
November 2013

issue 16
Refactoring

JUNE 16–18, 2014 IN BERLIN/POTSDAM

www.mobileappeurope.com

Management

Marketing

Design

Development

Testing

The conference for applying
innovative knowledge to the
mobile app life cycle process.

EUROPE’S CONFERENCE
FOR MOBILE APPS

http://www.mobileappeurope.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=MAE

Page 1 Agile Record – www.agilerecord.com

Dear Readers,

Editorial

This is the last issue of Agile Record this year and we should
also be thinking about the need to refactor the magazine and the
magazine’s website. We are more or less aiming for the same
goals: restructuring the existing body, but keeping the external
behavior! We want to improve readability, reduce complexity in
the process of generating the issue, and keep or even improve
the quality. Of course we also want to increase the readership.

We have seen that code smells and code refactoring is needed
in many projects. There are two general categories of benefits
that result from refactoring: maintainability and extensibility.
There are some techniques that allow you to do more abstrac-
tion, techniques for breaking code apart into more logical
pieces, and even techniques for improving the names and
location of code. Please take a look at this issue in which the
authors share their experience in this field with you.

By the time you have received this magazine, the Agile Testing

Days (www.agiletestingdays.com) will have just taken place. This
event is becoming an ever bigger success each year. Besides
putting together this issue of Agile Record, the last few weeks
have been very busy with preparations for the conference. We
not only had amazing speakers and attendees, but the best
program ever. Almost half of the conference is conceived as a
practical experience. We have early morning lean coffee and
the afternoons continue in a practical vein. We have open
space, testing and coding dojos, workshops, games, etc. and
the conference reflects the agile mindset! We hope to see you
again at next year’s conference.

We adopt the same concept for the Agile Dev Practices. We are
just about to finish preparing the program, so please keep tuned
and take a look at the program on www.agiledevpractices.com

at the end of November. Expect to see many inspiring sessions
with gurus from the field of agile development practices. We
will rock the market once again. Save the dates and start to
allocate the required budget!

I am very proud to inform you about our newest software-related
event in the heart of Europe – Mobile App Europe. This confer-
ence applies innovative knowledge to mobile app management,
marketing, design, development, and testing, and takes place
on June 16–18, 2014 in Potsdam, Germany. If you are a pas-
sionate mobile app expert, don’t miss this chance to become
an active part of the conference and submit your speaker
proposal by December 31, 2013 at www.mobileappeurope.com.

Last but not least, I wish you and your family a great end to
the year and, if you celebrate Christmas, have a very Merry
Christmas and a Happy New Year 2014.

All the best! Enjoy the read.

Cheers,
José Díaz

http://www.agiletestingdays.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Editorial+ATD+URL
http://www.agiledevpractices.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Editorial+ADP+URL
http://www.mobileappeurope.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Editorial+MAE+URL

Page 2 Agile Record – www.agilerecord.com

Contents

Editorial .. 1

Editorial Board ... 3

COLUMN: Refactoring and Technical Debt: It’s Not a
Choice, It’s a Responsibility .. 7
by Robert Galen

Three Main Business Cases for Refactoring 12
by Larry Apke

Big-Data, Cloud and Mobility Are Coming! 14
by Alon Linetzki

Distributed Agile – Pointless or Possible? 16
by Julie Calboutin & Helmut Holst

Refactoring – to Sustain Application Development
Success in Agile Environments .. 21
by Narayana Maruvada

How to Test Refactoring .. 25
by Jeroen Mengerink

Refactoring – “To Be or Not to Be” 27
by Rashmi Wadhawan

COLUMN: Refactoring or the Prevention of … 29
by Daniël Wiersma

How Agile Methods Help Supermassive Games Deal
with the Rapid Pace of Game Development 31
by Jonathan Amor

Stumbling Blocks .. 33
by Gurpreet Singh

Risk Management in an Agile Way 35
by Edwin van Loon

COLUMN: Agile Architecture Engineering: Dynamic Incre-
mental Design Selection and Validation.......................... 37
by Tom Gilb & Kai Gilb

Automated Blackbox Testing of New Age Websites 41
by Nilay Coşkun

Refactoring to Combinators .. 43
by Carlos Blé

Build Your Immune System and Maintain
a Healthy Codebase .. 46
by Augusto Evangelisti

Reuse of Unit Test Artifacts – Allow Us to Dream 49
by Yaron Tsubery & Dani Almog

COLUMN: By the way … ... 53
by Tanja Schmitz-Remberg & Werner Lieblang

Three Tips for Test Refactoring... 54
by Gil Zilberfeld

Business First, Not Test First: How to Create
Business Value from Acceptance Tests 57
by Dr. Chaehan So

Explorative C# Web Scripting Using scriptcs and
FluentAutomation.. 60
by Vagif Abilov

Ensuring Sustainable Quality of the Product in an Agile
Environment with Automated Test Generation 65
by Anahit Asatryan

Refactoring Your Best Asset – Your People –
Through Mentoring .. 67
by Peter Saddington

Writing Testable Use Cases Using Enterprise Architect .. 70
by Sander Hoogendoorn

Masthead ... 76

Picture Credits ... 76

Index of Advertisers .. 76

Page 3 Agile Record – www.agilerecord.com

Editorial Board

With over 14 years of experi-

ence in IT, Plamen Balkanski

comes from software devel-

opment background and has

worked in agile, Scrum/XP

and Kanban/Lean environ-

ments. He has been involved in co-organizing

events for the Agile South Coast User Group

and ScrumFest.org. He is passionate about

helping teams, individuals and companies

discover how to work better together and how

to continue learning while delivering high

quality solutions to business problems.

Plamen Balkanski

During his career, Matt Block

has played the role of devel-

oper, development manager,

and product manager. He has

learned what development

practices and processes are

critical to the success of agile and how to

drive that adoption process. He has learned

just how critical and how difficult the Product

Owner role is in enabling the business to

realize the full potential agile can bring. Learn

more at www.developmentblock.com.

Matt Block

Pat Guariglia is an agile coach

for Elegant Agile, Inc. He is

certified as a PMP with the

Project Management Insti-

tute, a Certified Scrum Prac-

titioner (CSP) and Certified

Scrum Master (CSM) with the Scrum Alliance.

Pat has been leading information technology

projects and coaching agile teams for the

last twelve years. Pat continues to champion

agile practices and Scrum in the Upstate New

York and New York City areas. He speaks at

conferences, seminars and holds workshops

across the Northeast and worldwide. Pat

contributes articles to the ScrumAlliance.org

web site, is the organizer for the Upstate New

York Agile User Group, and participates in

the organization and networking of regional

northeast US agile groups.

Pat Guariglia

Roy Maines graduated Cum

Laude from Chapman Univer-

sity with a BS Degree in Com-

puter Information Systems.

With over 30 years’ experi-

ence in the IT technology

field, Mr. Maines has an extensive back-

ground in multiple disciplines in Technical

Project Management. Mr. Maines is a certi-

fied Project Management Professional (PMP),

Certified Scrum Master (CSM) and Certified

Scrum Professional (CSP). Mr. Maines has

broad experience supporting the full SDLC

engineering efforts, Test & Evaluation, Formal

Information Assurance Certification efforts.

Mr. Maines has held various technical and

Project Management positions with a number

of fortune 500 companies including Micro-

soft Corp, Perot Systems, Wachovia Bank NA,

and Mantech Systems Engineering Corp. Mr.

Maines diverse experiences enable system-

atic analysis and troubleshooting of large

scale technical issues and management of

key business metrics.

Roy Maines

Andreas Ebbert-Karroum

leads the Agile Software Fac-

tory (ASF) at codecentric. For

more than four years, he has

been a certified ScrumMas-

ter. Since then he has been

able to contribute his competences in small

and large (> 300 people), internal and exter-

nal, or local and global projects as a devel-

oper, ScrumMaster or product owner. He is

also a Professional Developer Scrum Trainer,

conducting a hands-on training for Scrum

team members, which codecentric has de-

veloped together with scrum.org and in which

he shares with joy the knowledge gained in

the ASF. More than 15 years ago, his interest

in JavaSE/EE awakened and it has never

vanished since then. His focus at codecentric

is the continuous improvement of the devel-

opment process in the Agile Software Fac-

tory, where technical, organizational and

social possibilities are the challenging, ex-

ternal determining factors.

