

'Lean QA'

by Tom Gilb

Copyright: © Gilb 2010-2014, Tom@Gilb.com @imtomgilb <u>www.gilb.com</u> These slides will be at: <u>http://www.gilb.com/</u>

WCCD?

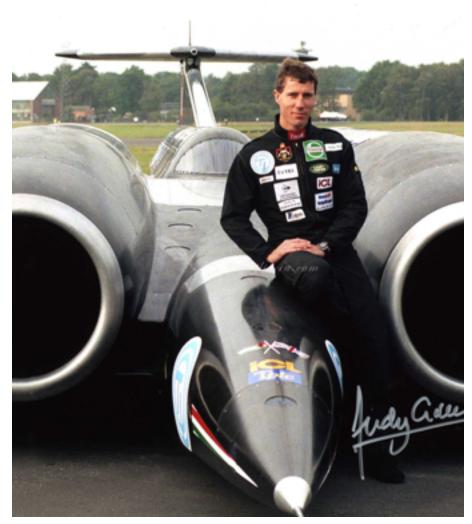
World Conference on

Code Debugging ?

www.Gilb.com Version 8- Sep. 201

The Lean Quality Assurance Methods

- Everything 'not adding value to the Customer' is considered to be <u>waste</u>.
 - This includes:
 - unnecessary code and functionality
 - Delay in the software development process
 - Unclear requirements
 - Bureaucracy
 - Slow internal communication
 - Amplify Learning
 - The learning process is sped up by usage of short iteration cycles each one coupled with refactoring and integration testing. Increasing feedback via short feedback sessions with Customers helps when determining the current phase of development and adjusting efforts for future improvements.
 - Decide as late as possible
 - Deliver as fast as possible
 - Empower the team
 - Build integrity in
 - separate components work well together as a whole with balance between flexibility, maintainability, efficiency, and responsiveness.
 - See the whole
 - "Think big, act small, fail fast; learn rapidly"


What messages did we get from yesterday's Keynote from Andy Green?

- "How are you going to measure that quality?" (to his Sw Engineer)
- Very systematically DESIGNING IN the quality

-Not testing it in

But, testing and measuring to see if it is ENGINEERED in.

- Systems engineering; not software engineering
 - People, Product, Marketplace, Resource
- Multiple Measures of Quality
 - Race Track dirt estimate 6k
 Tons
 - Current estimate 20,000 tons

Quandary: Who are you? Test or Quality

• Option 1: 'Specialist' • Option 2: 'Useful Human'

•I want to test,

- -even if the systems
 quality,
 - as seen by the users and other stakeholders
- is BAD

- •I want to be on a team
- •delivering exceptional qualities
- to all stakeholders

•even if I never 'test'

www.Gilb.com

Main Take-away Points

Quality Assurance is far more than 'test', and it can be far more cost-effective

'Quality' is far more than 'bugs'

You probably have a lot to learn, if you want real competitive quality

Begin: Quality Assurance is far more than 'test'

and it can be far more costeffective

Inspection Effectiveness

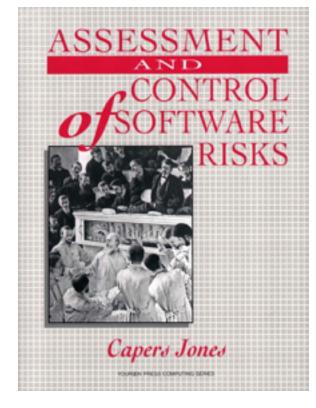
Capers Jones

Addison-Wesley Information Technology Series

Software Assessments, Benchmarks, and Best Practices

Capers Jones

APPLIED SOFTWARE MEASUREMENT

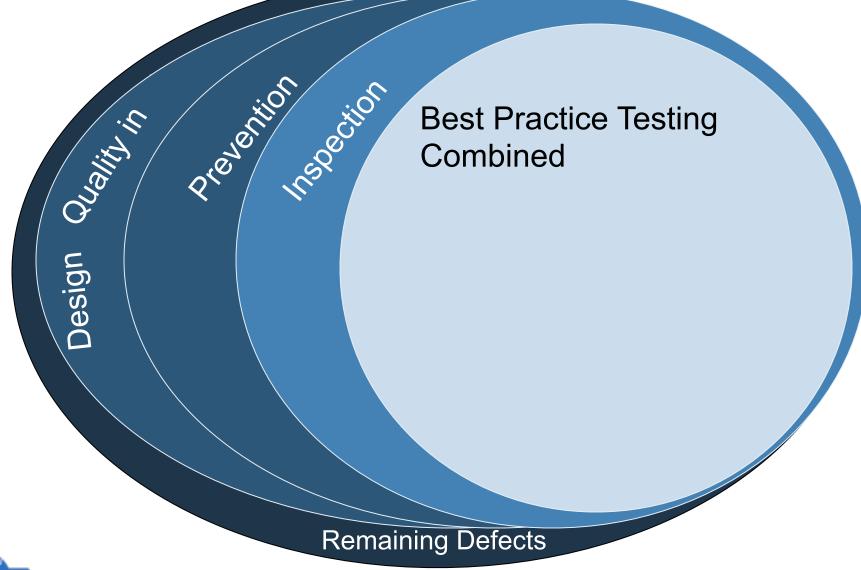

Global Analysis of Productivity and Quality

THIRD EDITION

- Based on statistics from more than 12,000 software projects
- Includes comprehensive international data
- Covers metrics on the latest technologies, including Agile, Extreme (XP), and ERP

CAPERS JONES receives an Drug Brinday, President, Schware Productivity Research, LLC

www.Gilb.com Version 8- Se


Regression test ? 15% to 30%

Integration test ? 25% to 40%

Unit test 15% to 50% New function test 20% to 35% Performance test 20% to 40% System test 25% to 55% Acceptance test (1 client) 25% to 35% Low-volume Beta test (< 10 clients)</td> 25% to 40% High-volume Beta test (> 1000 clients) 60% to 85%

Inspections?

Informal design reviews Formal design inspections Informal code reviews Formal code inspections 25% to 40%
45% to 65%
20% to 35%
45% to 70%

www.Gilb.com Version 8

Little hope of 'zero defects'

"Between

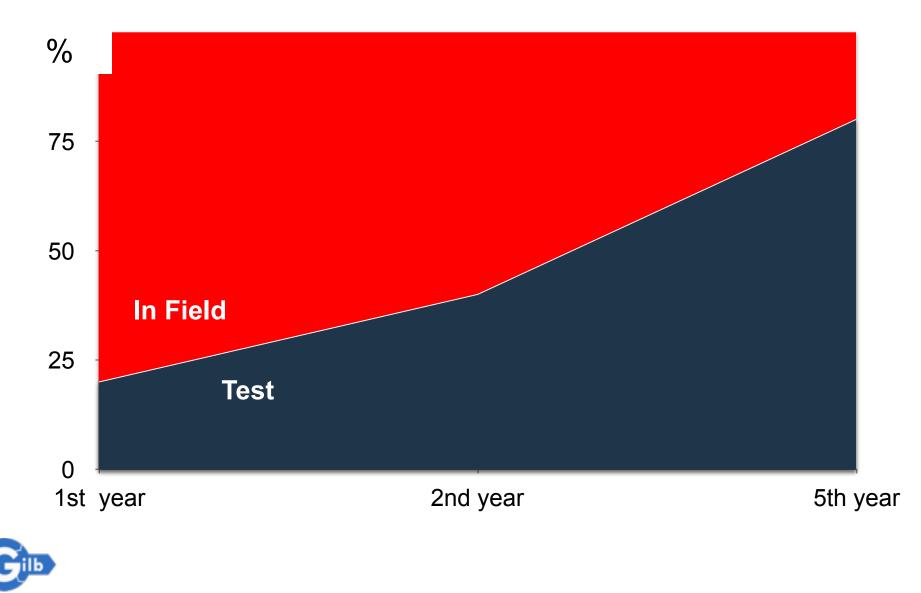
8 and **10** defect removal stages required to achieve removal effectiveness of

