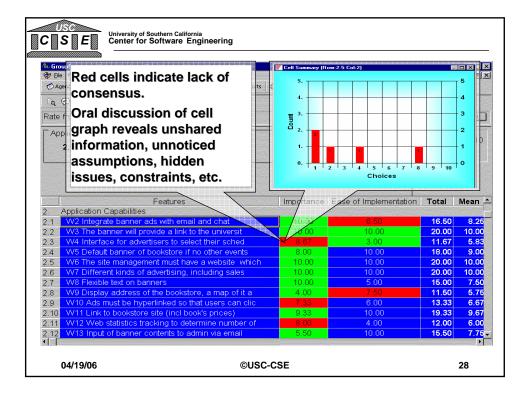
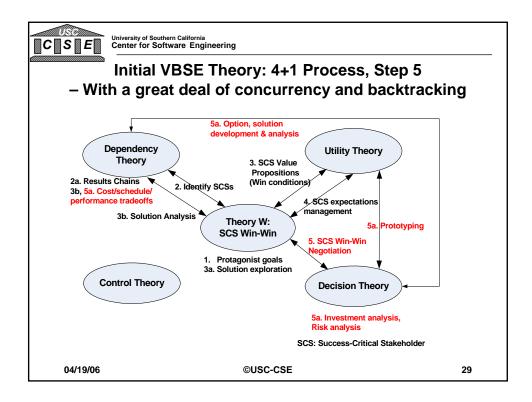
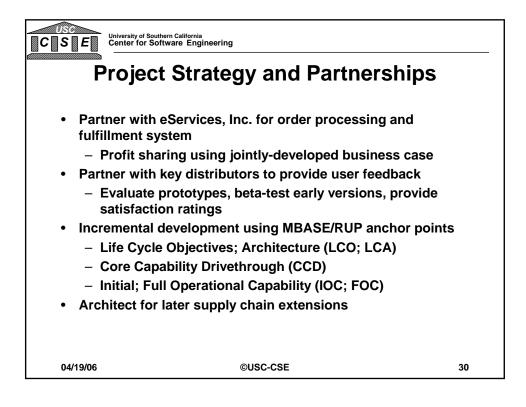
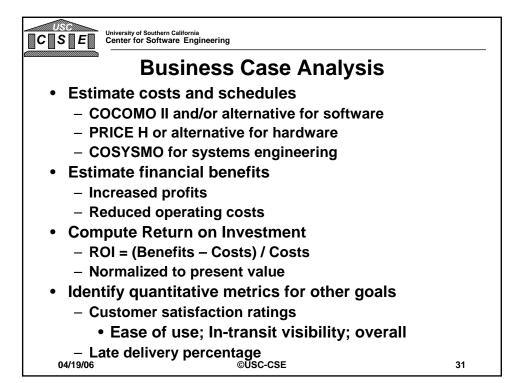


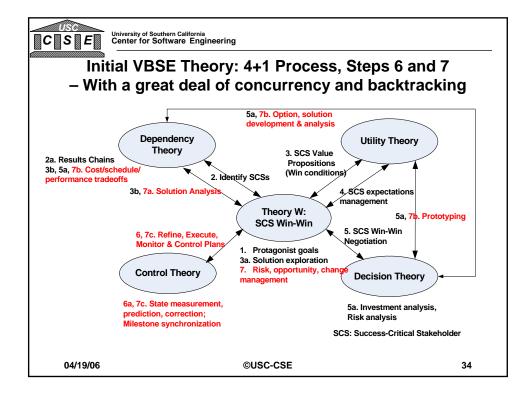
Protagonist Class	Goals	Authority	Ideas	Resources
Leader with Goals, Baseline Agenda	Х	Х	Х	х
Leader with Goals, Open Agenda	Х	Х		Х
Entrepreneur with Goals, Baseline Agenda	Х		Х	Х
Entrepreneur with Goals, Open Agenda	Х			х
Inventor with Goals, Ideas	Х		Х	
Consortium with Shared Goals	Х	(X)		(X)