Andreas Ebbert-Karroum

Ciaran Kennedy (MSc Technol-

ogy Management, CSM, CSP)

hails from Dublin and has a

huge passion for Technology

and all things agile. He found-

ed Scrum Ireland (www.

scrum.ie), a leading and free social network

dedicated to agile IT professionals across

the globe. With many leading companies and

individual members including Mike Cohn and

Jeff Sutherland, Scrum Ireland is growing fast

in the community. During the day Ciaran runs

his own Agile Company, Chillistore Technolo-

gies Ltd. (www.chillitech.ie), providing Agile

Office Services to leading blue chip and high

tech innovative start-ups. He also does some

part time lecturing on Agile Project Manage-

ment in his spare time and has been a guest

speaker at PMI and Engineer Ireland events.

Ciaran Kennedy

Arjan Brands has acted as a

test and quality management

consultant since 1996. His

focus is on process and strat-

egy issues related to testing.

As author of TPI Automotive

(test process improvement) and test consul-

tant for several branches and companies,

Arjan has very broad experience in test man-

agement, test process improvement and

other quality related themes. Arjan is cur-

rently working as a team lead “Agility and

Quality” and as a managing consultant for

Díaz & Hilterscheid Unternehmensberatung

GmbH (Germany), focusing on agile transition

and testing activities in agile projects. He is

also one of D&H’s trainer for different pro-

grams (CAT, ISTQB and IREB).

Arjan Brands

Page 4 Agile Record – www.agilerecord.com

Steve Rogalsky gets a thrill

out of solving problems,

working with teams, and help-

ing people learn and improve.

He applies this to software

development using lean and

agile techniques as a process hacker, coach,

analyst, tester, developer, speaker, and agile

advocate. He blogs at winnipegagilist.

blogspot.com and works at protegra.com.

Steve Rogalsky

Zuzanna Sochova is a leader

of the Czech agile community

Agile Association – AgilniAso-

ciace.com, organizing confer-

ences and events and shar-

ing the agile experience all

around. She works as a trainer, consultant

and coach for software organizations, sup-

ports them in tailoring their agile adoption

processes to company culture (agile-scrum.

com). She regularly speaks at international

agile conferences. She is Managing Director

of LOTOFIDEA.

Zuzanna Sochova

Declan Whelan is an agile

coach at LeanIntuit where he

helps organizations improve

value delivery through agile

and lean methods. He is a

cofounder and CTO at Prin-

tchomp where they are disrupting the print

industry by building a realtime marketplace

for printing. Declan is also a board member

at the Agile Alliance.

Declan Whelan

Maik Nogens works as a test-

ing consultant with Díaz &

Hilterscheid, where he fo-

cuses on the agile aspects of

testing. As part of his pas-

sion to support the profes-

sion of testers and testing, he is very active

in many peer and community setups. Maik

is a co-founder of two international peer net-

works, GATE (German Agile Testing and Ex-

ploratory Workshop) and PotsLightning (the

pre-Agile Testing Days event held in Pots-

dam). In his hometown Hamburg he moder-

ates the STUGHH (Software Test Usergroup

Hamburg) and also leads the special interest

group “Agility” for the ASQF organization in

Germany. He is a black belt in the Miagi-Do

School of Software Testing, attended the

BBST foundation course, is a practicing CAT

(Certified Agile Tester) trainer, conducts Test-

ing Dojos and runs workshops for Kanban,

SCRUM and other agile areas.

Maik Nogens

Editorial Board

Build your agile team with the

This 2-day course is an introduction for anyone who
wants to learn the fundamentals of agile processes and
take the � rst step into the world of agile. This course
was created for developers, testers, analysts, project
managers, engineers, IT directors and everyone else
working in an agile environment.

English, German2 days

1,198 € incl. exam

Booking and more information:
training.diazhilterscheid.com

 certi� cations.

http://www.diazhilterscheid.de/en/courses.php?id=332&utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=CAE

This pragmatic, soft skills-focused, industry-supported
4-day course (plus 1-day exam) was designed espe-
cially for advanced software testers, developers and
everyone else working in testing-related projects. The
� fth day consists of the practical assessment and the
written exam.

English, German5 days

2,500 € incl. exam

Díaz & Hilterscheid GmbH / Kurfürstendamm 179 / 10707 Berlin / Germany
Tel: +49 30 747628-0 / Fax: +49 30 747628-99

www.diazhilterscheid.com training@diazhilterscheid.com

Build your agile team with the

 certi� cations.

http://www.diazhilterscheid.de/en/courses.php?id=313&utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=CAT

Page 7 Agile Record – www.agilerecord.com

Refactoring and Technical Debt:
It’s Not a Choice, It’s a Responsibility

by Robert Galen

Column

I was coaching a rather large
group of Scrum teams at an

email marketing SaaS firm.
The group was relatively
mature and had been
practicing Scrum for over
4 years. Over the years,

though, the organization
had embraced Agile principles

and was well on its way to be-
coming a high-performance agile

organization. Most of my efforts were
towards “fine-tuning” from the perspective of

an “external set of eyes”. It was a privilege working with this
organization and its development teams.

But, as with anything in life, there were always challenges and
room for improvement. I remember attending a noteworthy
backlog maintenance meeting with one of the teams. This
particular team was incredibly strong, so I was simply attend-
ing to check on how well they were grooming. To be honest, I
was hoping to share some lessons from their approaches with
some of the less experienced teams.

Jon was one of the “lead engineers” on the team. He had been
a Scrum Master for a while, so his agile chops were mature
and balanced. However, I was surprised when the following
happened:

Max, the Product Owner introduced a User Story for the
second time in maintenance. The team had already seen
it once and had realized two things:

1. It was bigger than a Sprint’s worth of work for the
team (call it an Epic or non-executable Story), and

2. They needed more information about the legacy code-
base surrounding implementing the story.

So they created a Research Spike that represented techni-
cal investigation into the story.

This session was the first time the team had got back
together after their “learning” from the Spike. Jon had

taken the lead on the Spike, working with two other team
members.

He went over the implications from a legacy code base
perspective. Jon started the discussion. He and his small
team recommended that they split the Epic into three
sprint-digestible chunks for execution. Two of them had
a dependency, so they needed to be worked in the same
Sprint. The other needed to be worked in the subsequent
Sprint in order to complete the original Epic.

Jon and his team had reviewed the legacy code base
and said, in order to do the work properly; it would take
a total of approximately 40 Story Points. However, he
pointed out that this might be perceived as excessive and
that approximately 25 of those points would be spent on
refactoring the older code base. The specific breakdown
was 18 points for the “new functionality” and 25 points
to refactor related legacy code.

The Product Owner excitedly opted for the 18 points and
deferring the refactoring bits. Jon and his small Spike team
wholeheartedly agreed and the entire team went along for
the ride. From a backlog perspective, the 18 points worth
of stories became high priority and the refactoring work
dropped to near the bottom of the list.

And the meeting ended with everyone being “happy” with
the results.

I decided not to say anything, but I left the room absolutely
deflated with this decision. It was opposed to everything we
had been championing at an agile leadership level. Clearly put,
we wanted the teams to be doing solid, high quality work that
they could be proud of. In fact, all of our Definition-of-Done and
Release Criteria surrounded those notions.

If the cost of this Epic was approximately 40 points to do it
“right”, then that was the cost – period. Splitting into the parts
you “agreed with” and the ones you “didn’t agree with” were
not really options. Sure, each team needed to make the case to
the Product Owner surrounding the “why” behind it, but it was
not a product-level decision; it was a team-based, quality-first

Page 8 Agile Record – www.agilerecord.com

decision. De-coupling the two broke our quality rules and that
decision would haunt us later as technical debt.

To close this story, I used my not-so-inconsequential influencing
capabilities to change this outcome. We decided that this Epic
was important enough to do properly and that the approximately
40-point cost was worth the customer value. In other words,
we made a congruent and sound business decision without
cutting corners. And the team fully appreciated this opportunity,
without second-guessing and guilt, to deliver a fully complete
feature that included the requisite refactoring to make it whole.

Now, I only hope they continue to handle “refactoring oppor-
tunities” the same way.

Refactoring Versus Technical Debt

Any discussion on refactoring has also to include the notion
of technical debt. The two are inextricably linked in the agile
space, meaning refactoring is a way of removing or reducing
the presence of technical debt. However, not all technical debt
is a direct refactoring candidate. What I mean by that is that
refactoring typically refers to software or code, while technical
debt can surface even in documentation or test cases. So it
can be a bit broader if you want to consider it in that context.

Broad Versus Narrow Consideration

Typically any discussion on refactoring is embedded in “the
code” – usually the application or component-level code in which
you are delivering your product. Sometimes, although much
more rarely, the discussion extends to supporting code such
as automation, build infrastructure, and supporting scripts.

