification to support various system development disciplines, such as risk management, contracting, decision making, and value delivery. It makes a very clear distinction between real ‘ends’ (results, values), for defined stakeholders, and the ‘means’ to those ends (design, architecture, strategies).

[image:]
Diagram 3. Planguage is a combination of defined languages (words, icons, numbers), and defined engineering processes.

Planguage has a rich set of graphical symbols and over 676 formally defined concepts. It is based on well over 100 basic principles [2 G]. It is extendible, and modifiable, both at the corporate level, and the project level.

[image:]
Diagram 4: Standards: Planguage is based on well-defined processes, and on well-defined ‘Rules’ for specification.

 These Planguage processes and rules all strongly support the management of quantified qualities and other values, in relation to budgeted resources. That is what we describe as an engineering process.

[image:]

Diagram 5: Planguage has a wide variety of engineering standards.

One interesting detail is that we have clearly distinguished between clarity of engineering specification and content. For example we have rules that values and qualities must be expressed quantitatively (clarity). But it also has rules that say these same quantified qualities should carefully distinguish between a target (value level to achieve), and a constraint (a minimum level for survival or partial payment) - content.

Planguage also suggests a number of engineering management policies; such as estimation of the value and cost impacts of all architecture suggestions.

[image:]
Diagram 6. An organized hierarchy of Planguage engineering standards. The * number is a formally defined concept identifier, independent of the English terms used here.

The Planguage Standards are terse, deep, powerful, and you can select, modify and improve them at will. They are also open source, and free.

[image:]
Diagram 7: Planguage is tuned to the real-world complexity of many-to-many relationships.

Planguage handles many levels of concern, multiple improvement objectives, for multiple stakeholders, multiple resource constraints, multiple functions, multiple designs, and multiple functions all in one integrated planning language. The language is designed for automated integration, and there are several automated support tools available. Many of these are simple variations on spreadsheets, often made locally by Planguage user companies themselves. None are commercially available.

[image:]
Diagram 8: Planguage tailoring starts from the free, published, basics, and then can be tailored at the corporate level, for all projects, and then can be further tailored within a single project or a local component specification.

[image:]
Diagram 9: Planguage supports a very large number of specific relationships between planning elements.

This very pervasive use of pointers to related system components helps in change management, and risk management. You could go as far as saying that almost all Planguage statements express some kind of relationship to other components of the system planning.

Here are some examples of relationship parameters:

Authority
Source
Owner
Author
Implementer
Impacts
Supports
Supported By
Version
Derived From
Sub-component of
Sub-components {list}
Dependencies
Contract
Test Case
Scenario
Model
And more!
A sample of Planguage relationship parameters.

[image:]
A Planguage ‘template with hints’ for Function specification, showing some relationship parameters.

The hints are deleted electronically when content is filled in. We have found that ‘templates with hints’ are a good way to get engineers to specify necessary information required by the Rules and good practice. They are better than manuals, training courses and coaching to teach large numbers of engineers what is expected. They were initially designed by me, and trialed at McDonnell-Douglas (now Boeing) in 1988. They can feed into more integrated sets of planning documentation.

[image:]
Diagram 10: Planguage engineering processes are based on strong gates in and out of each process, so that bad engineering does not flow downstream.

Planguage is essentially ‘lean’ in the sense of focusing on getting it right upstream, and doing it right the first time.

Here are some applications of our quality control process, SQC, based on Software inspection technology, but now vastly simplified and reduced in cost.

- Reducing Time-to-Delivery
- Measuring the Quality of a Document
- Measuring the Quality of the Process producing the Document
- Enabling Estimation of the Number of Remaining Defects
- Identifying Defects
- Removing Defects
- Preventing additional ‘Downstream’ Defects being generated by removing existing Defects
- Improving the Engineering Specification Process
- Improving the SQC Process
- On-the-Job Training for the Checkers
- Training the SQC Team Leader
- Certifying the SQC Team Leader
- Peer Motivation
- Motivating the Managers
- Helping the Specs Writer
- Reinforcing Conformance to Standards
- Capturing and Re-using Expert Knowledge (by use of Rules and Checklists)
- Reducing Costs
- Team Building
- Fun – a Social Occasion
Some uses of the ‘Specification Quality Control’ process

All Planguage Process Outputs, all plans and specifications, are expected to undergo a simple, but numeric, quality control, in order to measure the degree to which specification rues have been followed in practice.