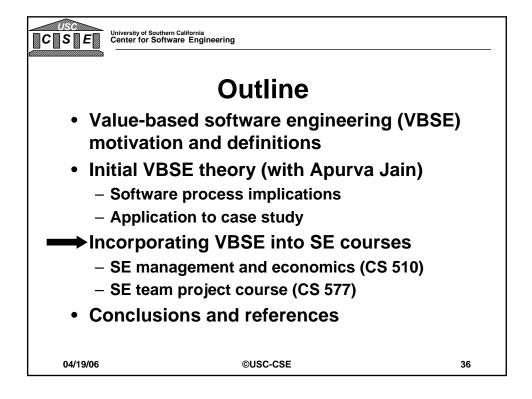


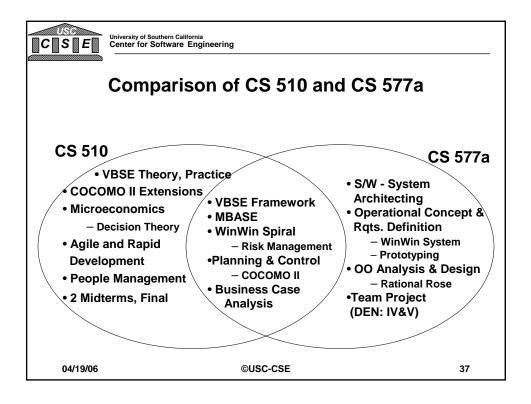




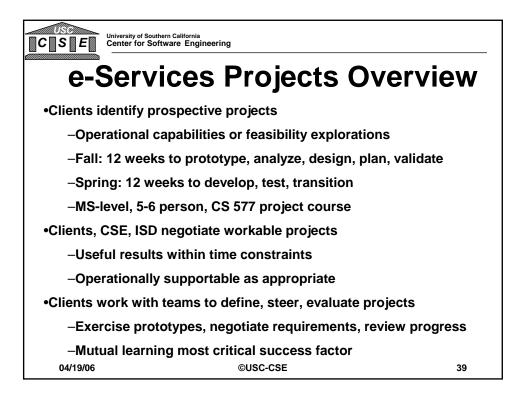




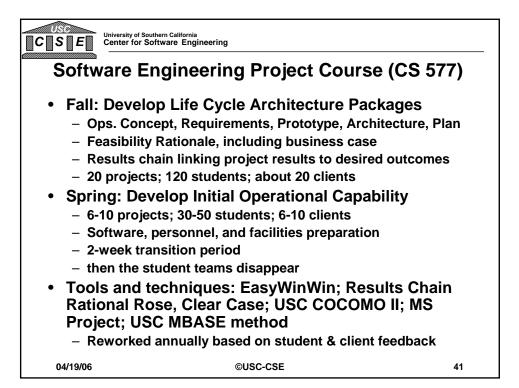


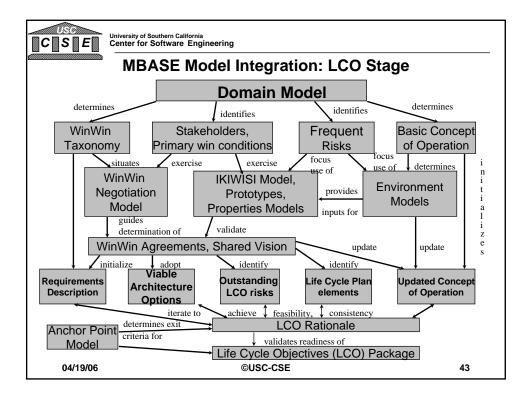

Order Bre	accoing Sug	tom Sohodula	a and Budgata
Order Pro	cessing bys		es and Budgets
lilestone	Due Date	Budget (\$K)	Cumulative Budget (\$K)
nception Readiness	1/1/2004	0	0
ife Cycle Objectives	1/31/2004	120	120
ife Cycle Architecture	3/31/2004	280	400
Core Capability Drivethrough	7/31/2004	650	1050
nitial Oper. Capability: SW	9/30/2004	350	1400
nitial Oper. Capability: HW	9/30/2004	2100	3500
Developed IOC	12/31/2004	500	4000
Responsive IOC	3/31/2005	500	4500
ull Oper. Cap'y CCD	7/31/2005	700	5200
OC Beta	9/30/2005	400	5600
OC Deployed	12/31/2005	400	6000
Annual Oper. & Maintenance		3800	
nnual O&M Old System		7600	