I would like to make the coupling even stronger between tech-
nical debt and refactoring. To me, you refactor away technical
debt. You identify the debt and the effort to remove it is refac-

toring. Now code is a primary place for it, but I believe you can
and should refactor “other things”, for example:

 ■ The graphical design on the wall that no longer repre-
sents the design of your product;

 ■ The test case (manual, automated, or even exploratory
charter) that is no longer relevant given your products
behavior;

 ■ The wireframe that has iterated several times with the
code and is now out of date;

 ■ That wiki page that speaks to new team members on
how to build the application or other team-based docu-

mentation;

Call for Articles
Become an author for the Agile Record magazine and share
your knowlege and experience with other professionals from
the fi eld.

The next issue of Agile Record, on the topic of “Security Tes-
ting in an Agile Environment”, will be out in February 2013.
Get your articles in for review by December 15, 2013!

Show your full potential!

Find more information on our website at:
www.agilerecord.com

http://www.agilerecord.com/write.php?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=AR+CfA

Page 9 Agile Record – www.agilerecord.com

 ■ The test automation that the team broke during the last
Sprint and failed to fix;

 ■ The tooling that everyone uses to measure application
performance, but that needs an update;

 ■ The team measures on throughput that have not been
updated and no longer apply because the team moved
from Scrum to Kanban;

 ■ Or the current process a team is using for story estima-
tion that is not serving them very well.

Clearly I lean towards a broad-brush view to refactoring respon-
sibilities and connecting them to the various kinds of technical
debt. From my perspective, I’d recommend that you deal with
it as broadly as possible within your own contexts. But let’s
move beyond talking about refactoring and instead explore
some strategies for dealing with it.

Strategies

I have used a set of strategies quite effectively to combat
technical debt and inspire refactoring in several companies.
There is no succinct “silver bullet”. However, if you apply the
following with persistence, you will be well on your way to de-
livering more sound and robust products.

Stop Digging the Hole Any Deeper

Almost a no-brainer initial strategy is to “stop making your debt
worse”! This involves all new functionality. For every story that
you develop, you want to ensure that you do not make your
technical debt any worse. So, the initial story is very relevant
here. You want to hold the line on new work and make sure
you are “doing things right”.

While I was coaching at iContact, a trigger word in our team
discussions was “hack”. Whenever a team member spoke
about “hacking something together”, we knew that it would
be creating technical debt and need later refactoring. So we
worked incredibly hard to avoid “hacks”.

Fill in the Hole

Once you show the discipline to hold the line on new work, you
can then go back and start refactoring legacy crud that has
developed over time. This usually is a longer-term strategy in
many organizations and requires great persistence. It is also a
moving target to some degree, so patience is needed as well.

I like to engage the team in identifying refactoring targets. Avoid
the “we have to fix everything” syndrome and ask the team
for the highest priority refactoring targets by way of value – for
example, removing impediments to the development team’s
efficiency or capacity.

Broadly Attack Refactoring

Balance is a key in refactoring. Attack technical debt in all its
forms and do not necessarily focus on one component or type
of debt. You want to look at your entire codebase, tool-base,
script-base, documentation-base, etc. in your retrospectives

and select high-impact, high-return refactoring opportunities.
Then apply a bit of relentlessness in pursuing and improving
those areas.

Make the Business Case

Even though I talk about refactoring being an organizational
and team responsibility, it does not get supported by magic.
Teams need to identify (document) their refactoring work on
their Product Backlogs. The business case for each improve-
ment needs to be explored or explained, particularly if you are
going to get your Product Owner to support you.

So yes, it is a responsibility. But you need to put the rationale
and the ROI in clear business terms. Then “connect the dots”
back to the ROI after you have refactored the code, perhaps
discussing or showing improved implementation speed in a
Sprint Review.

Talk About the COST

Remember that refactoring often has a cost in time-to-market.
Bugs take longer to fix or cluster in ways that influence customer
confidence and usability. Maintainability is a strong factor in
being truly nimble and creative. At iContact we often selected
and justified our refactoring targets by how they would support
our future product roadmap and support faster implementa-
tion times.

Then, when we had completed the refactoring, we would look
back on those improvement estimates and speak to the reality
of the improvements – connecting the dots, if you will.

Don’t Attack Too Much at Once

One of the hardest things to do in many organizations, those
with debt-rich legacy systems, is to prioritize the technical debt.
There is so much and it is causing so much harm, that the
inclination is to try and fix it all at once. But nothing could be
more detrimental from a business perspective. As you would
handle anything on your backlog, prioritize it and systemati-
cally attack it.

Invest in Test Automation

I have often heard the notion that a value proposition of building
solid test automation is that it provides a “safety net” so that
the team can courageously refactor. The point is that if there
is little to no test automation, teams are reluctant-to-fearful to
refactor because of side effects and how hard it is to detect
(test for) them. I have found this to be incredibly true.

So a part of any refactoring effort should be focused on build-
ing test automation coverage. The two efforts strategically go
hand-in-hand.

Find Release Tempo Opportunities

Most agile teams today have multiple tempos: sprint tempo,
release or release train tempo, and calendar or external re-
lease tempo. You want to think about your various tempos and
perhaps find opportunities within them for a focus on technical
debt and refactoring. For example:

Page 10 Agile Record – www.agilerecord.com

Many SaaS product companies have downtime periods in the
calendar year when they do not necessarily want to release
new code to their clients. At iContact, our time was over the
Christmas holidays. From November to December each year
we needed to keep releases to a minimum while our custom-
ers focused on holiday revenue. Given that, we would plan
“Refactoring Sprints & Releases” over that period. Sometimes
we focused on product code, for example broad-brush defect
repairs and component or feature refactoring. Another season
we worked on our continuous deployment capabilities – focusing
on scripting, tools, and deployment automation.

It was a great way for us to make investments and not disrupt
our Product Roadmap plans.

Make it an Ongoing Investment

And the final strategic point is making it clear to everyone that
technical debt and refactoring are an ongoing challenge and
investment. They will not “go away”. Even if you are implement-
ing a greenfield project, you will be surprised how quickly you
gain refactoring debt. It is driven by the nature of software –
the customer needs change, technologies evolve and change,
and teams change. In other words, change happens, so simply
factor it into your strategic plans, roadmaps, and ongoing
product backlogs.

Wrapping Up

The sub-title for this article was: it’s not a choice, it’s a respon-
sibility. I hope the introductory story helped to crystalize that
point. But I would like to emphasize it even more now.

Stakeholders will rarely tell you where and when to refactor. In
fact, they typically hate the notion of refactoring, infrastructural
investment, ongoing maintenance, etc. Instead they usually
push their teams towards more and more new features. This
pressure is organizational and will seep into the product orga-
nization, each Product Owner, and their teams. However, just
because we are under pressure, it does not mean we need to
abdicate our responsibilities and blindly succumb to it.

Rather, we need to activate our craftsmanship, our professional-
ism, our responsibility for doing good work and our courage to
deliver that work. In other words, delivering software that will
stand the test of time, that will exceed our customers’ expecta-
tions, and that we can be proud of. All of that might sound trite
or too simplistic, but it is a core part of the principles behind
the Agile methods.

And, beyond simply words, each agile team and organization
needs to make its technical debt (risks) and its refactoring
efforts (investments) transparent. They need to become part
of the everyday discussion that teams, managers, and senior
leaders have as they transform their organizations towards agile
execution. Striking a transparent balance should be the goal.
And I strongly suspect that everyone’s “common sense and gut
feelings” will let him or her know when they have achieved it.

As always, thanks for listening,
Bob.

References

[1] Technical debt definition – http://en.wikipedia.org/wiki/

Technical_debt

[2] Managing Software Debt by Chris Sterling is a wonderful
book dedicated to all aspects of technical software debt.

[3] Here’s a link to an article/whitepaper I wrote on Techni-
cal Test Debt – a variant of technical debt that focuses
on the testing and automation aspects – http://www.rga-

len.com/presentation-download/articles-general-guidance/

Managing%20Technical%20Test%20Debt.pdf

[4] A recent perspective by Henrik Kniberg – http://blog.

crisp.se/2013/07/12/henrikkniberg/the-solution-to-tech-

nical-debt

[5] A fairly solid overview of technical debt with some
solid references – http://queue.acm.org/detail.

cfm?id=2168798

[6] Israel Gat of the Cutter Consortium has published sev-
eral papers with his views on measuring and the ROI of
Technical Debt. Searching for his works would be a good
investment. ■

Bob Galen

Bob Galen is President & Certified Scrum Coach

(CSC) at RGCG, LLC a technical consultancy fo-

cused towards increasing agility and pragmatism

within software projects and teams. He has over

30 years of experience as a software developer,

tester, project manager and leader. Bob regularly

consults, writes, and is a popular speaker on a wide variety of

software topics. He is also the author of the books: “Agile Reflec-

tions” and “Scrum Product Ownership”.