This strongly motivates the rapid and practical adoption of Planguage. Standards get taken very seriously.

[image:]
Case Study: Intel SQC, Source Erik Simmons slides, 2011, “21st Century Requirements Engineering” public talk.

One of the best Corporate adoptions of Planguage is Intel (over 17,000 engineers using it and trained, over 10 years), and the Champion (teacher and coach) for that is Erik Simmons. Here is a sample of the results of using the Planguage SQC (Specification Quality Control) Process on requirements written in Planguage. The 3rd case cited 200-300% productivity improvement as a result [7].

Another major Planguage tool is the Impact Estimation Table. Which has a wide variety of engineering applications.

[image:]
The Impact Estimation Table, in Planguage, can be applied to a very wide variety of systems engineering problems.

[image:]
NHS Case A: A simple Impact Estimation table used in a successful UK Healthcare project, by Man-Chie Tse & Ravinder Singh Kahlon
{Man-Chie, Ravi}@dkode.co [8]

The improvement values are on the left hand side, with an indicator of the formally defined values: the benchmark (example 1 day) and the target (example 1 hour). The design strategies are across the top. The estimates are both in real impacts on a defined scale of measure, and also the % of the way to the targets within deadlines. (100% = all the way on time).

[image:]
NHS Case B: The Statement of Requirements for the Health System Case above.

[image:]
NHS Case C: Planguage Stages as interpreted by Man-Chie Tse & Ravinder Singh Kahlon

The ‘Evo’, Evolutionary Project Management Process [2C]

The Planguage, project management process is based on the fundamental notion of continuous measurable feedback and learning what really works, in delivering planned value.

As well as confirming that stakeholders are in fact really happy with the values we assumed at the outset they were saying they wanted. We could have misinterpreted. They could have changed their mind. New powers that be, like a new government, might have different priorities and earlier stakeholders.
[image:]
Diagram 11. The ‘Value Delivery Cycle’: The Core of ‘Evo’.

This cycle is not essentially different from the Deming Plan-Do.-Study-Act cycle. It is just more explicit about stakeholders and design aspects.

Evo is focused on defining critical stakeholders, defining their critical needs (Values). Finding technical solutions to deliver those values. Decomposing those solutions into smaller deliverable part solutions, so we can get early, continuous and frequent delivery of value to stakeholders. Then we can measure the degree of delivery of values. And learn the truth of what works, and who really appreciates it.

[image:]
Diagram 12: The value Delivery Cycle, overlaid with a Scrum Agile Process.

A ‘Scrum’ process, and most other ‘software and agile’ processes, tends to be focused on building code. It should really be more open. Scrum, for ‘systems engineering’. For delivering and building anything necessary to deliver the stakeholder values.

In any case - code or systems – we still need to consider the stakeholders, their real values (not user stories, the improvements at the top of their list!). The measurement of results, and the changes necessary as a result of these considerations. The upper part of the process above.

These parts of Evo can be added to any other process such as Scrum, as was the case in Kai Gilb’s ‘Bring’ project in Norway. [9] Scrum alone, well done as Scrum, led to a failed system. When the real stakeholder values (not user stories, but speed and accuracy of customer access) were acknowledged, and designed for, it became a success.

[image:]
DIAGRAM 13: Evo delivers multiple stakeholder values, measurably, while consuming budgeted resources.
[image:]
DIAGRAM 14: the value delivery continues, cycle by cycle, until the Goal levels are reached; or until all budgeted resources are used up.

Here is an example of practical experience with Planguage and Evo:
[image: IMG_3771.jpg]Richard Smith [image:]
“However, (our old project management methodology) main failings were that
 it almost totally missed the ability to track delivery of actual value improvements to a project's stakeholders,
 and the ability to react to changes
in requirements and priority for the project's duration”

“The (old) toolset generated lots of charts and stats
 that provided the illusion of risk control.
But actually provided very little help to the analysts, developers and testers actually doing the work at the coal face.”