95%

APPLIED SOFTWARE MEASUREMENT

Global Analysis of Productivity and Quality

THIRD EDITION

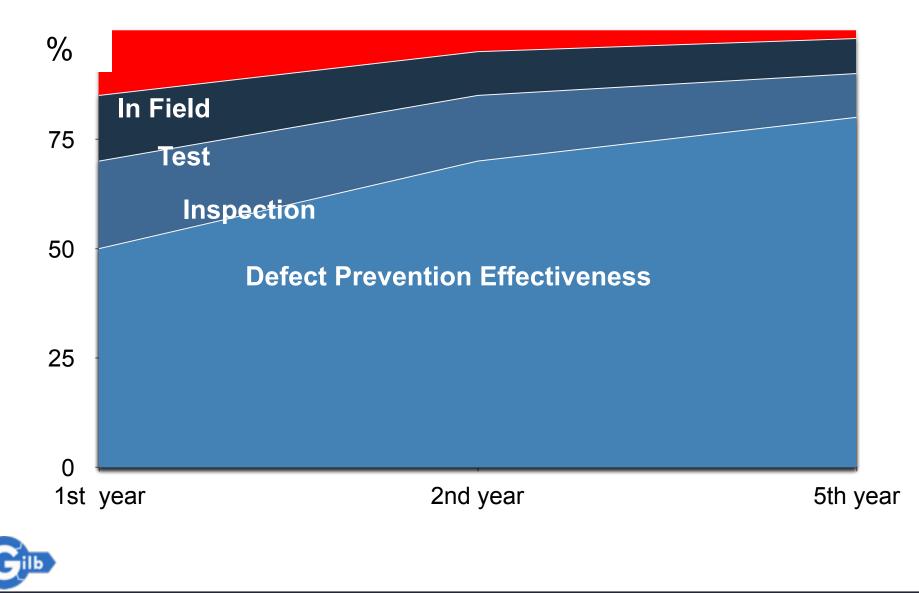


 Based on statistics from more than 12,000 software projects

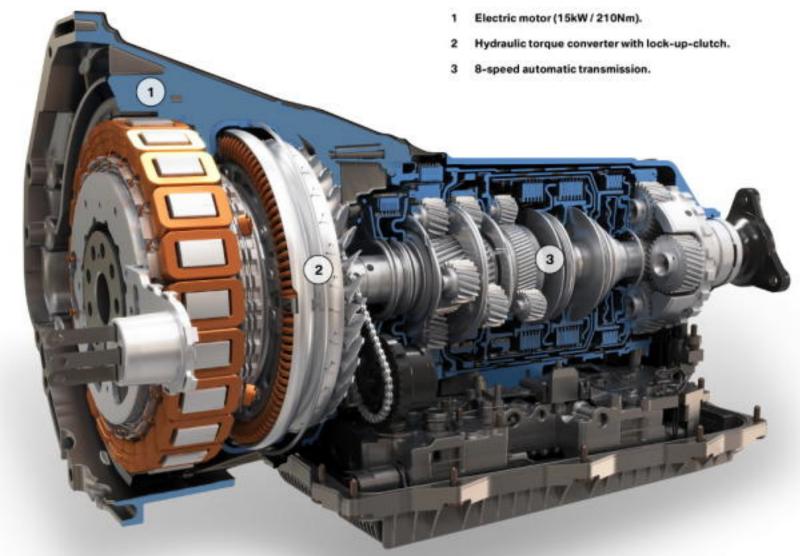
- Includes comprehensive international data
- Covers metrics on the latest technologies, including Agle, Extreme (XP), and ERP

CAPERS JONES rcocruses or Doug Brindley, President, Schware Productivity Research, LLC

Testing Capability (C. Jones)



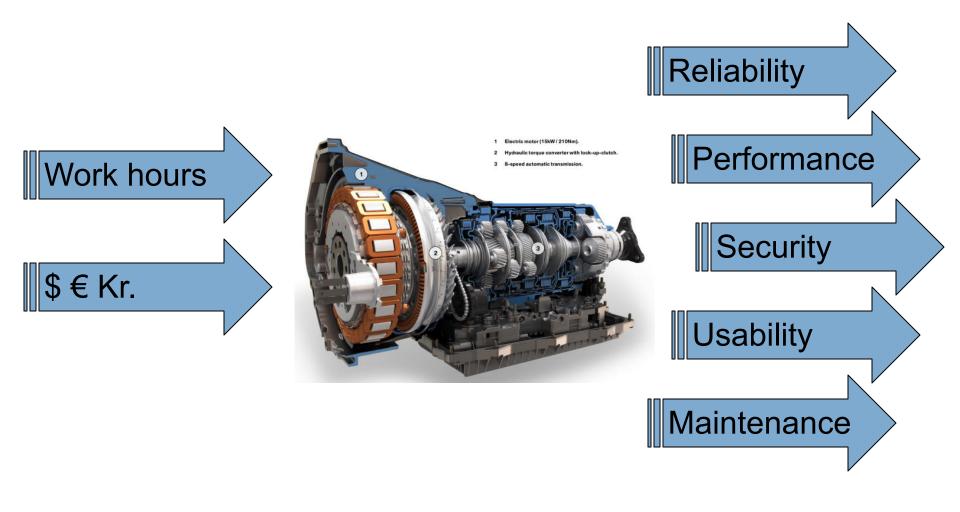
Defect Detection Capability (C. Jones)