He can be reached at: bob@rgalen.com

Twitter: @bobgalen

> about the author

http://en.wikipedia.org/wiki/Technical_debt
http://en.wikipedia.org/wiki/Technical_debt
http://www.rgalen.com/presentation-download/articles-general-guidance/Managing%20Technical%20Test%20Debt.pdf
http://www.rgalen.com/presentation-download/articles-general-guidance/Managing%20Technical%20Test%20Debt.pdf
http://www.rgalen.com/presentation-download/articles-general-guidance/Managing%20Technical%20Test%20Debt.pdf
http://blog.crisp.se/2013/07/12/henrikkniberg/the-solution-to-technical-debt
http://blog.crisp.se/2013/07/12/henrikkniberg/the-solution-to-technical-debt
http://blog.crisp.se/2013/07/12/henrikkniberg/the-solution-to-technical-debt
http://queue.acm.org/detail.cfm?id=2168798
http://queue.acm.org/detail.cfm?id=2168798
mailto:bob@rgalen.com
https://twitter.com/bobgalen

Page 11 Agile Record – www.agilerecord.com

JUNE 16–18, 2014 IN
BERLIN/POTSDAM

www.mobileappeurope.com

Management

Marketing

Design

Development

Testing

Submit your proposal now
and become a speaker at
Mobile App Europe – the
conference for applying
innovative knowledge to the
mobile app life cycle process.

SHARE YOUR MOBILE
EXPERIENCE

http://www.mobileappeurope.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=MAE+CfP

Page 12 Agile Record – www.agilerecord.com

Chances are if you are reading this, you agree that refactoring
is a good thing. Odds are also good that you are working for a
company that does not see things the same way. When it comes
to the tactics of refactoring, I believe that you will often find a
great deal of agreement – identify the most complex code that
is enhanced often, write appropriate automated test coverage,
employ an appropriate refactoring strategy, and so on. And,
while you should be commended for your commitment, code
quality, and knowledge of how to improve, you will get nowhere
without having the support and funding necessary to achieve
your vision. This article will serve to explain why it’s crucial as
a business to refactor existing code and why it makes sense
to take care of it now rather than later.

This is not news, but business folks are funny about money.
They usually will not allow you to spend money unless you can
show them a definitive return on investment. This is the first
hurdle that makes refactoring a tough sell. While business
easily understands chasing the next feature or BSO (Bright
Shiny Object), they are less apt to understand shoring up fragile
code. I can imagine the conversation to be something like this:

Code Quality Enthusiast (CQE): “Please give me a chunk
of your precious budget so that I can improve our under-
lying code.”

Business: “OK. So what are you going to give me as far
as functionality?”

CQE: “There will not be any new functionality. I will
merely be making the existing code better.”

Business (from a distance, chasing the next BSO): “No,
thank you. I only have so much money and I have too
many new features to build.”

Sounds familiar?

Three Business Reasons for Refactoring

There are three main business reasons for refactoring existing
code. There are any number of books, blogs, and papers that
outline these, but I recently stumbled across a new PhD thesis
by Dan Sturtevant at MIT, entitled “Technical Debt in Large
Systems: Understanding the cost of software complexity”.
According to the thesis, he conducted the study within a suc-
cessful software firm, Iron Bridge Software, and measured the
architectural complexity of eight versions of their product. He
also measured the defect density, developer productivity and
staff turnover rate along with the eight versions. I feel that his
findings more than adequately demonstrates these key things:

 ■ Quality — complex code has been shown to contain
more defects and the chances of defects are greater
when enhancing complex code.

 ■ Productivity — developer productivity decreases with
code complexity.

 ■ Employee Morale — when developers are forced to work
with complex code, they tend to find less job satisfac-
tion and tend to leave companies in greater numbers

Quality

It is intuitive that the number of defects would be greater, the
more complex the code. Also intuitive is the fact that when
we have enhancements that force us to work with existing
code, we are more liable to inject defects. The question is not
really whether this is true, but to what extent does complexity
contribute to defects.

Sturtevant put some numbers to the obvious by using actual
code from a “successful” software company (which I expect
would be biased towards quality code, as most companies
are not into airing dirty laundry), and he found that there is
a 310 % increase in defect density as code moves from low
to high architectural complexity (as measured by dependent
classes). Also, there is a 260 % increase as code moves from
a low to high McCabe Cyclomatic Complexity (a measure of the
number of linearly independent paths – can also be thought of
as branches – through a program’s source code).

When the two measures of complexity are combined, as they
usually are for bad code, the effect is an 830 % increase in
defect density as you move from the simple to the complex.
These are sobering numbers. When it comes to defects, you
can “pay me now” or pay dearly later when you ship defective
code or spend a great deal of time fixing all the defects you
created by not writing clean code in the first place.

Productivity

It is also intuitive that working with complex code will be harder
than working with non-complex code. Has anyone ever been
on an excruciatingly long email chain just trying to figure out
where a problem is in some code, or maybe that “all hands on
deck” phone call that has dozens of people trying to assess a
defect all day long? I remember one particular issue that took
four different email chains, countless conference calls, and
one face-to-face meeting to simply diagnose the cause of a
defect. On one of these never ending email threads I counted
15 people, represented by 12 different managers who had sent
22 emails over a seven day period – and this was one of four

Three Main Business Cases for Refactoring
by Larry Apke

Page 13 Agile Record – www.agilerecord.com

such threads! (In addition to proving lowered productivity due to
complexity, it also proves lowered productivity due to siloing.)

I am sure that anyone in the software business has similar har-
rowing tales, but these are anecdotal. What hard numbers can
we put to the productivity that is lost through code complexity?
Again, Sturtevant provides us with an answer. There is a about
a 50 % decrease in productivity as you move from the simple
to the complex. In the end, I receive half as much productivity
for my money with complex code bases. As we move to more
agile processes, this explains some of the “failures” that
(mostly) large companies are experiencing. It is very difficult
to increase time-to-market when the complex code base bogs
our developers down.

Employee Morale

We all know it is not fun to have to work with bad code, but
how does this affect things like employee morale? In my opin-
ion this is the most sobering statistic of all. Sturtevant found
that when you move from a simple to complex code base, the
number of voluntary and involuntary employment terminations
increases ten times!

Sturtevant’s numbers do not explain why turnover happens with
bad code, they only show a correlation. My interpretation is this:
good software development companies know what it takes to
write good code. Therefore, since they know more about the
code itself, they also know about the people who do the coding
and they treat them accordingly. The places that have a lot of
complex code obviously either know very little about software
development, or lack the power to adhere to good software
development principles. Either way, they are not able to treat
their developers as they should be treated and their developers
vote with their feet by walking out the door.

Conclusion

In the end, trying to get management to understand the value
of refactoring and producing good code is a tough sell. I hope
that these numbers can help make a good business case for
aggressively refactoring complex code that is actively being
changed, especially since no matter what you do you will pay
the price. The question is – would you rather pay less today or
more tomorrow? ■

Larry Apke

Larry Apke has had over six years’ experience as

an Agile and Scrum Expert and as a highly ac-

complished visionary executive with a history of

technology leadership and innovation. He is a

results-oriented, decisive leader with proven suc-

cess in devising and implementing solutions that

deliver solid ROI for organizations in various industries, including

software, healthcare, and aviation. He has also had success with

building client relationships and establishing effective long-term

IT and operations strategies. He has worked with dozens of teams

and hundreds of team members helping transition them from a

phased-gate development approach to a more agile methodology.

During this time he has held many different titles but all of his

experience has been with Agile.

He is the President of Dr. Stork Software and has previously

worked with Harris Computer Systems as the Director of Software

Development, the Managing Partner for vicCio Group, the Software

Engineering Manager for the Apollo Group, the Scrum Master for

American Traffic Solutions, the Scrum Master & Project Manager

for Early Warning Services and as an Agile Expert for Neudesic.

Twitter: @Agile_Doctor

> about the author

https://twitter.com/Agile_Doctor

Page 14 Agile Record – www.agilerecord.com

If we look at the changes that technology brings us today, and at what organizations
have to deal with in their development teams, we witness big-data, cloud, and
mobility – which are the main factors for the complexity in many systems.