“The proof is in the pudding;
 I have used Evo
(albeit in disguise sometimes)
on two large, high-risk projects in front-office investment banking businesses, and several smaller tasks. “

“On the largest critical project,
 the original business functions & performance objective requirements document,
 which included no design,
essentially remained unchanged
 over the 14 months the project took to deliver,….”
“… but the detailed designs
(of the GUI, business logic, performance characteristics)
changed many many times, guided by lessons learnt
and feedback gained by delivering a succession of early deliveries
 to real users”

“ In the end, the new system responsible for 10s of USD billions of notional risk, successfully went live over one weekend
for 800 users worldwide, and was seen as a big success
by the sponsoring stakeholders.”
Case: Citigroup. Richard Smith, trained by us (2006), relates his experiences with Evo. In an Amazon Book Review of [2] & blog. [http://rsbatechnology.co.uk/blog:8]

The Citigroup case makes several interesting points related to Planguage and Evo. Value delivery. Successful early cumulative value delivery. Stable top-level value requirements. Unstable ‘bad designs’, traditionally wrongly called ‘requirements’. Frequent measurement of the effect of the designs.

 SUMMARY

Planguage is a rich set of systems engineering tools for integrated requirements engineering, design engineering and architecture, project management, and serious quality control of specifications and products.

 It has decades of practical experience in smaller projects and larger corporations; in systems product engineering, IT, and even in top management planning. It is most appreciated by serious engineering-culture product businesses, who are internationally competitive in quality and cost.

It’s central practice is quantification of all qualities. This is integrated with functions, costs, designs, constraints, and other central system modeling components. Planguage’s central implementation practice is ‘Evo’, an incremental deployment and numeric feedback process, for learning, value delivery, and progress tracking.

Planguage ideas and tools are free, and can be adopted or modified as practices in any method.
[bookmark: _WNSectionTitle][bookmark: _WNTabType_0]Book Chapter: for “Software Engineering in the Systems Context”	19/10/2014 00:21

References

1. Billy Koen
My definition of Engineering is based completely on Koen’s excellent definition (1984), and only terminology is changed.

Koen, Billy V. 1984. Toward a Definition of the Engineering Method. Proceedings of the ASEE-IEEE Frontiers in Education. 14th Annual Conference, Philadelphia, PA. 3-5. October 1984. Pages 544–549. The paper also appeared in Engineering Education. December 1984. Pages 150–155. Also in Spring 1985 in The Bent of Tau Beta Pi. Pages 28–33.

Professional Website; (2014)
 http://faculty.engr.utexas.edu/koen

Koen, Billy Vaughn. January 2003. Discussion of the Method: Conducting the Engineer’s Approach to Problem Solving. Oxford University Press. ISBN 0-195-15599-8. Pages 260. http://www.me.utexas.edu/faculty/people/ koen.shtml/.
	*
Video Presentations 2007 Illinois Lecture
http://faculty.engr.utexas.edu/koen/etc-lecture

2. Tom Gilb: “Competitive Engineering” 2005
A. The book
Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann. Sample chapters will be found at Gilb.com. [2 B, 2 C]

B. Chapter 5: Scales of Measure:
http://www.gilb.com/tiki-download_file.php?fileId=26

C. Chapter 10: Evolutionary Project Management:
http://www.gilb.com//tiki-download_file.php?fileId=77

D. Chapter 8, Specification Quality Control

E. For Extensive technical detail on Spec QC above [2 D] see Gilb & Graham, Software Inspection, 1993, Book.

F. Planguage Rules Collection from all chapters
http://www.gilb.com/dl829

G. CE Principles
Gilb Principles collection
http://www.gilb.com/tiki-download_file.php?fileId=352

Competitive Engineering book Principles. Gilb and Others 8MB.
Extended Collection, Undergraduate Basics (Paper) Principles, Gilb’s Datamation Laws of Unreliability, ICL Bill of Rights, Demarco and Gilb’s Law of Measurability, Risk Principles, Clinical Risks Slides, GILB’S INTERPRETATION OF ERICSSONS CORPORATE QUALITY POLICY, Decomposition Principles (from CE 10), 12 Tough Questions

H. Planguage Glossary
2H1: The extended Planguage Glossary, Tom Gilb’s personal version
‘CE Full Glossary’, This is updated at Gilb.com periodically
http://www.gilb.com/dl830
Version 18 Oct 2014 is version as of writing this Chapter..