www.Gilb.com Version 8-3

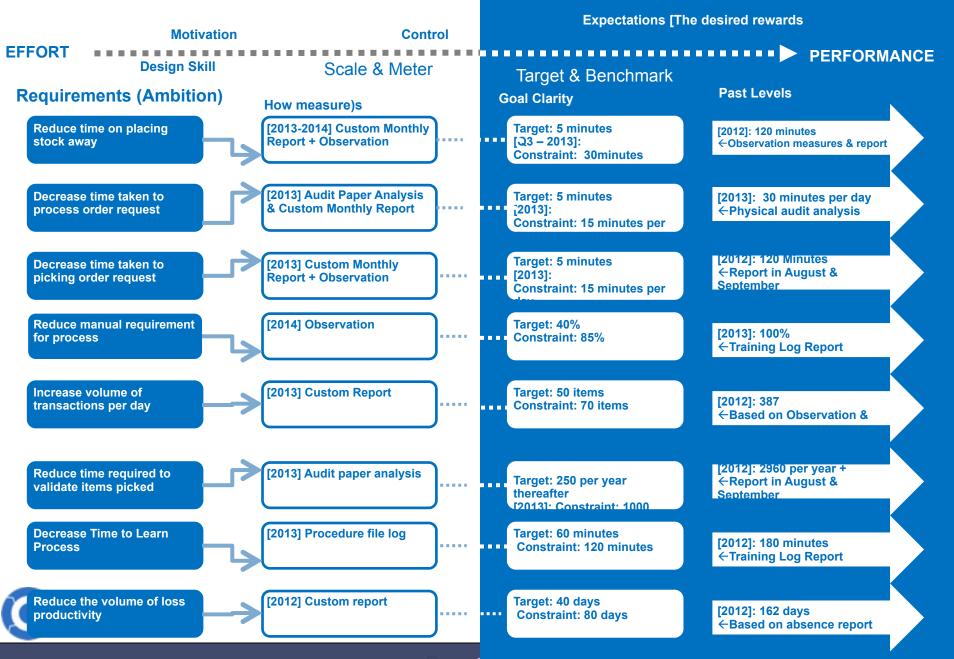
IBM Defect Avoidance Experience

Design Quality In


You don't get quality by testing it in

but by 'Engineering' Quality In

Setting Quality Goals simple example


Usability.Learn

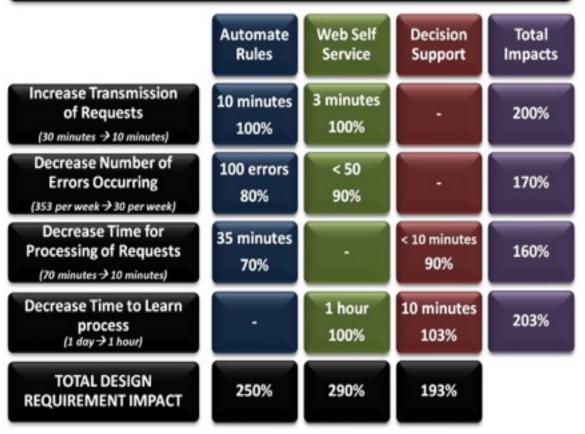
Scale: average time to Learn how to operate the computer, from .. to ..

Status [today] 3 hours **Goal** [next year] 10 min.

PLANGUAGE SAMPLE: Man-Chie Tse & Ravi Singh Kahlon, U of Ulster . NHS Project 2014

Designing to meet Quality within Costs A systematic Quantitative Method Using 'Impact Estimation' Tables

				Estimated Impact		Estimated Impact		Estimated Impact		Estimated Impact		
	Prooduct Quality Requirements				Splash.Speaker		Splash.Keypad		Battery.Lock		Screen.Scratch	
	Past	Status	Tolerable	Goal	Units	%	Units	%	Units	%	Units	%
	User-Friendliness.Learn				0	0%	0	0%	-1	7%	0	0%
	55	20	25	5								
				by a year								
	Reliability				20	23%	25	29%	0	0%	10	12%
	70	114	150	200								
				by a year								
	Style				0	0%	0	0%	0,5	0%	-0,5	0%
	5	9,5	7	9								
				by a year								
	Sum of E	Benefits				23%		29%		7%		12%
	Development Resources											
	Project-Budget			1000	1%	1700	2%	3000	3%	2000	2%	
	0	4500	140000	1E+05								
	Sum of Development Resources					1%		2%		3%		2%
	Benefits / Development Resources					22,21		16,33		2,12		5,5523



Qualities

С С **Healthcare Impact Estimation**

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2 {Man-Chie, Ravi}@dkode.co

HEALTHCARE SYSTEM IMPACT ESTIMATION

Impact Estimation Elements

Man-Chie Tse1,2 & Ravinder Singh Kahlon 1,2 {Man-Chie, Ravi}@dkode.co

Quality Assurance is far more than 'test'

and, QA can be far more cost-effective Than 'test' approaches

Cost-Effective = Quality Delivered / Cost

Quality is far more than 'bugs'

System Performance

Q u a l i t y 'How Well'

Capacity 'How Much' Resource Saving 'Efficiency'

www.Gilb.com Version 8- Se

Qualities are many and variable

Usability

- Learning
- Doing
- Error Rate

Adaptability

- Portability
- Enhancability
- Compatibility

Integrity

- Threat Type and Frequency
- Security Mitigation

Availability

- Reliability
- Maintainability (fault fix speed)

Chapter 5: Scales of Measure: http://www.gilb.com/tiki-download_file.php?fileId=26

http://www.gilb.com/tiki-download_file.php?fileId=26

∛www.Gilb.com

Quantify the Quality to 'Assure' It

"...I often say that

when you can **measure** what you are speaking about, and **express it in numbers**, you know something about it;

but when you **cannot measure** it, when you **cannot express it in numbers**, your knowledge is of a meagre and unsatisfactory kind;..."

Main Idea, again

 There are many much smarter ways to get quality than 'testing it in'

•For example, at

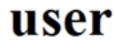
Google, is now experimenting in real Google projects. No Professional Testers

He has **totally eliminated** the use of **professional testers** on his team, replacing them with a set of *more cost effective means* for 'testing' the software.. (Construx Summit Talk, Oct 2011, Seattle)

James Whittaker

Engineering Director Google

If following my work appeals to you: +docjamesw (Google+) @docjamesw (Twitter) googledevspot.blogspot.com googletesting.blogspot.com

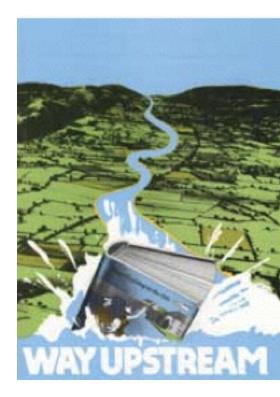


Google/Whittaker Summary 2011 "Where does testing fit in this world" JW

developer

- treat testing as a feature
- gets managed in dev workflow
- product is the focus, not the role

- it doesn't matter who does the testing, only that it gets done
- establish test goals, measure progres toward these goals
- specialized testing is focus