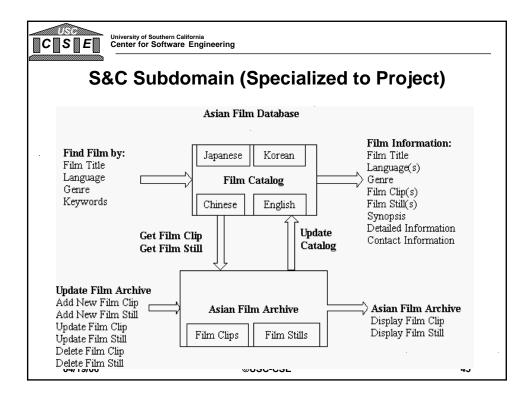
	Univer Cent	sity of S er for	outhern Softwa	Californ are Er	nia nginee	ering										
Orde	er F	Pro	ce		_	-	-		SS	Ca	se		ed I	Be	nef	its
		Curre	ent Sy	stem				Fina	-	New S	ysten	1	1	Cucto	omers	
								<u>rma</u>		r –				Gust	mers	
Date	Market Size (\$M)	Market Share %	Sales	Profits	Market Share %	Sales	Profits	Cost Savings	Change in Profits	Cum. Change in Profits	Cum. Cost	ROI	Late Delivery %	Customer Satisfaction (0-5)	In-Transit Visibility (0-5)	Ease of Use (0-5)
12/31/03	360	20	72	7	20	72	7	0	0	0	0	0	12.4	1.7	1.0	1.8
12/31/04	400	20	80	8	20	80	8	0	0	0	4	-1	11.4	3.0	2.5	3.0
12/31/05	440	20	88	9	22	97	10	2.2	3.2	3.2	6	47	7.0	4.0	3.5	4.0
12/31/06	480	20	96	10	25	120	13	3.2	6.2	9.4	6.5	.45	4.0	4.3	4.0	4.3
12/31/07	520	20	104	11	28	146	16	4.0	9.0	18.4	7	1.63	3.0	4.5	4.3	4.5
12/31/08	560	20	112	12	30	168	19	4.4	11.4	29.8	7.5	2.97	2.5	4.6	4.6	4.6
04/19/06							©US	c-cs	E							33