2H2. The ‘Competitive Engineering’ book Glossary, and the whole CE book, outside the book glossary, as a source of defining Planguage terms. This CE Glossary is 1/6 size, heavily edited, of the full Glossary [2H1]
http://www.gilb.com//dl540

3. No Cure No Pay
Agile Contracting for Results The Next Level of Agile Project Management: Gilb's Mythodology Column Agilerecord August 2013
http://www.gilb.com//dl581

4. Brian Wernham, Agile project Management for Government.
http://www.amazon.com/Agile-Project-Management-Government-Wernham/dp/0957223404

5. Quantifying Management and Stakeholder Values
 “Quantifying Management Bullshit”
http://www.coremag.eu/fileadmin/Papers/Quantifying_Management_TGilb_core3.pdf

version 18 april 2011
Quantifying Management Bullshit: forcing IT Stakeholders to reveal the value they really want from your IT Project.
By Tom Gilb

http://www.requirementsnetwork.com/node/2820

RQNG 25 May 2011
Quantifying Management Bull: Forcing IT stakeholders to reveal the value they really want from your IT project

http://www.gilb.com/dl465
CORE Version

6. T. Gilb “Value Planning”, Book Manuscript Fall 2014
http://tinyurl.com/valueplanning
For later info see gilb.com

7. Intel Specification Quality Control Experience + Planguage
“The Impact of a Requirements Specification on Software Defects and Other Quality Indicators”
John Terzakis
Intel Corporation
August 31, 2011 RE 11 Conference Trento, Italy
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf

8. Tse and Kahlon: Planguage Case NHS
Source Oct 2013 Paper
How Planguage Measurement Metrics Shapes System Quality
Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2
{Man-Chie, Ravi}@dkode.co
 Title of 2013 SQM paper:
the principles and application of Planguage for Managing System Innovation
http://www.gilb.com/dl582

Great real pharmaceutical hospital case with real improvements.
Slides http://www.gilb.com/dl583

9. Bring Case and more: Hierarchical Impact Estimation Tables
http://www.gilb.com/dl500

A. "Value-Driven Development: Principles and Values."
Slides for , 50 minute talk, Software Passion Conference 20 March 2012 Gothenburg, Sweden

B. Value Management
(Evo)
with Scrum development, March 2010 English Version , Kai Gilb
www.gilb.com/tiki-download_file.php?fileId=277

C. The Inmates are running the asylum, Construx Summit talk Oct 25 2011 Seattle
Contains considerable Bring Case slides
www.gilb.com/tiki-download_file.php?fileId=488

10. T. Gilb, Principles of Software Engineering Management,
1988
Internet Chapters (text only, no illustrations):
A. pdf ‘Ch 14 POSEM Productivity’ gilb.com/dl560
B. pdf ‘Ch 15 POSEM Deeper Perspectives on Evolutionary delivery gilb.com/dl561
 This includes a page extra of quotations from Agile Gurus crediting it as inspiration for them, and it being first.
C. Chapter 13.4 (page 237-241) Open Ended Architecture
D. Chapter 21 ICL Inspection Experiences

11. URL31 HP Evo
A. The Evolutionary Development Model for Software
by Elaine L. May and Barbara A. Zimmer
August 1996 Hewlett-Packard Journal
http://www.gilb.com/tiki-download_file.php?fileId=67

B. Evolutionary Fusion: A Customer- Oriented Incremental Life Cycle for Fusion
by Todd A
http://www.gilb.com/tiki-download_file.php?fileId=35

August 1996 Hewlett-Packard Journal

C. RAPID AND FLEXIBLE PRODUCT DEVELOPMENT: AN ANALYSIS OF SOFTWARE PROJECTS AT HEWLETT PACKARD AND AGILENT (2001)
by
Sharma Upadhyayula
http://www.gilb.com/tiki-download_file.php?fileId=65

M.S., Computer Engineering University of South Carolina, 1991
And
Massachusetts Institute of Technology
January 2001

D. Best Practices for Evolutionary Software Development
by
Darren Bronson
http://www.gilb.com/dl825

57 pages., 1999.