Those technologies, in combination with the Dev Ops approach, which is catching up
and evolving to include production in the scope of the basic development life cycle
process, introduce many challenges to the testing world.

This short article presents some of the trends and complexities coming our way that
demand attention and preparation in software testing, and so will be relevant and
add value.

Big-Data, Cloud and Mobility Are Coming!
by Alon Linetzki

What are we facing? In which areas should we
prepare?

Testers are no longer faced only with technical challenges, but
have to answer and bring solutions to extremely high complex
algorithms, data which is scattered throughout the world, legal
issues of data with regard to the privacy act (especially when
using cloud technology and distributed databases), and the
fact that our phones (especially Android versions) are facing
high challenges with regard to security and privacy.

In light of the above challenges, I believe testing has to change.
We will have to get closer to requirements in order for us to
add more value to the business, thereby introducing greater
and more robust test design, integrated with risk based testing
approaches, to leverage production. We will have to introduce
new tools to test things in the cloud, combining big data ele-
ments and legal elements. Elasticity, performance, and many
other things (e.g. security) have to be addressed in the testing
life cycle, in methods, and in processes and tools, including
the automation approach, and automation tools and platforms.

We will have to use more and more modeling techniques to
be able to introduce robust model-based testing into our au-
tomation, and to be able to do it fast and efficiently, as Agile
approaches are becoming more and more in demand and
common, and are starting to be implemented in corporates,
in addition to the technologies mentioned.

A pattern we are likely to see in multiple products is that a big
data cluster will be connected to the cloud, and end users will
retrieve data from it onto their laptops, tablets, and mobile
devices in a secure way. This will give us good performance
and reliable information. The information will arrive on time
(high speed) and will be location-based in many cases, or at
least relevant to our personal profile (as individuals).

The use of big data is already introducing complex algorithms
and new search engines to DBs (like graphical engines/DBs),
which present a challenge to test (e.g. how can we verify that
the data we got, which came from many DBs scattered in the
cloud, are the right ones for the question/query we have re-
quested). Securing this data over the air for mobile devices and
tablets will demand new approaches, tools, and mechanisms,
as well as higher speed from cellular operators, to be able to
open up the market to such application vendors.

In order to prepare for such challenges, we should be innovat-
ing new testing platforms (for automation), new tools (for cloud
and big data investigation), and new processes and methods
for developing test design using risk based testing as an inte-
grated part of our life cycle.

As testers, we accumulate a lot of data on testing, on defects,
on impacts, and many other important and critical items of
information. I believe we should start looking at BI (business
intelligence) tools for testing the data, so we will be able to
analyze it faster and with higher accuracy. That way, it should
be more immediately available to us and will enable us to
investigate trends over projects, over time, and across orga-
nizations. BI tools are implemented today in many other fields
and are used in many cases for the same scenarios I have just
mentioned. Ways of integrating BI tools to help testers and test
managers might be found very useful in years to come, and
enable us to cope not only with the complexity of technology
on the development side, but also to handle the enormous
amount of test data which is now being collected, and will
be coming in even greater amounts, when trying to solve the
testing challenges introduced in this article.

The cloud and other technologies also bring huge amounts of
data that we cannot (or will be not be able to) simulate in our
labs. If you combine that with the DevOps approach which is

Page 15 Agile Record – www.agilerecord.com

starting to catch up in the world, the result is that testing in
production is a trend which will be forced on us in order to
cope with the business demands. It will introduce tools and
mechanisms that have to be enhanced and developed, together
with code developed inside the production code to cope with
identifying those data elements as test elements in production.
We already have such patterns and mechanisms in production
for the credit card companies, as they have developed such
mechanisms for vendors who want to integrate their systems
into the credit card system, meaning things have to be tested
in real life scenarios. Today you can introduce a test-like credit
card into the credit card company’s production system and do
all activities on that card in order to test it.

Summary

Complex technologies and new development approaches that
are being enhanced and introduced to the market today will
greatly impact the testing methods, tools, processes, plat-
forms, and skills required.

We should pay careful attention to those trends and be proac-
tive in our training, and in innovating new tools, platforms, and
processes to support them. We should discuss this worldwide
in forums and discussion groups, involving the development
engineers to give us feedback, and being closer to the business
side so we can learn what our customers’ requirements are and

what solutions they need. This will enable us to develop and
enhance those areas and be ready on time to give an answer
to those challenges from the testing and quality side. ■

Alon Linetzki

Alon Linetzki, founder and managing director of

Best-Testing, has been a coach and consultant

in development, testing and quality assurance for

28 years.

Alon has been involved in supporting organiza-

tions to enhance the test engineer’s professional

and personal skills, training test managers in optimization and

test process improvement and optimizing their test operations,

increasing ROI.

Alon’s main domains of expertise are in Agile Testing and Transi-

tion to Agile, Exploratory Testing, Test Process Improvement and

Optimization, Risk-Based Testing and Test Automation.

He is a part of the ISTQB® authors and review team for the ISTQB®

Agile Tester Add-on certification, co-founded ISTQB® in Israel, leads

the ISTQB® Partner Program and has established the SIGiST Israel.

> about the author

http://www.testingexperience.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=TE

Page 16 Agile Record – www.agilerecord.com

1. Management Summary

Most of the significant challenges facing IT project management
span the well-known triad of time, cost and quality. Growing com-
plexity and increasingly integrated solutions in turn exacerbate
these challenges. In recent years, Agile approaches have often
been employed to meet these challenges. The core tenets of
Agile, however, include collocation and face-to-face collabora-
tion – so how can the seemingly contradictory models of Agile
and offshore be combined to deliver the best of both worlds?

Agile methodologies and variations on it have worked their way
into projects around the world and, from those projects, the sta-
tistics have started surfacing. According to Scott Ambler’s Agile
Adoption Strategies Survey 2011, collocated Agile projects are
as successful (34 %) as near-collocated ones (34.5 %), which in
turn are only very slightly more successful than those involving
far-collocated (including globally distributed) (32 %) (Ambler and
Gorans, November 2011). However, it is also becoming clear
that an Agile approach does have advantages over traditional
software development approaches. In fact, statistics show
that the percentage of failures is decreasing: 55 % of projects
recorded successes in 2010 while 63 % recorded successes
in 2011. (Ambler S. W., 2011 IT Project Success Rates Survey
Results, 2011)

Companies manage to work around the limitations of geo-
graphical space and time and, although they recognise that
face-to-face collocation and collaboration is still the number-
one choice and most effective method of working, the overall
benefits of reduced costs and the ‘follow-the-sun’ working
hours approach associated with distributed Agile methodology
seem to be paying off.

SQS has been involved in a large number of Agile projects,
many of which have been successful in combining offshoring
with Agile practices. This white paper will present a number
of the lessons learned from these engagements and share
some of the practices which have led to successful offshoring
within an Agile model.

2. Distributed Agile

2.1 Common Challenges

The most common challenges distributed teams (Agile or tra-
ditional) generally face are the following:

 ■ Time zones and working hours

 ■ Cultural and language differences

 ■ Availability and access to tools

 ■ File sharing

 ■ Team dynamics

 ■ Telephone dynamics

All these challenges are important to establishing the single
element that is an essential ingredient for an efficient and
successful project team: trust. Therefore, almost all of these
challenges can be mitigated either partially or completely by
mastering the greatest challenge of all: communication. As
already discussed, co-located teams have the highest rate of
success, but why?

 ■ They communicate face to face
Pros:

 ò Highest collaboration level

 ò Richest communication level

 ò No loss of non-verbal communication

 ò Promotes self-organisation of the team

 ò Permanent participation of the entire team

Cons:

 ò Requires a collocated team

 ■ They obtain instant feedback from team members

 ■ They benefit from communication fidelity — the degree
of accuracy between the meaning intended and the
meaning interpreted (Petersen, 2007):

 ò 55 % of the meaning is conveyed by physical body
language,

 ò 38 % is conveyed by culture-specific voice tonality,
and

 ò Only 7 % of the meaning is conveyed by words.

Much of the focus around communication and working side by
side is about building trust.

2.2 Practical Guide to Succeeding in Distributed Agile
Teams

2.2.1 Communication solutions

This section covers the basic suggestions of how to overcome
the communication challenges faced by a distributed Agile
team. Although these are rather general suggestions, it should

Distributed Agile
Pointless or Possible?
by Julie Calboutin & Helmut Holst

Page 17 Agile Record – www.agilerecord.com

be noted that implementing the appropriate communication
model is absolutely critical to the success of a distributed
Agile approach, given the nature of the iterative and continu-
ous feedback approach that is the core of the methodology.