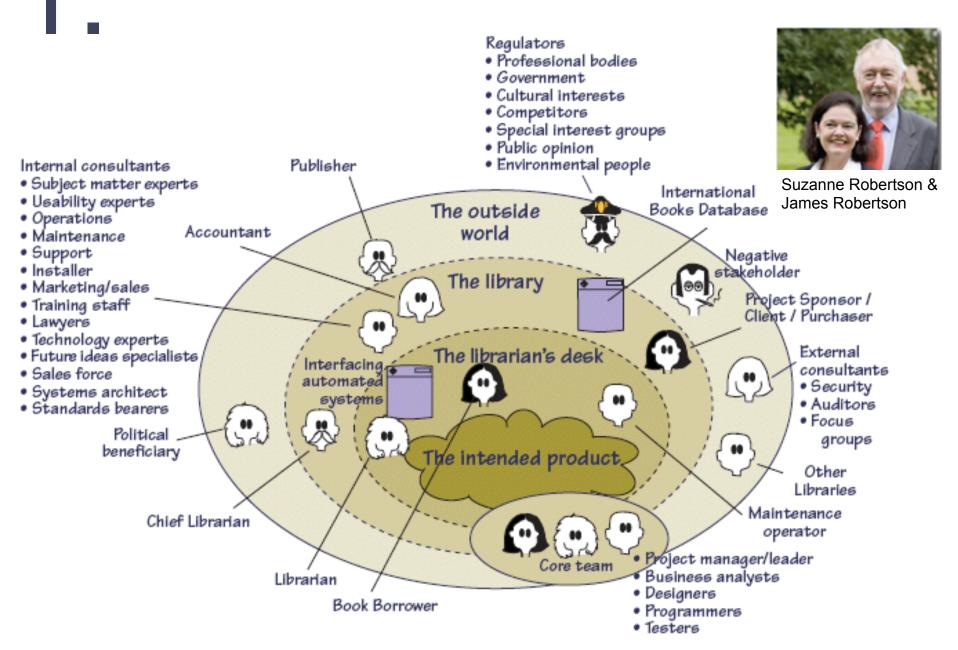
However

- Optimizing the testing process is great....
- •But,

a <u>lean, upstream,</u>
 <u>proactive</u> approach is
 even far more powerful

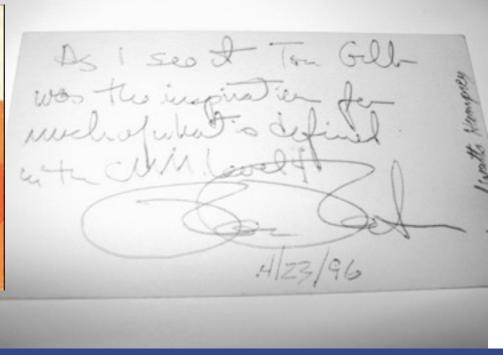
 (for getting critical qualities, costeffectively)

Competitive Lean QA methods to Learn


7


www.Gilb.com Version 8- Sep.

Stakeholders Decide Qualities



omparative • Quality • Project • Co valuation Requirement Management of eadline Testing	irements ommunication Primary equirements	res	ontracti sults
ompletion stimation ata Collection & and Reviews• Si re Tc	mplify quirements to op Ten Critical nes	for • Re res • Mo	ying C results ward t sults ac otivate vards F

CMM Level 4 Basis

12 delibert -

High Quality Low Cost Software Inspections

Ronald A. Radice

• "As I see it Tom Gilb was the inspiration for much of what is defined in CMM Level 4."

• Ron Radice (CMM Inventor at IBM) 1996 Salt lake City (agreed orally by Watts Humpreys - his IBM Director)

• stt@stt.com, www.stt.com

www.Gilb.com Version 8- Sep. 20

Lack of clear top level project objectives has seen real projects fail for \$100+ million: personal experience, real case

Bad Objectives, for 8 years	Quantified Objectives (in Planguage),
1. Central to The Corporations business strategy is to be the world's premier integrated_ <domain> service provider.</domain>	Robustness.Testability:
2. Will provide a much more efficient user experience	Type: Software Quality Requirement. Version: 20 Oct 2006-10-20
3. Dramatically scale back the time frequently needed after the last data is acquired to time align, depth correct, splice, merge, recompute and/or do whateve; else is needed to generate the desired products	Status: Demo draft, Stakeholder: {Operator, Tester}. Ambition: Rapid-duration automatic testing of
4. Make the system much easier to understand and use than has been the case for previous system.	<pre><critical complex="" tests="">, with extreme operator setup and initiation.</critical></pre>
5. A primary goal is to provide a much more productive system development environment than was previously the case.	Scale: the duration of a defined [Volume] of testing, or a defined [Type], by a
6. Will provide a richer set of functionality for supporting next-generation logging tools and applications.	defined [Skill Level] of system operator, under defined [Operating Conditions].
7. Robustness is an essential system requirement (see partial rewrite in example at right)	Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First Time
8. Major improvements in data quality over current practice	Novice, Operating Conditions = Field, {Sea Or Desert}. <10 mins.
17 October 2014 © Gilb.com	39

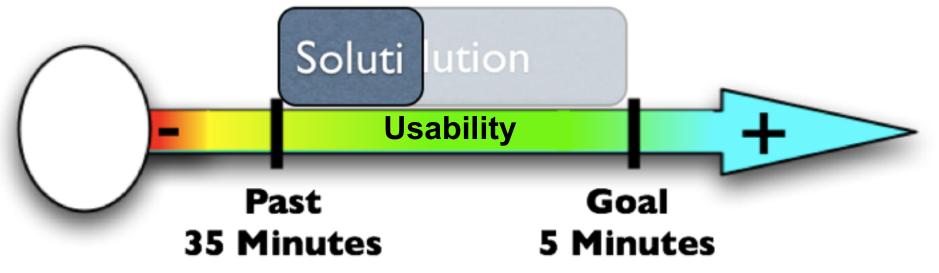
VALUE CLARITY: Quantify the most-critical project objectives on day 1

P&L-Consistency&T P&L: Scale: total adjustments btw Flash/ Predict and Actual (T+1) signed off P&L. per day. Past 60 Goal: 15	<u>Front-Office-Trade-Management-Efficiency</u> Scale: Time from <u>Ticket Launch</u> to trade updating real-time risk view Past [20xx, Function = Risk Mgt, Region = Global] ~ 80s +/- 45s ?? Goal [End 20xz, Function = Risk Mgt, Region = Global] ~ 50%
Speed-To-Deliver : Scale : average Calendar days needed from New Idea Approved until Idea Operational, for given Tasks, on given Markets.	better? Managing Risk – Accurate – Consolidated – Real Time
Past [2009, Market = EURex, Task =Bond Execution] 2-3 months ? Goal [Deadline =End 20xz, Market = EURex, Task =Bond Execution] 5 days	<u>Risk.Cross-Product Scale</u> : % of financial products that risk metrics can be displayed in a single position blotter in a way appropriate for the trader (i.e. – around a benchmark vs. across the curve).
<u>Operational-Control</u> : Scale: % of trades per day, where the calculated economic difference between OUR CO and Marketplace/ Clients, is less than "1 Yen"(or equivalent). Past [April 20xx] 10% change this to 90% NH Goal [Dec. 20xy] 100%	Past [April 20xx] 0% 95%.Goal [Dec. 20xy] 100%Risk.Low-latency Scale: number of times per day the intraday risk metrics is delayed by more than 0.5 sec. Past [April 20xx, NA] 1%Past [April 20xx, EMEA] ??%Past [April 20xx, AP] 100% Goal [Dec. 20xy] 0%Risk.Accuracy
<u>Operational-Control.Consistent</u> : Scale: % of defined [Trades] failing full STP across the transaction cycle. Past [April 20xx, Trades=Voice Trades] 95% Past [April 20xx, Trades=eTrades] 93% Goal [April 20xz, Trades=Voice Trades] <95 ± 2%> Goal [April 20xz, Trades=eTrades] 98.5 ± 0.5 %	<u>Risk. user-configurable</u> Scale: ??? pretty binary – feature is there or not – how do we represent? Past [April 20xx] 1% Goal [Dec. 20xy] 0% <u>Operational Cost Efficiency</u> Scale: <increased (straight<br="" efficiency="">through processing STP Rates)> <u>Cost-Per-Trade</u> Scale: % reduction in Cost-Per-Trade Goal (EOY 20xy, cost type = I 1 – REGION = ALL) Reduce cost by 60% (BW)</increased>
<u>Operational-Control.Timely.End&OvernightP&L</u> Scale: number of times, per quarter, the P&L information is not delivered timely to the defined [Bach-Run]. Past [April 20xx, Batch-Run=Overnight] 1 Goal [Dec. 20xy, Batch- Run=Overnight] <0.5> Past [April 20xx, Batch-Run= T+1] 1 Goal [Dec. 20xy, Batch-Run=End-Of-Day, Delay<1hour] 1 Operational-Control.Timely.IntradayP&L Scale: number of times	Goal (EOY 20xy, cost type = I 2 – REGION = ALL) Reduce cost by x % Goal (EOY 20xy, cost type = E1 – REGION = ALL) Reduce cost by x % Goal (EOY 20xy, cost type = E 2 – REGION = ALL) Reduce cost by 100% Goal (EOY 20xy, cost type = E 3 – REGION = ALL) Reduce cost by
per day the intraday P&L process is delayed more than 0.5 sec. Operational-Control.Timely.Trade-<u>Bookings Scale:</u> number of <u>trades per</u> day that are not booked on trade date. Past [April 20xx] 20 ?	x %

www.Gilb.com

Gilb.con

40


Example of Estimating the Value of a Technical IT System Improvement (20xx)