URI: http//hdl.handle.net/1721.1/80490

E. Note: these references focus on Evo part of Planguage. There is also a body of Literature for the HP Adoption of our Inspection method (alias Spec QC, in Planguage).
Grady, R. B. and Van Slack, T., “Key Lessons in Achieving Widespread Inspection Use”, IEEE Software, V. 11, N. 4, Month, 1994, pp. 46-57
http://dl.acm.org/citation.cfm?id=140207 (paid download)

12. Intel Planguage Experiences
A. Intel Report on SQC (Gilb methods used here <- E Simmons)
The Impact of a Requirements Specification on Software Defects and Other Quality Indicators by john.terzakis@intel.com
http://selab.fbk.eu/re11_download/industry/Terzakis.pdf

B. Intel Experience with Planguage and SQC 2011
Erik Simmons, Intel, 2011, 21st -Century Requirements Engineering: A Pragmatic Guide to Best Practices, Erik Simmons PNSQC 2011 (Pacific Northwest Software Quality Conference)
http://www.uploads.pnsqc.org/2011/slides/Simmons_21st_Century_Requirements_slides.pdf

[bookmark: _WNSectionTitle_2][bookmark: _WNTabType_1]References	19/10/2014 00:21

[bookmark: _GoBack]
Tom Gilb is a freelance consultant (since 1960), teacher and author serving clients mainly in Europe, and the US. He joined IBM 1958.

He has books in print: “Competitive Engineering”, “Principles of Software Engineering Management” and “Software Inspection”. A new book, tentatively titled ‘Value Planning’ (about Planguage) is drafted Summer 2014.

He specializes in software engineering, systems engineering, and technical management. He resides in Norway and London.

He is the inventor of ‘Planguage’: working on it for decades. Appearing in many books (like ‘Software Metrics’ 1976) and papers, as it got refined. The development has mainly been in connection with using it as a tool for client projects.

He is an Honorary Fellow of the British Computer Society.

Tom participated at the initial SEMAT, Zurich meeting, 2010.

His most recent papers, book manuscripts and slides are available on www.gilb.com

[bookmark: _WNSectionTitle_3][bookmark: _WNTabType_2]	19/10/2014 00:21

image3.png
Planguage Specification Language

Planguage
Concepts

Planguage
Parameters and
Grammar

Planguage
P — Evolutionary Project
Requirement Management (EVO)
Specification -t
“b. Strategic Management
Process.RS and . Cycle
sub-pr S
Design : Process.SM
Process
Development
Impact Cycle
Estimation
Process.IE Production
Cycle
Process.DP
— Delivery
Specification Cycle

Quality Control Process.DC

Process.SQC Implementation Cycle

... Result Cycle

image4.png
Smm‘lalds List of
Rules.o8 Stakeholders
and,
Statement of Changes to
S Requirements Requirements
Rules.BT or (Existing) (Feedback)
Rules.CT Requirement
and relevant Specification
Process Descriptions

Speci

Standards:
Rules.GS
Rules.DP

Requirements

Rules.IE and
(Existing)
s Evolutionary Requirement
Descriptions Step Plan Specification

Specify Designs,
Evaluate Designs
& Produce
Evo Step Plan

Design
Changes to Specification
Requirements and
(Feedback) Evolutionary
Step Plan

image5.png
Rules

Engineering
Standards

Templates

Clarity
Rules

Content
Rules

Entry/Exit
Conditions

Glossary
Concepts

o
Soecifcaton

Engineering Policy

Procedure
Definition

image6.png
Standard

*138
Rule Concept Policy Process Specification Others
*609 *595 %111 *113 %137 (For example:
Interface)
Template ‘ ‘ Form ’ ‘
‘ *254 *068 Other

Concept Rule

Policy Rule

Generic Specification Rule

Process Rule H Process Structure '*

Specification Rule

Other Rules

Entry Condition
*056
Procedure
*115
Exit Condition
*064

image7.png
Implementation
Resources

Operational
Resources

Processes

Designs

TPI

TPZ

Other

image8.png
PLANGUAGE

1l

11

1

Planguage
as presented
in this book

Specification Language
‘Planguage’

Generie

Generic

Version e
including e
Templates

Project Input
Specifications

Specific Project
Work Process

Generic
Work
Process
Descriptions
and
Rules
RS, DS, IE,
EVO & SQC

Specific Product
Specifications

11
Project
Specific
Version

Jiis

Project
Process

image9.png

image10.png
TEMPLATE FOR FUNCTION SPECIFICATION <with hints>

: <Tag name for the function>.
Type: <{Function Specification,
Function (Target) Requirement,
Function Constraint}>:

Note: By default, a “Function Requirement” is assumed to be a “Function Target’.