 ■ Establish a synchronisation and communication plan:

 ò Define how the client, local team, and distributed
teams will communicate and maintain synchronisa-
tion

 ò Define daily and distributed stand-ups, retrospectives
and sprint review time

East Coast Work Day

Denver Work Day

Moscow Work Day

West Coast Work Day

Ireland Work Day

11 AM

9 AM

8 AM

4 PM

7 PM

Daily Scrum
across team Rules:

Daily Scrum time is
mandatory

Offsite team members
�ex as necessary

Meetings indexed to
onsite team

Core hours
expectation support
scheduling of online
meeting

Figure 1. (Source: http://scalingsoftwareagilityblog.com/wp-content/
uploads/2007/12/daily-scrum.gif)

 ■ Use interactive communication software with a voice
layer to assist in keeping all parties across distributed
teams engaged, as well as being able to ask and answer
questions easily. Also, talking is more efficient than
typing – you can use hands-free headphones and web
cameras to facilitate voice communication.

 ■ Use interactive communication software with screen
sharing capabilities for up-skilling and troubleshooting
so a visual relationship can be established which helps
to improve trust.

 ■ Establish a central repository for project information
which is permanently available to all team members and
remains current, particularly for distributed teams that
do not have a large time zone overlap. Ensure some sort
of versioning is in place for project documentation in
shared locations:

 ò Shared drive.

 ò Document management tools.

 ■ Establish centralised wikis and discussion forums
(knowledge base):

 ò They allow dispersed team members to post ques-
tions and receive answers quickly from team experts

No. 25 “Crowd Testing”
Publication: March 2014
Deadline for article submissions: January 15, 2014

Submit your article for our next issue and share your experiences
and knowledge with your peers.

Become an author for
Testing Experience!

More information at:

write.testingexperience.com

http://scalingsoftwareagilityblog.com/wp-content/uploads/2007/12/daily-scrum.gif
http://scalingsoftwareagilityblog.com/wp-content/uploads/2007/12/daily-scrum.gif
http://www.testingexperience.com/write.html/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=TE+CfA

Page 18 Agile Record – www.agilerecord.com

anywhere in the world; posts should be a searchable
information source.

 ■ Use a teleconference facility. If you are not using web
cameras, try to introduce yourself each time before you
start speaking until everyone recognizes each other’s
voices:

 ò It is ideal for distributed teams with overlapping
hours.

 ò It provides a backup for collocated teams.

 ò It allows team members to interact directly.

 ò It allows permanent participation of the entire team.

 ò It enables blockers to be discussed and removed
them immediately.

 ■ Use a videoconference facility:

 ò It potentially enriches the communication experience.

 ò It allows team members to interact directly.

 ò It helps turn names into people.

 ■ Use enterprise tools (Quality Center, Communicator,
TeamForge, POD):

 ò Breeding synergy, transparency, productivity, and
trust increases efficiencies across projects and
organisations.

 ò When a tester updates an artefact, that update
triggers a monitoring event which sends an email to
everyone monitoring that artefact.

 ■ Account for language differences:

 ò Keep sentences simple and concise and use com-
mon words – do not get creative by using the most
obscure words in the dictionary. Develop a common
low-level vocabulary where you understand one anoth-
er and build from there.
Remember: in US English, someone who is ‘blue’ is
sad – in German, ‘blue’ is ‘blau’, and someone who is
‘blau’ is drunk.

 ■ Give everyone a chance to speak:

 ò The language barrier can make it more difficult for
non-native speakers to step into the conversation
and supplement other team members’ ideas – Jean-
Louis Marechaux shares his technique for engaging
everyone on the team:
“I usually facilitate the sharing of ideas by calling on
each person to give them a chance to speak and to
make sure each person’s contribution is captured.
This is even more valuable when some team mem-
bers speak a first language other than the one used in
the meeting. The pause gives them time to translate
their thoughts into words and to contribute to the
conversation.”

 ò This also ensures that anyone using teleconference
facilities does not get left out.

 ■ Confirm what team members understand:

 ò Ask leading questions or have members summarise
in their own words to confirm their understanding is
correct; typically, while one person summarises, oth-
ers can quickly determine if their own understanding
was correct or ask additional questions to clarify.

 ■ Use a solid, proven distributed development environ-
ment

 ò In order to enable the team to focus on the communi-
cation challenges discussed above, it is critical that
shared, distributed access to code, environments,
data, and tools is established and working well. This
means that from both a latency and access perspec-
tive the environments are fully available and proven.

 ■ Initially execute three to four sprints with the entire
team at the local site:

 ò It is advisable to have the offshore team travel to
the onshore base site for a period of time and work
together with the onshore team in order to prove the
operating model before taking it offshore.

 ò It will at least take three to four sprints of two weeks
each to build relations.

 ò Use the time to define norms together, as well as set-
ting up frameworks, initial architecture, and design.

 ò This enables the distributed team to build a relation-
ship with the client, and business processes and
requirements are explained.

 ■ Meet face to face to build trust:

 ò Budget in recurring face-to-face meetings between
the client, local team, and distributed team.

 ò Shorter than the initial visit but should be more or
less regular: e.g. a one-week trip every six months.

 ò Plan for potential visits of key people when a signifi-
cant change is planned, like a new system design or
a major refactoring.

 ■ Establish a shared project vision:

 ò Participation in this activity by the whole team em-
phasises ownership of the project results.

 ■ Establish a rigorous norming and chartering plan to
achieve high quality:

 ò Determine a set of activities the team will perform to
ensure and maintain high-quality software.

 ò Define a consensus-based design, coding standards,
code reviews, Scrum-of-Scrums, pair programming, a
source control philosophy, a defect tracking mecha-
nism, and define ‘ready’ and ‘done’.

Page 19 Agile Record – www.agilerecord.com

 ■ Use short sprints:

 ò Short iterations ensure visibility of the distributed
team’s activities, and feedback can be given as
quickly as possible.

 ■ Employ a Scrum Master at all locations:

 ò Most impediments will need to be addressed within
the context and environment of each sub-team.

 ò It is critical that the SM acts as an active coach for
the entire team to embed the practices needed to
support distributed Agile.

 ■ Involve the entire team in the release planning, iteration
planning, review, and retrospectives.

 ■ Use multiple clocks showing different time zones on the
wall.

 ■ Know about local holidays for all of the distributed team
members.

 ■ Work with an offshore provider with a proven retention
track record. The Agile delivery will be fundamentally
undermined if the offshore personnel are regularly
changing.

 ■ Stick photos of the offshore team on the wall of the
onshore office (and vice versa).

 ■ Share social stories/updates from events.

2.2.2 Onsite coordinator

One of the methods to improve quality of communications with
the offshore team is to have a dedicated person to coordinate
and oversee its activities from onsite. This role is there to en-
sure the communication flow, act as liaison between the teams,
and often interpret information from local to offshore languages.
Even if both sides speak English fluently (e.g. outsourcing to
India) there are lots of subtle differences in business lingo that
need translation. Add to it logistical challenges – this person
typically ends up working long, odd hours – and you realize that
it is not an easy task to find some who can do it (Krym). The
onsite coordinator must be briefed by and work closely with
the product owner and will find the following characteristics
and skills very useful:

 ■ Open-mindedness to absorb domain and business
knowledge quickly.

 ■ Excellent communication skills.

 ■ Accessibility to the distributed team to discuss business
processes.

 ■ Ability to assemble a training and knowledge transfer
manual for possible distributed on-boarding.

2.2.3 Practical tools advice

Distributed project planning tools are well developed to support
asynchronous Agile operation.

However, the following restrictions apply:

1. Multi-cultural aspects and languages are generally not
supported; English is the dominant language.

2. Data exchange between Agile planning tools and MS
project is problematic.

3. Existing tools hardly maintain synchronous Agile planning
meetings.

According to Xin Wang, an analysis of existing tools shows that
nearly all of them focus on and support asynchronous features
such as progress tracking and card management. The next
step will need to support synchronous project planning meet-
ings, setting up ubiquitous project planning environments, and
enabling data exchange between different Agile tools and/or
with non-Agile planning tools.

2.3 Case Study and Personal Experience

One offshore Agile project which has now been running for
three years enjoys fairly mature processes. Key to the success
of this project – as has already been indicated above – are
communication and tools.

The following factors have helped the project to succeed:

1. Daily stand-ups both in the UK and US, followed by a
smaller stand-up with a smaller group of UK and US
project leads.