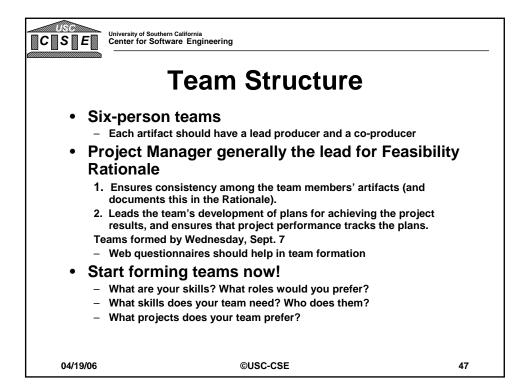


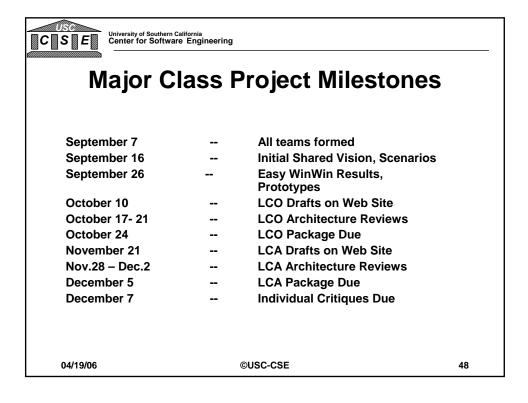
Center for	Jonna		gineer	ing										
alue-Base	d E>	cped	cted	/ A	ctı	ıal	O	uto	on	ne	Tr	ac	king Capabilit	
Milestone	Schedule	Cost (\$K)	Op'I Cost Savings	Market Share %	Annual Sales (\$M)	Annual Profits (\$M)	Cum. Profits	ROI	Late Delivery %	Customer Satisfaction	ITV	Ease of Use	Risks/Opportunities	
Life Cycle Architecture	3/31/04	400		20	72	7.0			12.4	1.7	1.0	1.8	Increased COTS ITV risk,	
	3/31/04	427		20	72	7.0			12.4	1.7	1.0	1.8	fallback identified.	
Core Capability	7/31/04	1050											Using COTS ITV fallback; new HW competitor; renegotiating HW.	
Demo (CCD)	7/20/04	1096								2.4*	1.0*	2.7*		
													nw.	
Software Initial	9/30/04	1400												
Op'l Capability (IOC)	9/30/04	1532								2.7*	1.4*	2.8*		
Hardware IOC	9/30/04	3500											\$200K savings from	
	10/11/04	3432											renegotiated HW.	
Deployed IOC	12/31/04	4000		20	80	8.0	0.0	-1.0	11.4	3.0	2.5	3.0	New COTS ITV source	
	12/20/04	4041		22	88	8.6	0.6	85	10.8	2.8	1.6	3.2	identified, being prototyped.	
Responsive IOC	3/31/05	4500	300	L					9.0	3.5	3.0	3.5		
	3/30/05	4604	324						7.4	3.3	1.6	3.8		
Full Op'l Capability CCD	7/31/05	5200	1000							3.5*	2.5*	3.8*	New COTS ITV source initially integrated.	
000	7/28/05	5328	946										megrated.	
Full Op'l Capability Beta	9/30/05	5600	1700							3.8*	3.1*	4.1*		
Deta	9/30/05	5689	1851											
Full On'l Canability	12/31/05	6000	2200	22	106	12.2	3.2	47	7.0	4.0	3.5	4.0		
Full Op'l Capability Deployed Release 2.1	12/20/05	5977	2483	24	115	13.5	5.1	15	4.8	4.1	3.3	4.2		
	6/30/06	6250	1											




" Software Engineering:" a computer program	•	-	-
Stages Issues	Requirements, Architecture	Design, Code	Test, Implement, Maintain
Computer Science		CS Focus	
User Applications			
Economics			
People			
Prepare you for softwa -Agility, discipline, Co Integrate all theses co -Via value-based, moo project experience	OTS/OSS, scalable s insiderations	spirals, servic	e-based syster

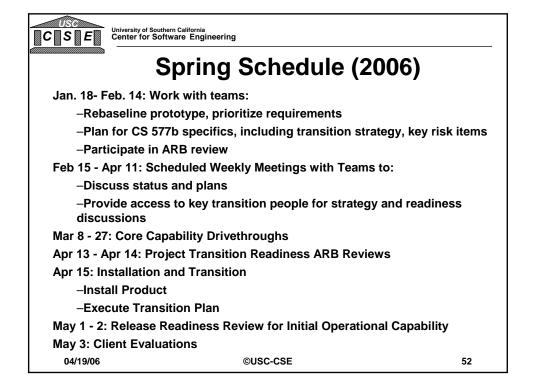

C S S		er Win-Win Approac	h
	Stakeholders	Win Conditions	
		•Full range of SW Engr. skills	
	•Students,	 Real-client project experience 	
	Employers	Non-outsourceable skills	
		•Advanced SW tech. experience	
		•Useful applications	
	 Project clients 	 Advanced SW tech. understanding 	
		•Moderate time requirements	
	-Feeulty	•Educate future SW Engr. leaders	
	•Faculty, Profession	•Better SW Engr. technology	
		 Applied on real-client projects 	
04/19	/06	©USC-CSE	40