= Basic Information ——=———=m—m e
Date or other version number>.

Status: <{Draft, SQC Exited, Approved}>.

Quality Level: <Maximum remaining major defects/page, sample size, date>.

Stakeholders: <Name any stakeholders with an interest in this specification>.
Owner: <Name the role/email/person responsible for changes and updates to this specification=.

Gist: <Give a 5 to 20 word summary of the nature of this function>.
Desc <Give a detailed, unambiguous deseription of the function, or a tag reference to
someplace where it is detailed. Remember to include definitions of any local terms=>.

——————— Relationships ——=————————
Supra-functions: <List tag of function/mission, which this function is a part of. A hierarchy of
tags, such as A.B.C, is even more illuminating. Note: an alternative way of expressing supra-
function is to use Is Part Of>.

Sub-functions: <List the tags of any immediate sub-functions (that is, the next level down), of
this function. Note: alternative ways of expressing sub-functions are Includes and Consists Of>.
Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or capable of
delivering, this function. The actual function is NOT modified by the design idea, but its presence
in the system is, or can be, altered in some way. This is an Impact Estimation table relationship>.
Linked To: <List names or tags of any other system specifications, which this one is related to
intimately, in addition to the above specified hierarchical function relations and IE-related links.
Note: an alternative way is to express such a relationship is to use Supports or Is Supported By, as
appropriate>.

——————— Measurement ==
Test: <Refer to tags of any test plan or/and test cases, which deal with this function>.

— Priority and Risk Management =——=——=———————
Rationale: < Justify the existence of this function. Why is this function necessary? >.
Assumptions: <Specify, or refer to tags of any assumptions in connection with this function,
which could cause problems if they were not true, or later became invalid>.

Dependencies: <Using text or tags, name anything, which is dependent on this function in any
significant way, or which this function itself, is dependent on in any significant way>.

Risks: <List or refer to tags of anything, which could cause malfunction, delay, or negative
impacts on plans, requirements and expected results>.

Priority: <Name, using tags, any system clements, which this function can clearly be done affer
or must clearly be done before. Give any relevant reasons>.

= Specific Budgets === e
Financial Budge: <Refer o the allocated money for planning and implementation (which
includes test) of this function>.

image11.png
Check that
defined

Entry Conditions
are met

Entry
Process

Carry out
Defined Procedure

STUDY

Check that
defined

Exit Conditions
are met

Exit
Process

image12.png
Sample SQC Results

+ A team using Scrum reduced requirements defect density from
15 major defects per 600 words in one sprint to 4.5 in the next

+ A security technology team reduced defect density from 35
major defects per 600 words to 15 on their first attempt, then
‘went on to achieve less than 5 within another 12 months

* Alarge software team reduced defect density according to the
following table:

312 Ell 1006
209 4 475 53%
247 60 EH 3%
14 345
a5 118 6%
10 |10 a5 022
‘Overall % change in DPP revision 03 to 1.0:

Conyigh © 2011 Inel Corpration. AR ghts vt

image13.png
IE can be used for a wide variety of purposes including:
1. Evaluating a single design idea. How good is the idea for us?

2. Comparing two or more design ideas to find a winner, or set of winners. Use IE, if you want to set up an argument against a prevailing popular, but weak design
idea!

3. Gaining an architectural overview of the impact of all the design ideas on all the objectives and budgets. Are there any negative side effects? What is the
cumulative effect?

4. Obtaining systems engineering views of specific components, or specific performance aspects.

Are we going to achieve the reliability levels?

5. Analyzing risk: evaluating a design with regard to ‘worst case” uncertainty and minimum credibility.

6. Planning evolutionary project delivery steps with regard to value and cost.

7. Monitoring, for project management accounting purposes, the progress of individual evolutionary project delivery steps and, the progress to date compared
against the requirement specification or management objectives.

8. Predicting future costs, project timescales and performance levels.

9. Understanding organizational responsibility in terms of performance and budgets by organizational function.

in 1992, Steve Poppe pioneered this use at executive level while at British Telecom, North America.

10. Achieving rigorous quality control of a design specification prior to management reviews and approval.

11. Presenting ideas to committees, management boards, senior managers, review boards and customers for approval.

12. 1dentifying which parts of the design are the weakest (risk analysis). If there are no obvious alternative design ideas, any ‘weak links’ should be tried out earliest,
iin case they do not work well (risk management). This impacts scheduling.