2. An online Agile project management tool (Rally) to man-
age and track tasks and defect management.

3. Extensive use of Skype features like Group Chat, which
keeps everyone in the loop.

4. Stories, requirements/acceptance criteria defined and
agreed in advance of planning.

5. Clear and unambiguous acceptance criteria such as
Given, When, Then.

6. Consistent sprint schedules (2 weeks) proved most pro-
ductive.

7. Three-way (BA, Development, Tester) discussions and
meetings on stories.

8. A daily defect management meeting to discuss and triage
defects.

9. In some cases, flying developers/testers over to be in
one place for release planning/pre-releases proved effec-
tive.

Due to experience with complex functionality where rework was
required, our challenge is to get the functionality right the first
time round. In order to address this issue, we are increasing
end user involvement in sessions with business analysts.

Page 20 Agile Record – www.agilerecord.com

3. Conclusion and Outlook

“Action is the foundational key to all success.”
– Pablo Picasso

SQS experience of offshore Agile delivery has taught us the
following:

 ■ The reality is that working with distributed teams can be
a nightmare if badly structured. The challenges increase
as the type of distribution spreads from collocated, to
distributed with overlapping working hours, to distrib-
uted with no overlap in working hours.

 ■ One important key to success as a distributed team is
to ensure a high commitment level from all team mem-
bers, and the best way to achieve this is to give them
ownership over how they will work.

 ■ Retrospectives help teams evaluate whether communi-
cation is working for them, as well as being responsive
to their stakeholders’ needs.

 ■ Teams should feel continually free to adjust any of the
approaches and solutions to better suit their needs.

 ■ Tight collaboration and coordination is imperative.

 ■ Tools are critical, but they are not the only answer – hav-
ing good processes in place is indispensable.

 ■ Technology will help overcome most obstacles, therefore
code review, wikis, discussion forums, bug tracking,
requirements tracking, and continuous integration are
essential.

 ■ An integrated platform to support synergies, transparen-
cy, productivity, and trust increases efficiencies across
projects.

Bibliographical References

[1] Ambler, S. (n.d.). Dr. Dobb’s. Retrieved 2012, from
www.ddj.com/architect/200001986

[2] Ambler, S. W. (n.d.). Retrieved from www.ambysoft.com/

scottAmbler.html

[3] Ambler, S. W. (2011, 10). 2011 IT Project Success

Rates Survey Results. Retrieved 01 04, 2013, from
www.ambysoft.com/surveys/success2011.html

[4] Beck, K. (n.d.). Agile Manifesto. Retrieved from agile-

manifesto.org/history.html

[5] Highsmith, J. (n.d.). Agile Manifesto. Retrieved from
agilemanifesto.org/history.html

[6] Klocwork. (n.d.). Retrieved from www.klocwork.com/

blog/2010/02/agile-adoption-an-update/

[7] Krym, N. (n.d.). The Myth of the Onsite Coordinator.
Retrieved from Pragmatic Outsourcing: pragmaticout-

sourcing.com/2008/11/20/the-myth-of-the-onsite-

coordinator/

[8] Mthembu, N. (2012, 10 03). My experience working in a

distributed Agile project. South Africa.

[9] Petersen, G. (2007, 10 18). Mythos: 93% der Kommuni-

kation ist nonverbal – My Skills. Retrieved 01 08, 2013,
from blog.my-skills.com/2007/10/18/mythos-93-der-

kommunikation-ist-nonverbal.html

[10] Scott W. Ambler + Associates. (2008, 06). Agile Adop-

tion Rate Survey Results: February 2008. Retrieved 01
08, 2013, from www.ambysoft.com/surveys/agileFebru-

ary2008.html

[11] VersionOne. (n.d.). Retrieved from www.versionone.com

[12] Wikipedia. (n.d.). Retrieved from www.google.

co.za/url?url=http://en.wikipedia.org/wiki/Self-

organised&rct=j&sa=X&ei=13liUI_pHpSLhQeI-

toGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=A

FQjCNGA5TlzKfNjgIPjheIgclKklEv16Q

[13] Wikipedia. (n.d.). Retrieved from en.wikipedia.org/wiki/

Scrum_(development)

[14] Xin Wang, F. M. (n.d.). Retrieved from ebe.cpsc.ucalgary.

ca/uploads/Publications/Wangetal2010.pdf ■

Julie Calboutin

Julie Calboutin has a degree in computer science

and physics and has been a consultant at SQS

South Africa since 2006. She has 17 years of

experience in software development and testing.

Julie has successfully delivered complex systems

across multiple industries in various countries

across Europe as well as in South Africa. Julie is a Certified Agile

Tester and South Africa’s second Certified Agile Tester Trainer.

Julie’s primary responsibilities include test management, consul-

tant coaching, and delivery assurance. This is backed up with the

ISTQB Advanced Test Manager certification.

Helmut Holst

Helmut Holst has a degree in German language,

history and political science from the University

of Lüneburg and has been a senior consultant

for SQS for 6 years. During his time in the research

and development group he has been instrumen-

tal in developing the learning zone modules for

methodology PractiQ. His achievement has been the development

of a malaria data base for Africa under medical council. He is

fully bilingual and travels professionally between Europe and Af-

rica. His practical experience includes banking, shipping, real

estate, and telecommunication. Helmut is a contributing member

of the Test Management, Managed Serviced, Offshore, Global

Delivery Model, Automation, Agile, and the SAP innovation groups.

> about the authors

http://www.ddj.com/architect/200001986
http://www.ambysoft.com/scottAmbler.html
http://www.ambysoft.com/scottAmbler.html
http://www.ambysoft.com/surveys/success2011.html
http://agilemanifesto.org/history.html
http://agilemanifesto.org/history.html
http://agilemanifesto.org/history.html
http://www.klocwork.com/blog/2010/02/agile-adoption-an-update/
http://www.klocwork.com/blog/2010/02/agile-adoption-an-update/
http://pragmaticoutsourcing.com/2008/11/20/the-myth-of-the-onsite-coordinator/
http://pragmaticoutsourcing.com/2008/11/20/the-myth-of-the-onsite-coordinator/
http://pragmaticoutsourcing.com/2008/11/20/the-myth-of-the-onsite-coordinator/
http://blog.my-skills.com/2007/10/18/mythos-93-der-kommunikation-ist-nonverbal.html
http://blog.my-skills.com/2007/10/18/mythos-93-der-kommunikation-ist-nonverbal.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.versionone.com
http://www.google.co.za/url?url=http://en.wikipedia.org/wiki/Self-organised&rct=j&sa=X&ei=13liUI_pHpSLhQeItoGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=AFQjCNGA5TlzKfNjgIPjheIgclKklEv16Q
http://www.google.co.za/url?url=http://en.wikipedia.org/wiki/Self-organised&rct=j&sa=X&ei=13liUI_pHpSLhQeItoGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=AFQjCNGA5TlzKfNjgIPjheIgclKklEv16Q
http://www.google.co.za/url?url=http://en.wikipedia.org/wiki/Self-organised&rct=j&sa=X&ei=13liUI_pHpSLhQeItoGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=AFQjCNGA5TlzKfNjgIPjheIgclKklEv16Q
http://www.google.co.za/url?url=http://en.wikipedia.org/wiki/Self-organised&rct=j&sa=X&ei=13liUI_pHpSLhQeItoGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=AFQjCNGA5TlzKfNjgIPjheIgclKklEv16Q
http://www.google.co.za/url?url=http://en.wikipedia.org/wiki/Self-organised&rct=j&sa=X&ei=13liUI_pHpSLhQeItoGwCQ&ved=0CDEQngkwAA&q=self+organised&usg=AFQjCNGA5TlzKfNjgIPjheIgclKklEv16Q
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)
http://ebe.cpsc.ucalgary.ca/uploads/Publications/Wangetal2010.pdf
http://ebe.cpsc.ucalgary.ca/uploads/Publications/Wangetal2010.pdf

Page 21 Agile Record – www.agilerecord.com

The term “refactoring” was originally coined by Martin Fowler
and Kent Beck which refers to “a change made to the internal
structure of software to make it easier to understand and
cheaper to modify without altering its actual observable behav-
ior i.e. it is a disciplined way to clean up code that minimizes
the chances of introducing bugs and also enables the code to
be evolved slowly over time and facilitates taking an iterative
and incremental approach to programming and/or design”.
Importantly, the underlying objective behind refactoring is to
give thoughtful consideration and improve some of the es-
sential non-functional attributes of the software. So, to achieve
this, the technique has been broadly classified into following
major categories:

Technique Description

1 Code Refactoring (clean-
up)

It is intended to remove the unused code,
methods, variables etc. which are misleading.