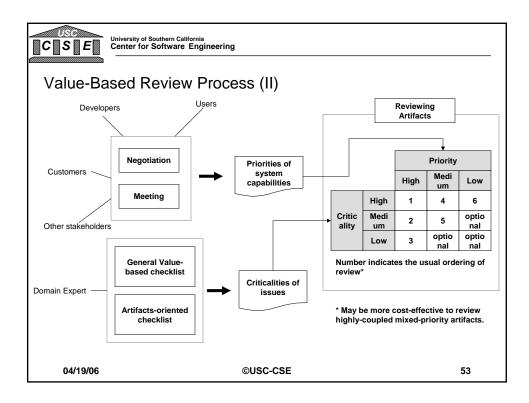

	of Southern California or Software Engineering	
Wi	n Win Spiral Anch (Risk-driven level of detail for ea	
Milestone Element	Life Cycle Objectives (LCO)	Life Cycle Architecture (LCA)
Definition of Operational Concept	Top-level system objectives and scope System boundary Environment parameters and assumptions Evolution parameters Operational concept Operational and concept eresponsibilities (stakeholders)	Elaboration of system objectives and scope of increment Elaboration of operational concept by increment
System Prototype(s)	Exercise key usage scenarios Resolve critical risks	Exercise range of usage scenarios Resolve major outstanding risks
Definition of System Requirements	Top-level functions, interfaces, quality attribute levels, including: Growth vectors and priorities Prototypes Stakeholders' concurrence on essentials	Elaboration of functions, interfaces, quality attributes, and prototypes by increment - Identification of TBD's((to-be-determined items) - Stakeholders' concurrence on their priority concerns
Definition of System and Software Architecture	Top-level definition of at least one feasible architecture Physical and logical elements and relationships Choices of COTS and reusable software elements Identification of infeasible architecture options	Choice of architecture and elaboration by increment - Physical and logical components, connectors, configurations, constraints - COTS, reuse choices - Domain-architecture and architectural style choices - Architecture evolution parameters
Definition of Life- Cycle Plan	Identification of life-cycle stakeholders Users, customers, developers, maintainers, interoperators, general public, others Identification of life-cycle process model Top-level stages, increments Top-level WWWWHH ⁺ by stage	Elaboration of WWWWWHH' for Initial Operational Capability (IOC) - Partial elaboration, identification of key TBD's for later increments
Feasibility Rationale	Assurance of consistency among elements above via analysis, measurement, prototyping, simulation, etc. Business case analysis for requirements, feasible architectures	Assurance of consistency among elements above All major risks resolved or covered by risk management plan
	*WWWWWHH: Why, What, When, Who, Whe	ere, How, How Much
04/19/06	©USC-CSE	42



	niversity of Southern California lenter for Software Engineering	main (General)
Type of Application	Simple Block Diagram	Examples (project nos.)	Deveoper Simplifiers	Developer Complicators
Multimedia Archive	query query query query query query query notification update notification MM asset MM Archive	1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 31, 32, 35, 36, 37, 39	 Use standard query languages Use standard or COTS search engine Uniform media formats 	 Natural language processing Automated cataloging or indexing Digitizing large archives Digitizing complex or fragile artifacts Rapid access to large Archives Access to heterogeneous media collections Automated annotation/descrip tion/ or meanings to digital assets Integration of legacy systems
04/19/06		OUSC-CSE		44

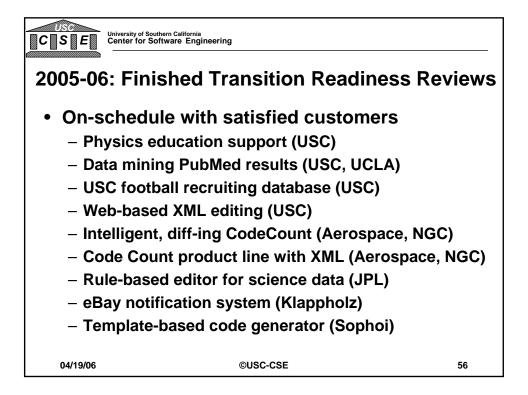
Simplifiers	Risks and Trade-offs
Generic	This means that we may have to convert existing digital assets or
Uniform Media Formats	digitize the original media, which may be costly.
Specific	A unique file format limits the user base to those who have
All video clips are stored using an open file format for video/audio	viewers for that particular file format
(e.g., MPEG). All film stills are stored using an open image file	The chosen file format may not be the most efficient for the
format (e.g., JPEG). The inverse complicator is to store film clips	various types of media (in terms of compression rates, quality,
using streaming video technologies	etc)
Generic Use Standard Query Languages Specific Organize catalog and archive relationally so that queries will be limited to standard search formats,: match exactly by value on any of the fields with or without using boolean combinations (AND, OR, NOT, etc), or using pattern matching (SQL <i>LIKE</i> keyword)	May not be as effective for "discovering" assets in the archive: users must know what they're looking for, in order to search for i
Generic	A Relational Database Management System may not be most
Use Standard COTS	suited for archival of multi-media assets.
Specific	A Relational Database Management System may have a high
Use a standard Relational Database Management System	initial cost, high implementation, and high administration cost
(RDBMS) that supports storing multi-media assets	(requires specialized knowledge skills)