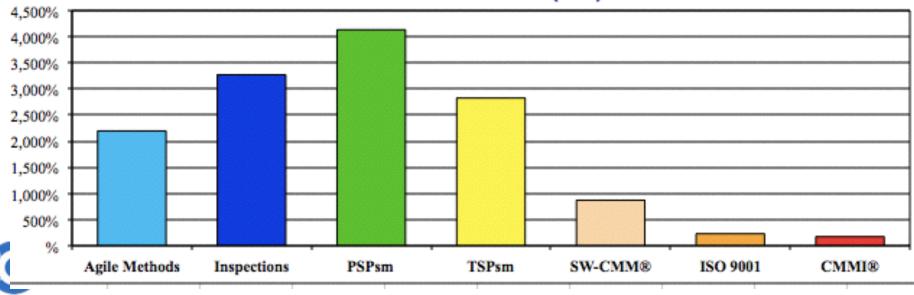
TIME.HEDGE - Time for hedge execution of average-sized trade				
Ambition:	Reduce the average time taken from verbal agreement ("done") to hedge execution of an <average-sized> trade</average-sized>			
Scale:	Seconds			
Past:	[2Q10; Region=NA] 30 seconds			
Goal:	[2Q12; Region=ALL] 3 seconds			
Business Value:	[Type=Revenue; Reason=Improved Hedging P&L Goal Scale=3 seconds; Region=Global] Revenue= +\$1mm to +\$ <u>2mm</u>			

SPEED.CODE – Mean elapsed time for code changes					
Ambition:	Reduce the mean elapsed time for code changes from business request to end-user go live				
Scale:	Mean time in calendar days over <three> months</three>				
Past:	[2009; Market=Eurex; Task=Bond execution] <60 - 90> days				
Goal:	[2Q12; Market=Eurex; Task=Bond execution] 5 days				
Business Value: [Type=Revenue; Reason=Earlier P&L from faster time to Market; Goal Scale=5 days; Region=Global] Revenue= +\$2mm to +\$5mm					
This is an example made to reason about specification standards and is not supposed to be a real spec. Just realistic.					

3. Assuring that Designs give Qualities

- 10 min. = 33% of total

Measure Quality Levels in Specifications with Inspection


Value for Money Inspection and CMMI David Rico, http://davidfrico.com

ROI Comparison

	Costs	Benefits	B/CR	ROI%	NPV	BEP	Cost/Person	Risk	ROA
Agile Methods	\$188,199	\$4,321,798	23:1	2,196%	\$3,554,026	\$8,195	\$47,050	52.19%	\$4,175,664
Inspections	\$82,073	\$2,767,464	34:1	3,272%	\$2,314,261	\$51,677	\$20,518	26.78%	\$2,703,545
PSPsm	\$105,600	\$4,469,997	42:1	4,133%	\$3,764,950	\$945	\$26,400	6.44%	\$4,387,756
TSPsm	\$148,400	\$4,341,496	29:1	2,826%	\$3,610,882	\$5,760	\$37,100	37.33%	\$4,225,923
SW-CMM8	\$311,433	\$3,023,064	10:1	871%	\$2,306,224	\$153,182	\$77,858	83.51%	\$2,828,802
150 9001	\$173,000	\$569,841	3:1	229%	\$320,423	\$1,196,206	\$43,250	98.66%	\$503,345
CMMI®	\$1,108,233	\$3,023,064	3:1	173%	\$1,509,424	\$545,099	\$277,058	100.00%	\$2,633,052

Return on Investment (ROI)

A Recent Example

Source Eric Simmons, erik.simmons@intel.com 25 Oct 2011 Personal Public Communication

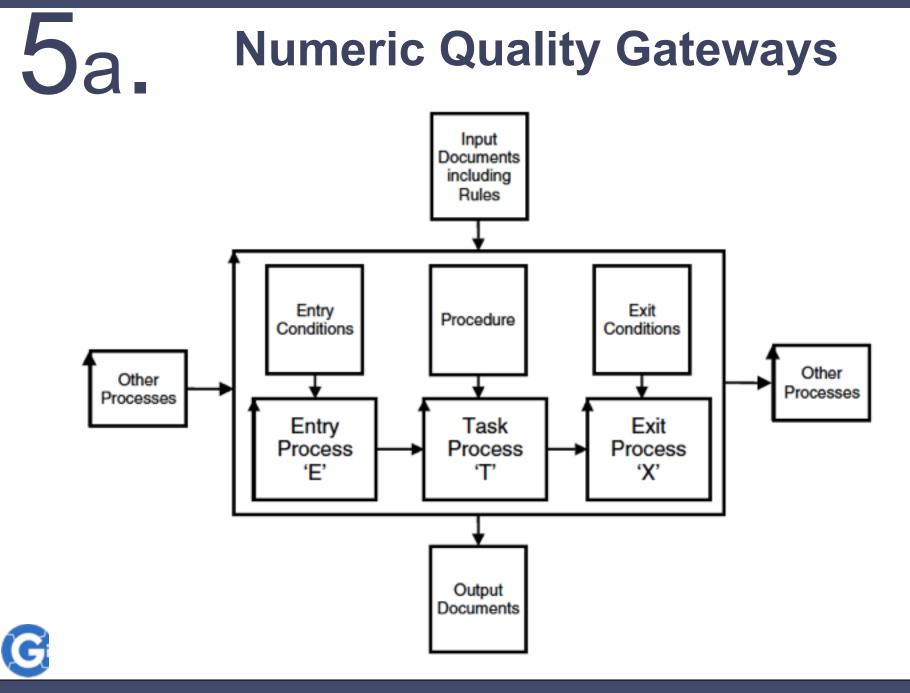
Application of Specification Quality Control (Gilb Inspections) by a SW team resulted in the following defect density reduction in requirements over several months:

Rev.	# of Defects	# of Pages	Defects/ Page (DPP)	% Change in DPP
0.3	312	31	10.06	
0.5	209	44	4.75	-53%
0.6	247	60	4.12	-13%
0.7	114	33	3.45	-16%
0.8	45	38	1.18	-66%
1.0	10	45	0.22	-81%
Overall % change in DPP revision 0.3 to 1.0:				-98%

Downstream benefits:

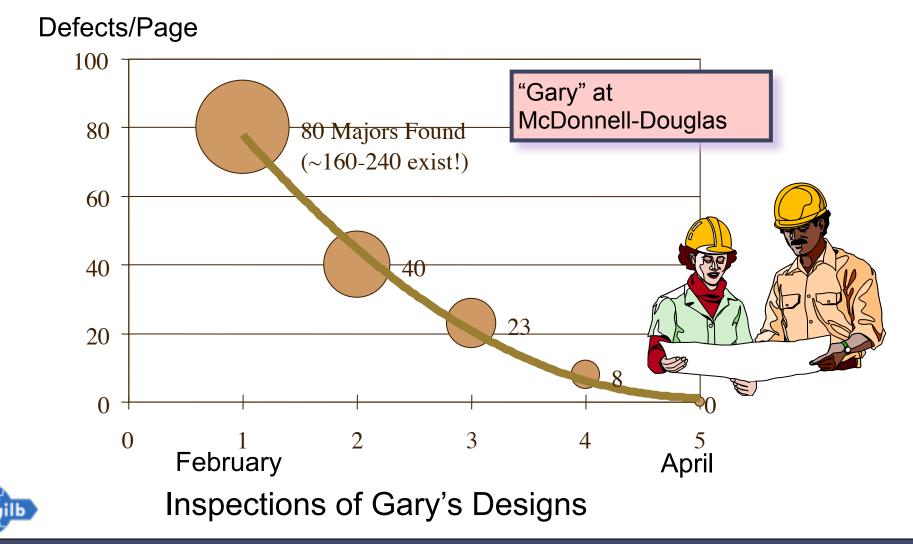
•Scope delivered at the Alpha milestone increased 300%, released scope up 233% •SW defects reduced by ~50%

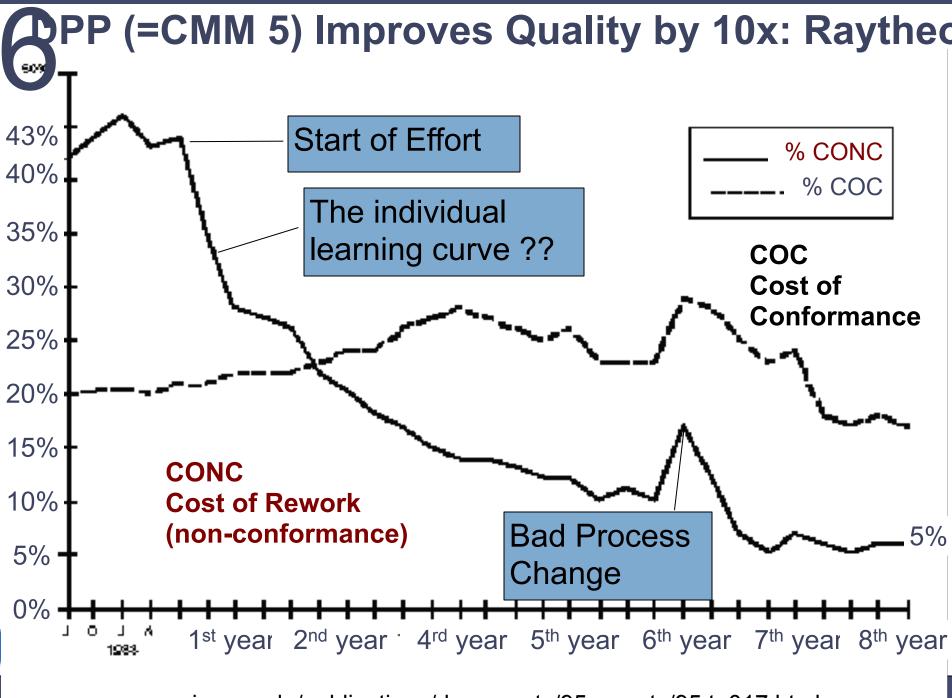
Defects that did occur were resolved in far less time on average


Let me translate this, Intel Experience with my methods, for testers

• 0.2 Majors/page (maximum)

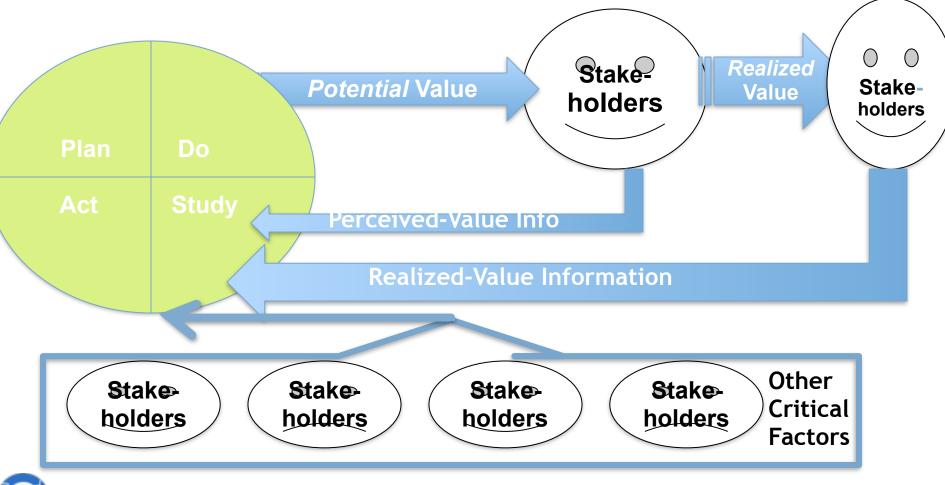
-Compared to the 100 M/P you currently suffer


- Means 500 times fewer major defects to work with
- It means 170 times fewer bugs to contend with than you probably have today
- Did you notice the productivity went up by factor 2.3 to 3x at Intel?
- There were 50% fewer bugs than Intel had before they used my methods
- This means that correct writing of test cases will be that much better
- And that wasted test execution and rework is that much better



Numeric Quality Gateways Improve Quality of work

5a.



) www.Gilb.com ∖√₀

www.sei.cmu.edu/publications/documents/95.reports/95.tr.017.html

7 a Frequent feedback and improvement assure quality

- 2 Kinds of Feedback from Stakeholders, when value increment is *really* exploited in practice after delivery.
- Combined with other information from the relevant environment. Like budget, deadline, technology, politics, laws, marketing changes.

Recent (20 Sept, 2011) Report on ilb Evo method (Richard Smith, Citigroup)

- <u>http://rsbatechnology.co.uk/blog:8</u>
- Back in 2004, I was employed by a large investment bank in their FX e-commerce IT department as a business analyst.
- The wider IT organisation used a complex waterfall-based project methodology that required use of an intranet application to manage and report progress.
- However, it's main failings were that it almost totally missed the ability to track delivery of actual value improvements to a project's stakeholders, and the ability to react to changes in requirements and priority for the project's duration.
- The toolset generated lots of charts and stats that provided the illusion of risk control. but actually provided very little help to the analysts, developers and testers actually doing the work at the coal face.
- The proof is in the pudding;
 - I have **USEC EVO** (albeit in disguise sometimes) on two large, high-risk projects in front-office investment banking businesses, and several smaller tasks.
 - On the largest critical project, the original business functions & performance objective requirements document, which included no design, essentially remained unchanged over the 14 months the project took to deliver,
 - but the detailed designs (of the GUI, business logic, performance characteristics) changed many many times, guided by lessons learnt and feedback gained by delivering a succession of early deliveries to real users.