13. Enabling configuration management of design, design changes, and change consequences.

14. Permitting delegation of decision-making to teams. Teams can achieve better internal progress control using IE, than they can from repeatedly making progress
reports to others, and acting on others’ feedback.

15. Presenting overviews of very large, complex projects and systems by using hierarchical IE tables. Aim for a one page top-level IE view for senior management.

16. Enabling cross-organizational co-operation by presenting overviews of how the design ideas of different projects contribute towards corporate objectives. Any

common and conflicting design ideas can be identified. This is important from a customer viewpoint; different projects might well be delivering to the same
customer interface.

17. Controlling the design process. You can see what you need, and see if your idea has it by using an IE table. For example, which design idea contributes best to
achieving usability? Which one costs too much?

18. Strengthening design. You can see where your design ideas are failing to impact sufficiently on the objectives; and this can provoke thought to discover new
design ideas or modify existing ones.

19. Helping informal reasoning and discussion of ideas by providing a framework model in our minds of how the design is connected to the requirements

20. Strengthening the specified requirements. Sometimes, you can identify a design idea, that has a great deal of popular support, but doesn’ t appear to impact your
requirements. You should investigate the likely impacts of the design idea with a view to identifying additional stakeholder requirements. This may provide
the underlying reason for the popular support. You might also identify additional types of stakeholders.

image14.png
HEALTHCARE SYSTEM
B

Increase Transmission
of Requests

Decrease Time to Learn
rocess
TOTAL DESIGN
REQUIREMENT IMPACT

image15.png
Motivation

EFFORT
Design Skill

Requirements

Reduce time on placing
stock away

Decrease time taken to
process order request

Decrease time taken to picking
order request

[—
for process

Increase volume of
transactions per day

Reduce time required to
validate items picked

Decrease Time to Learn
Process

Reduce the volume of loss
productivity.

Contr

Scale & Meter

Resources

[2013-2014] Custom Monthly
Report + Observation

[2013] Audit Paper Analysis &
Custom Monthly Report

[2013] Custom Monthly Report
+Observation

[2014] Observation

[2013] Custom Report

[2013] Audit paper analysis

[2013] Procedure file log

[2012] custom report

Expectations [The
ol desired rewards
e mnsmnmnnn

Target & Benchmark
Goal Clarity

Target: 5 minutes

Target: S minutes
(2013
Constraint: 15 minutes per da

Target: s minutes
(2013
Constraint: 15 minutes per day

Target: 40%

Constraint: 85%

Target: 50 items
Constraint: 70 items.

Target: 250 per year thereater
[2013]: Constraint: 1000

Target: 60 minutes
Constraint: 120 minutes

Target: 40 days.
Constraint: 80 days

=P PERFORMANCE

12012]: 120 minutes
Observation measures & report

[2013]: 30 minutes per day
Physical audit analysis

[2012]: 120 Minutes.
<Report in August & September

[2013]: 100%
&Training Log Report

[2012]: 387
Based on Observation &

[2012]: 2960 per year +
<Report in August & September

[2012]: 180 minutes
&Training Log Report

[2012]: 162 days
Based on absence report

image16.png
PLANGUAGE STAGES

o TARGET GROWTH PERFORMANCE DIRECTION

ABILITY (Window Perspective) (Parameters Configuration) (Optimisation)

SYSTEM Function + +Goals | Desten Feature
Previl Stakeholders | Performance PRt Lo + Rational + Tl
OBJECTIVES requirements Dependency U

el el Fopot oG e Y —
shoid provide o veion requirementsromthe. | messures present e - Thepecationol |
Ol vew ofthecising | “identibed fomthe | "tyeuncigrswhich [withinthe organstion. | o8 P
FACTORS svestobesddresed | iemtitcationatals |, roidenseres [BT e abiahpossbie [l requrements and ely
S epacn reaured ttve sopeat i ungabetto | wegijirac credentalmpact mpect
Obtin analyse JEDetrmine thescle J Estaish theleves Q8 dentifysome Obtain agraement
the requirements. moasres for o the scales of potential design from the releva
STAGES

image17.png
Learn ~Sta keholders

Measure

Values
Measure Change
Measure how much the Values
changed.
Deliver Solutions

DevelopHewmpose

image18.png
Learn dSta keholders

Measure
Values

Value Management
Process

scrum

Deliver Solutions

30 days

l'-»@

FraductBackiog SprntBackiog

evelop Hecompose

image19.png
CycledC:C4 ess Tolerablel Intolerable Intc Cycle 1c 2 c 4 |1 Tolerable Success.