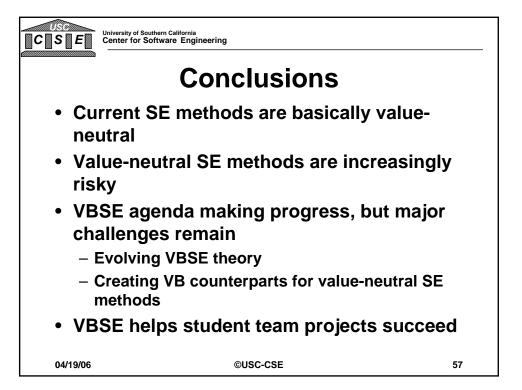




CISC University of Southern California Center for Software Engineering	Cognitive Demands Analysis
Project Tasks	Risk Management Skills - Skill-building activities
Select projects; form teams	 Project risk identification Staffing risk assessment and resolution Readings, lectures, homework, case study, guidelines
Plan early phases	 Schedule/budget risk assessment, planning Risk–driven processes (spiral, MBASE) Readings, lectures, homework, guidelines, planning and estimating tools
Achieve stakeholders' shared vision	 Simplifier/complicator analysis Prototyping as buying information to reduce risk Readings, lectures, homework, prototype, WinWin tool
Formulate, validate concept of operation	Risk-driven level of detail - Readings, lecture, guidelines, project
Manage to plans	Risk monitoring and control Readings, lecture, guidelines, project
Develop, validate LCO* package	Risk assessment and prioritization Readings, lecture, guidelines, project
LCO Architecture Review	 Risk-driven review process Review of top-N project risks -Readings, lecture, case studies, review
04/19/06	©USC-CSE 49

University of Southern California Center for Software Engineering From Data Mi	ining the Library Catalogue's LCA									
ROI Analysis Examp	ROI Analysis Example (Part I)									
Inception and Elaboration Time Invested (CS577a)										
Meetings with Full Team & Individual Members (10% time for 7	12 weeks) 48 Hours									
Email time (1.5% time for 12 weeks)	7 Hours									
Architecture Review Board(s)	6 Hours									
Total (Inception and Elaboration Time)	61 Hours									
Construction and Transition Time Invested (CS577b)										
Meetings with Full Team & Individual Members (7% time for 12	2 weeks) 34 Hours									
Email time (1% time for 12 weeks)	5 Hours									
Architecture Review Board(s)	6 Hours									
Transition Setup (rough estimate)	10 Hours									
Total (Construction/Transition Time)	54 Hours									
Semester Maintenance										
Maintenance Time (disk cleanup @ 2.5% time for 16 week ser	mester) 16 Hours									
Work w/maintenance team personnel on updates (1/5 Inception/	Elaboration time) 12 Hours									
Total (Semester Maintenance Time)	28 Hours									
04/19/06 ©USC-CSE	50									


	University of Southern California From Data Mining the Libra Center for Software Engineering From Data Mining the Libra									
ROI Example (Part II)										
Using the p	previous numbers as the Inv	vestment	Costs, aı	nd calcula	ating ho	urs saved	l for one			
person as th	he time it takes to review a	n origina	l sized re	port com	pared to	a SURC	G filtered			
report of 1/	'3 the original Unicorn size	(See Sec	ction 2.1.	5.1), the	Return (On Inves	tment for			
this project	is shown in the table and c	chart belo	ow:							
1/3 Year Ser	mesters	Fall '98	Spr '99	Sum'99	Fall'99	Spr'00	Sum'00			
	Hours Time Saved Per Month (1 person - Using 1/3 report size reduction)		5	19	19	19	19			
Reports per	Reports per Semester		19	78	78	78	78			
Time Saved	In Hours		19	78	78	78	78			
Cumulative	Hours		19	97	175	252	330			
Time Invest	ed in Hours	61	54	28	28	28	28			
Cumulative	Hours	61	116	144	172	200	229			
Return On I	nvestment		0.17	0.67	1.01	1.26	1.44			
04/19/06	04/19/06 ©USC-CSE 51									