© Gilb.com

- In the end, the new system responsible for 10s of USD billions of notional risk, <u>Successfully went</u> <u>live over over one weekend for 800 users worldwide</u>, and was seen as a big success by the sponsoring stakeholders.
 - " I attended a 3-day course with you and Kai whilst at Citigroup in 2006"

www.Gilb.com

51

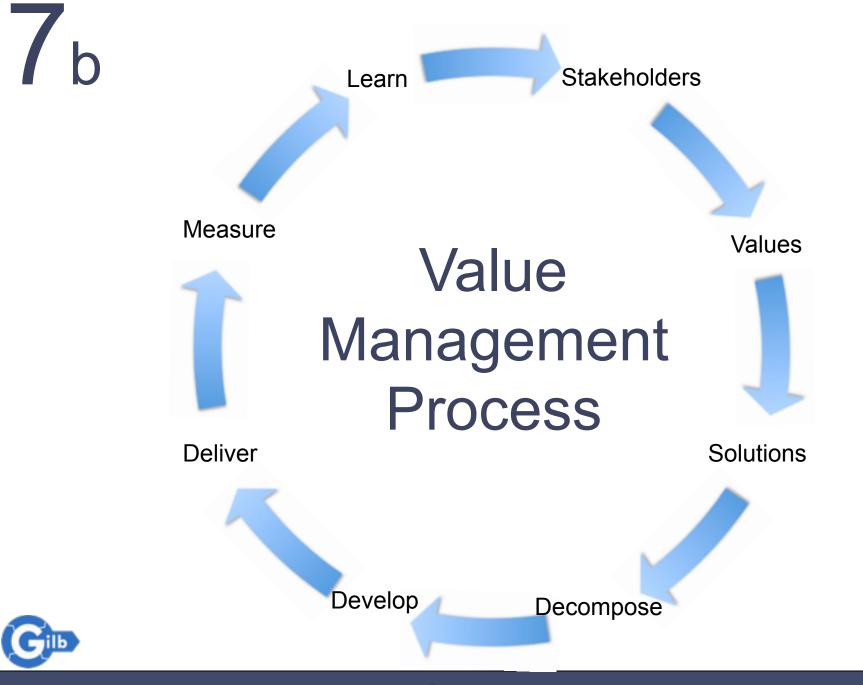
Original Shewhart Cycle 1950 Deming, Japan (paper at tiny.cc/WCSQGilb)

Sense of responsibility for product quality

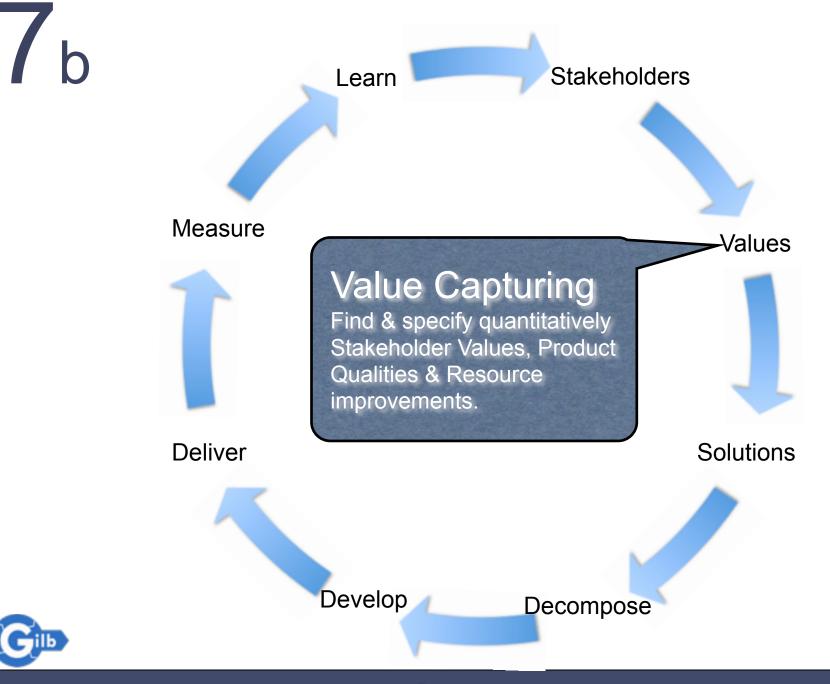
Deming's 1950 Lecture to Japanese Management

NOTE: What follows is an "informal" translation of the Japanese transcript commissioned by John Dowd. It has been checked by several translators and is the only known English translation of Dr.

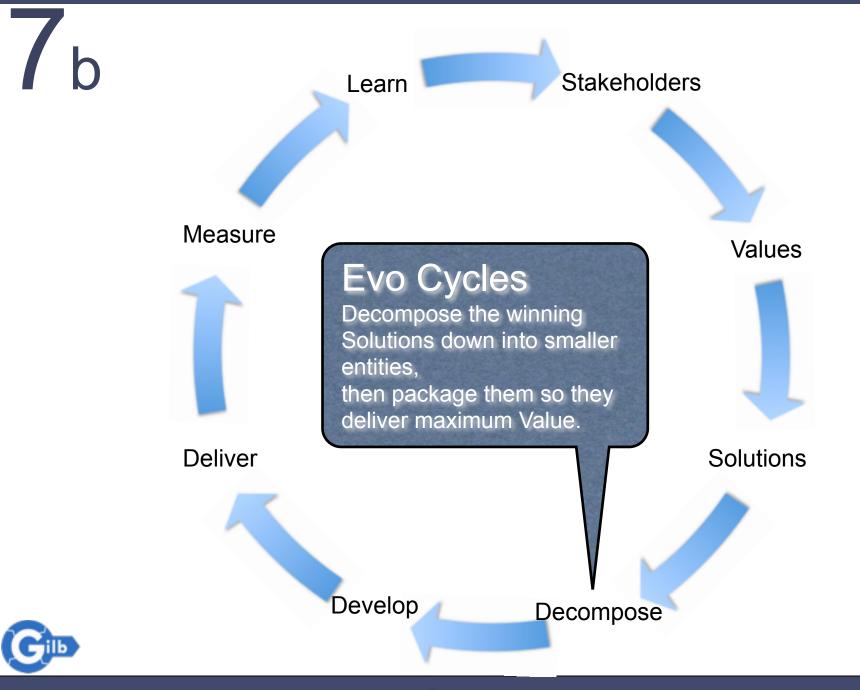
Deming's 1950 lecture.