Budget Tolerable Past Tolerable/Fail Goal

Cycle c2€3s Tolerable | Intolerable Cycle1 c2€3 ca |[Tolerable Success

Engineers
Past Tolerable/Fail Goal

0. Budget Tolerable/Fail 30 sec. 20 sec. 15 sec

Usability

image20.png
Cycledc:C4/C5/ C6 C7|csjlerablel Intolerable

Budget Tolerable

Cycled c2€3 c4 €5c & 7olerable’| Intolerable

Engineers
0. Budget Tolerable/Fail

IntoCycledc2c4| €5 (C6/ €7 C8 Success

Past Tolerable/Fail
Cycle c2€3 ca

€5 C6 €7 Success

Past Tolerable/Fail Goal
30 sec. 20 sec. 15 sec.

image21.jpg

image22.png
citi

image1.png
Engineering *224

‘ Systems Engineering *223 ‘ ‘ Other Engineering ‘
Systecture (Systems Architecture) *564 | ‘ Program Management ‘
Data Structures Strategy
‘ Application Portfolio Strategy [Project]
Platform Strategy Engineering ;
[Methods Standards
i Strategy | | Development Concepts :
: Requirement: Desi 7 Evoluti
. equirements esign volutionary
LUGiliEEe Processes Process Engineering Project Management
(A= D) *612 *501 (Evo) ¥355

5
— Design Process || Impact Estimation
Specification Types *046 *283

Standards *138

(The) - Security Standard: . .

Iarchitecture| |Architecture || -Interface Standards |Requirement Design Impact Evo Step Evo

*192 Specification| | -Requirement Speiiﬁcaﬁon Speiiﬁcaﬁon Estimation Speiiﬁcaﬁon flan

(Artifacts) *617 Specification 508 586 Table 370 322
Standards

- Other

image2.png
Requirement *026

Vision
%422 Function Performance Resource
Requirement Requirement Requirement | Condition
* * * - .
074 100 431 Constraint
|- Mission (Objective) #498
097 iy R
] ?:;Zuy equirement Design
Function Function — Resource Saving Requirement Constraint
y 429
Target Constraint | yeruq Capacity Requirement *181
*420 *469 544
| [
Performance Performance Resource Resource
Target Constraint Target Constraint
439 (goal) *438 436 (budget) *478

Goal Stretch Wish
109 *404 244

Fail Survival Budget Stretch Wish Fail - Survival
008 H440 F480 *d04 244 F098 *440

Book Chapter: for “Software Engineering in the

Systems Context” om0 0021
“ianguage:on‘anoineering langusge ad process fr res
sufwarsand Systams nginearing -t ‘programming”

rraman

Panguao s o genratprpas,sysems aisen, anioy
ancunger oy sy, i s eyt Panuag e
Fermens, s, pORCE mansgemer, ad qualty o

€ s b deeopad 4 ractce o s (i 15608t
open source; ooty ca e foroyehg n whle o pr, e

Fanguae wo e 0 b tarreted by computrs. Th st
i wos i o Pt Lach ez 19789, 0 Aol 1
Fart, 408 b i s PRD Thes, 5w 55 rces of
St e’ (1988, Aot Enge). Moy atates oss

ingus0 W 3 Gesired o e ansied eshy s ay avors
ey taroteany avoy o', ot ok ety sstment
ittt i h e, desrs, e it
Tarspemen, nd e sy cot b 1 cotons

o scond o oo o Pangasi s ht K slows
and ncourags vyl speccton of e Sackground
omaion fr o o reqrren s, T supors Tk
marssemnt, ran0e arageme s0d yvame pricasion:

e digang st .5 e et o ety
and iy o soccaton. Amoouty,and lack of estale Gty
racapan. o o SO chracnc. s, massr sty nd
16qenk nmer sdback st e nd et gy

a5 o manspement component, £’ (Evry
Ve Deery) § recognzed o the randother of Age methods Bt