Value	-Based Checklist (I) <g< th=""><th>eneral Value-Based Ch</th><th>ecklist></th></g<>	eneral Value-Based Ch	ecklist>	
	High-Criticality Issues	Medium-Criticality Issues	Low-Criticality Issues	
Completeness	-Critical missing elements: backup/ recovery, external interfaces, success-critical stakeholders; critical exception handling, missing priorities -Critical missing processes and tools; planning and preparation for major downstream task (development, integration, test, transition) -Critical missing project assumptions (client responsiveness, COTS adequacy, needed resources)	 Medium-criticality missing elements, processes and tools: maintenance and diagnostic support; user help Medium-criticality exceptions and off-nominal conditions; smallet tasks (revew.client demos), missing desired growth capabilities, workload characterization 	Essily-defortable, low-impact missing elements: transition of the second second second help messages, GUI details doable via GUI builder, project task sequence details Essily-defortable, low-impact inconsistence or inarglicit tracesability. GUI details, report details, error messages, help messages, grammatical errors	
Consistency/ Feasibility	-Critical elements in OCD, SSRD, SSAD, LCP not traceable to each other -Critical inter-artifact inconsistencies: priorities, assumptions, input/output, preconditions/post-conditions -Missing evidence of critical consistency/feasibility assurance in FRD	Medium-criticality shortfalls in traceability, inter- artifact inconsistencies, evidence of consistency/feasibility in FRD		
Ambiguity	 Vaguely defined critical dependability capabilities: fault tolerance, graceful degradation, interoperability, safety, security, survivability Critical miseding ambiguities: stakeholder intent, acceptance criteria, critical user decision support, terminology 	Vaguely defined medium-criticality capabilities, test criteria •Medium-criticality misleading ambiguities	 Non-misleading, easily deferrable, low-impr ambiguities: GUI details, report details, ero messages, help messages, grammatical erro 	
Conformance	Lack of conformance with critical operational standards, external interfaces	 Lack of conformance with medium-criticality operational standards, external interfaces Misleading lack of conformance with document formatting standards, method and tool conventions 	 Non-misleading lack of conformance with document formatting standards, method and tool conventions, optional or low-impact operational standards 	
Risk	 Missing FRD evidence of critical capability feasibility: high-priority features, levels of service, budgets and schedules Critical risks in top-10 risk checklist: personal, budgets and schedules, requirements, COTS, architecture, technology 	 Missing FRD evidence of mitigation strategies for low-probability high-impact or high-probability, low-impact risks: unlikely disasters, off-line service delays, missing but easily-available information 	 Missing FRD evidence of mitigation strateg for low-probability, low-impact risks 	

E University of South Center for Sof		eering			
Value-Ba			g (VBR) ISESE 20	-	riment
By Number	P-value	% Gr A higher	By Impact	P-value	% Gr A higher
Average of Concerns	0.202	34	Average Impact of Concerns	0.049	65
Average of Problems	0.056	51	Average Impact of Problems	0.012	89
Average of Concerns per hour	0.026	55	Average Cost Effectiveness of Concerns	0.004	105
Average of Problems per hour	0.023	61	Average Cost Effectiveness of Problems	0.007	108
Group A: 15 IV& Group B 13 IV&\ – Significantl	/ personn	el using pre		eutral che	ecklists
Experiment					
9/06		©USC-	CSE		

	University of Southern California Center for Software Engineering References - II	
Value-D	Harmon, and D. Raffo, "Value-Based Software Engineering (VBSE): <i>A</i> riven Approach to Product-Line Engineering," <u>Proceedings. First Intl</u> <u>n SW Product Line Engineering</u> , August 2000.	
	D. Norton, <u>The Balanced Scorecard: Translating Strategy into Action</u> Business School Press, 1996.	<u>n</u> ,
D. Reifer, <u>M</u>	aking the Software Business Case, Addison Wesley, 2002.	
· · · · ·	Y. Cai, B. Hallen, and W. Griswold, "The Structure and Value of ity in Software Design," <u>Proceedings, ESEC/FSE, 2001</u> , ACM Press, p	op.
J. Thorp an	d DMR, <u>The Information Paradox</u> , McGraw Hill, 1998.	
S. Tockey, <u>I</u>	Return on Software, Addison Wesley, 2004.	
Economics- www.ed	-Driven Software Engineering Research (EDSER) web site: Iser.org	
MBASE wel	b site : sunset.usc.edu/research/MBASE	
04/19/06	©USC-CSE	59