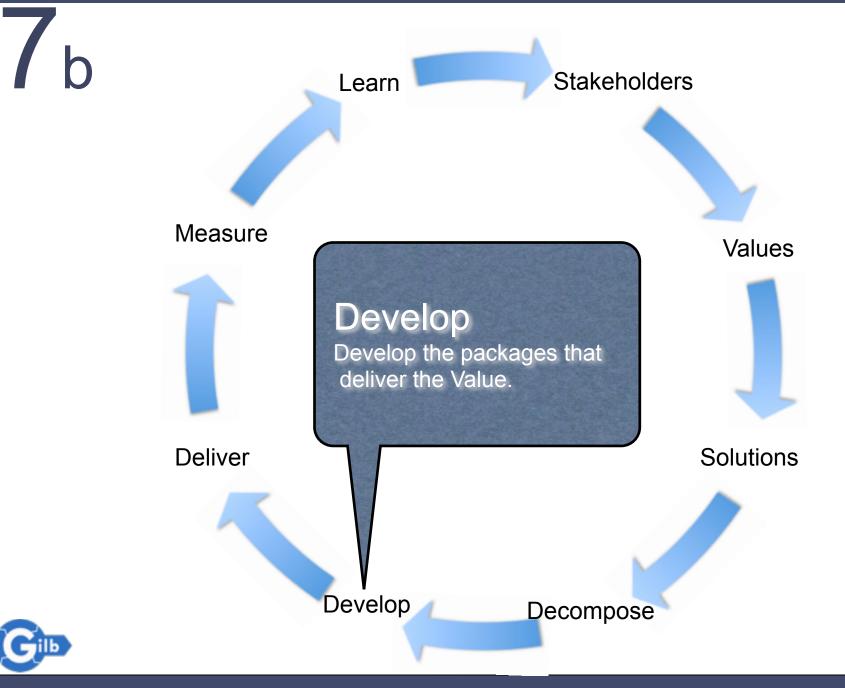

To Management Dr. W. E. Deming Presidential Adviser on Sampling Methods for the US Treasury

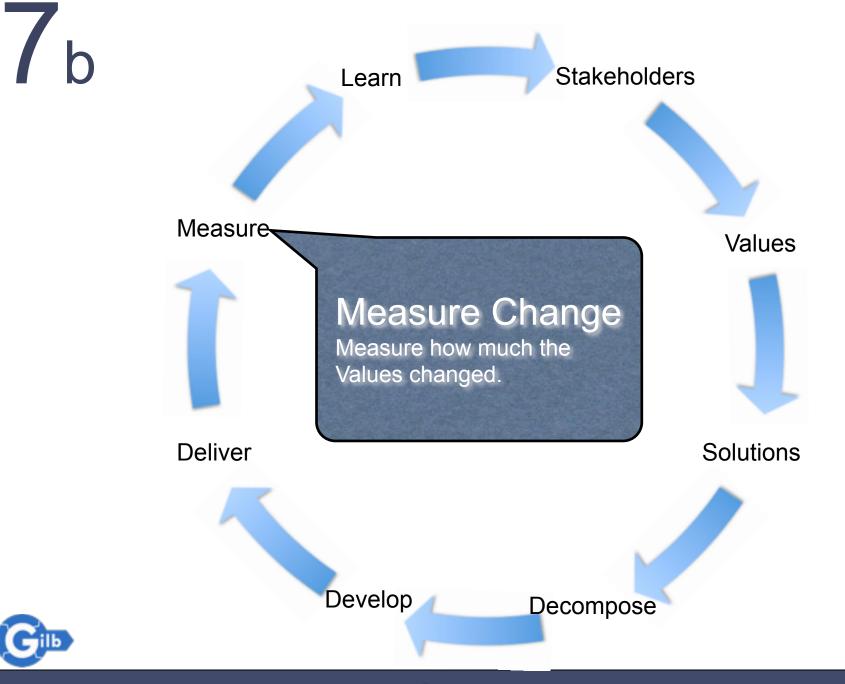
Introduction

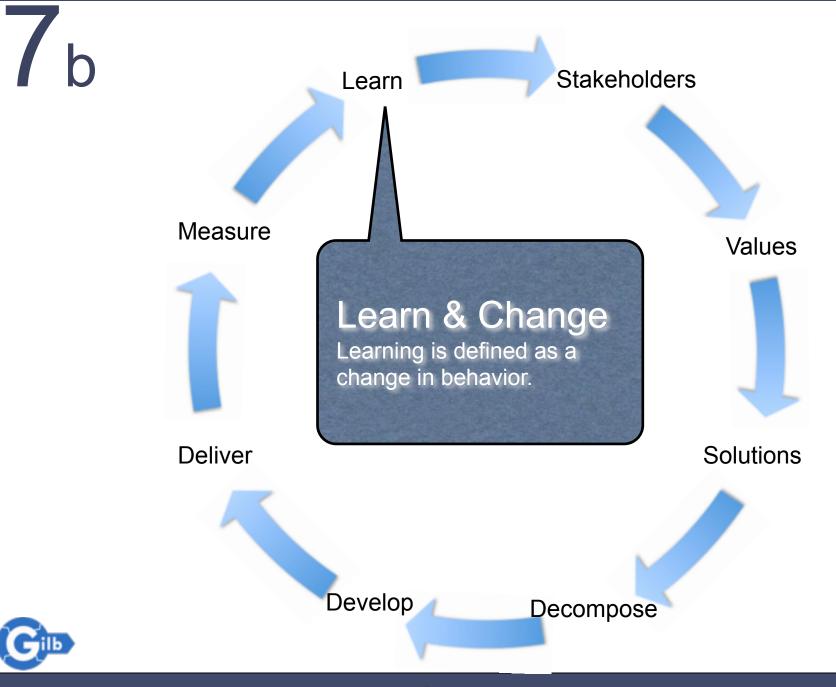

The opportunity to speak with all of you is my greatest honor. I will not give a sermon on statistical techniques. I leave that to the statisticians. Henceforth I shall speak of the truly important problems of manufacturing and sales, the statistical techniques which are helpful in the solution of these problems, and how all of you can use these techniques. Afterwards, I will answer your questions.

For fellow Keynote Speaker, Susumu Sasabe, and my Japanese friends









Competitive Lean QA methods to Learn

End

7

www.Gilb.com Version 8- Sep.

What can Testers do, in particular Test/QC managers do?

Do it NOW, current project

- 1. Decide on a reasonable set of standards for *Requirements* and *tests* ('Rules')
- 2. Do at least SAMPLING (3 pages of many) of all submitted requirements, **measuring** (Paper 13*) **Defect** (Rule Violation) **level**
- 3. Decide on an Entry Level ('Quality Gate') to Test, of *requirements*, of *no worse than* 10 Major defects per page
- 4. Identify the top 5 critical qualities of your QA or Test Process, and plan to manage them (MYTH PAPER 5*)
 - 1. For example Productivity, Rework, Output Quality, Prevention Levels, Cost/Defect

* MYTH & other numbered PAPERS ARE IN TINY.CC/WCSQGilb Folder. Most are also at gilb.com downloads, papers

Longer term actions

- 1. SQC: Agree with Requirements suppliers, on a <u>Service level</u> <u>Agreement (SLA)</u>, regarding
 - 1. Rules of Specification
 - 2. Their Exit level of major defects (< 1.0 majors/page
- 2. DPP (Level 5 TMMi): start a process of Defect Prevention on both Requirements and Test Planning
 - 1. With measures of Spec Defects reduction (from 100+ to 10 to 1) and
 - 2. Rework Reduction by 10x (like Raytheon) over a few years
- Initiate a long term process to reach your quantified QA/Test process Objectives
 - 1. A Planning week followed by weekly result delivery is a good start (MYTH PAPER 7 *)

Main Take-away Points

Quality Assurance is far more than 'test', and it can be far more cost-effective

'Quality' is far more than 'bugs'

You probably have a lot to learn, if you want real competitive quality

Thanks!

Thanks! Free digital copy of **'Competitive Engineering'** Email me, Subject "CE"

Discussion After lecture, all during the conference, at the Dinner, by email.

Mobile: +44 92066705 in UK +47 92066705 in Rest of World <u>www.Gilb.com</u>

Copy of these slides will be in Gilb.com Downloads/Slides

And tiny.cc/WCSQGilb

www.Gilb.com Version 8- Se

•Go back!