2 Code Standard Refactoring It is done to achieve quality code.

3 Database Refactoring
(clean-up)

Just like code refactoring, it is intended to clean
or remove the unnecessary and redundant data
without changing the architecture.

4 Database schema and
design Refactoring

This includes enhancing the database schema
by leaving the actual fields required by the
application.

5 User-Interface Refactoring It is intended to change the UI without affecting
the underlying functionality.

6 Architecture Refactoring It is done to achieve modularization at the
application level.

Refactoring is actually a simple technique where you make struc-

tural changes to the code in small, independent and safe steps,
and test the code after each of these steps just to ensure that
you have not changed the behavior – i.e. the code still works
the same, but just looks different. Nevertheless, refactoring
is intended to fill in some short-cuts, eliminate duplication and
dead code, and help ensure the design and logic have been
made very clear. Further, it is equally important to understand
that, although refactoring is driven by certain good characteris-
tics and shares some common attributes with debugging and/
or optimization, etc., it is actually different because

 ■ Refactoring is not all about fixing any bugs.

 ■ Again, optimization is not refactoring at all.

 ■ Likewise, revisiting and/or tightening up error handling
code is not refactoring.

 ■ Adding any defensive code is also not considered to be
refactoring.

 ■ Importantly, tweaking the code to make it more testable

is also not refactoring.

Refactoring Activities – Conceptualized

The refactoring process generally consists of a number of
distinct activities which are dealt with in chronological order:

 ■ Firstly, identify where the software should be refactored,
i.e. figure out the code smell areas in the software which
might increase the risk of failures or bugs.

 ■ Next, determine what refactoring should be applied to
the identified places based on the list identified.

 ■ Guarantee that the applied refactoring preserves the
behavior of the software. This is the crucial step in
which, based on the type of software such as real-time,
embedded and safety-critical, measures have to be
taken to preserve their behavior prior to subjecting them
to refactoring.

 ■ Apply the appropriate refactoring technique.

 ■ Assess the effect of the refactoring on the quality
characteristics of the software, e.g. complexity, under-

standability and maintainability, and of the process, e.g.
productivity, cost and effort.

 ■ Ensure the requisite consistency is maintained between
the refactored program code and other software arti-
facts.

Refactoring Steps – Application/System
Perspective

The points below clearly summarize the important steps to be
adhered to when refactoring an application:

1. Firstly, formulate the unit test cases for the application/

system – the unit test cases should be developed in such
a way that they test the application behavior and ensure
that this behavior remains intact even after every cycle of
refactoring.

2. Identify the approach to the task for refactoring – this
includes two essential steps:

 ò Finding the problem – this is about identifying wheth-
er there is any code smell situation with the current
piece of code and, if yes, then identifying what the
problem is all about.

 ò Assess/Decompose the problem – after identifying
the potential problem assess it against the risks
involved.

3. Design a suitable solution – work out what the resultant
state will be after subjecting the code to refactoring.
Accordingly, formulate a solution that will be helpful in

Refactoring – to Sustain Application
Development Success in Agile Environments
by Narayana Maruvada

Page 22 Agile Record – www.agilerecord.com

transitioning the code from the current state to the resul-
tant state.

4. Alter the code – now proceed with refactoring the code
without changing the external behavior of the code.

5. Test the refactored code – to ensure that the results and/
or behavior are consistent. If the test fails, then rollback
the changes made and repeat the refactoring in different
way.

6. Continue the cycle with the aforementioned steps (1)
to (5) until the problematic/current code moves to the
resultant state.

Test

Code

Refactor

Integrate

So, having said about refactoring and its underlying intent, it
can be taken up as a practice and can be implemented safely
with ease because the majority of today’s modern IDEs (inte-
grated development environments) are inbuilt and equipped
with various refactoring tools and patterns which can be used
readily to refactor any application/business-logic/middle-tier
code seamlessly. However, the situation may not be the same
when it comes to refactoring a database, because database
refactoring is conceptually more difficult when compared to
code refactoring since with code refactoring you only need
to maintain the behavioral semantics, whereas with database
refactoring you must also maintain information semantics.

Refactoring a Database – a Major and Typical
Variant of Refactoring

“A database refactoring is a process or act of making simple
changes to your database schema that improves its design
while retaining both its behavioral and informational semantics.
It includes refactoring either structural aspects of the database
such as table and view definitions or functional aspects such
as stored procedures and triggers etc. Hence, it can be often
thought of as the way to normalize your database schema.”

For a better understanding and appreciation of the concept,
let us consider the example of a typical database refactoring
technique named Split Column, in which you replace a single
table column with two or more other columns. For example,
you are working on the PERSON table in your database and
figure out that the DATE column is being used for two distinct
purposes. a) to store the birth date when the person is a
customer and b) to store the hire date when the person is an
employee. Now, there is a problem if we have a requirement
with the application to retrieve a person who is both customer
and employee. So, before we proceed to implement and/or
simulate such new requirement, we need to fix the database
schema by replacing the DATE column with equivalent BirthDate
and HireDate columns. Importantly, to maintain the behavioral

semantics of the database schema we need to update all the
supporting source code that accessed the DATE column earlier
to now work with the newly introduced two columns. Likewise,
to maintain the informational semantics we need to write a
typical migration script that loops through the table, determines
the appropriate type, and then copies the existing date data
into the appropriate column.

Classification of Database Refactoring

The database refactoring process is classified into following
major categories:

1. Data quality – the database refactoring process which
largely focuses on improving the quality of the data and
information that resides within the database. Examples
include introducing column constraints and replacing the
type code with some boolean values, etc.

2. Structural – as the name implies this database refactor-
ing process is intended to change the database schema.
Examples include renaming a column or splitting a
column etc.

3. Referential Integrity – this is a kind of structural refactor-
ing which is intended to refactor the database to ensure
referential integrity. Examples include introducing cascad-
ing delete.

4. Architectural – this is a kind of structural refactoring
which is intended to refactor one type of database item to
another type.

5. Performance – this is a kind of structural refactoring
which is aimed at improving the performance of the
database. Examples include introducing alternate index to
fasten the search during data selection.

6. Method – a refactoring technique which is intended to
change a method (typically a stored procedure, stored
function or trigger, etc.) to improve its quality. Examples
include renaming a stored procedure to make it easier to
refer and understand.

7. Non-Refactoring Transformations – this type of refactoring
technique is intended to change the database schema
that, in turn, changes its semantics. Examples include
adding new column to an existing table.

Why isn’t Database Refactoring Easy?

Generally, database refactoring is presumed to be a difficult
and/or complicated task when compared to code refactoring.
not just because there is the need to give thoughtful consider-
ation to the behavioral and information semantics, but due to
a distinct attribute referred to as coupling. The term coupling is
understood to be the measure of the degree of the dependen-

cies between two entities/items. So, the more coupling there
is between entities/items, the greater the likelihood that a
change in one will require a change in another. Hence, it is
understood that coupling is the root cause of all the issues
when it comes to database refactoring, i.e. the more things
that your database is coupled to, the harder it is to refactor.

Page 23 Agile Record – www.agilerecord.com

Unfortunately, the majority of relational databases are coupled
to a wide variety of things as mentioned below:

 ■ Application source code

 ■ Source code that facilitates data loading

 ■ Code that facilitates data extraction

 ■ Underlying Persistent layers/frameworks that govern the
overall application process flow

 ■ The respective database schema

 ■ Data migration scripts, etc.

Refactoring Steps – Database Perspective

Generally, the need to refactor the database schema will be
identified by a application developer who is actually trying to
implement a new requirement or fix a defect. Then the applica-
tion developer describes the required change to the concerned
DBA of the project and then refactoring begins. Now, as part
of this exercise, the DBA will typically work through all or a few
of the following steps in chronological order:

1. Most importantly, verify whether database refactoring

is required or not – this is the first thing that the DBA
does, and it is where they will determine whether data-
base refactoring is needed and/or if it is the right one to
perform. Now the next important thing is to assess the
overall impact of the refactoring.

2. If it is inevitable, choose the most appropriate database

refactoring – this important step is about having several
choices for implementing new logic and structures within
a database and choosing the right one.

3. Deprecate the original schema – this is not a straightfor-
ward step, because you cannot simply make a change
to the database schema instantly. Instead, adopt an
approach that will work with both the old and the new
schema in parallel for a while to provide the required time
for the other team to both refactor and redeploy their
systems.

4. Modify the schema – this step is intended to make the
requisite changes to the schema and ensure that the nec-
essary logs are also updated accordingly, e.g. database

change log which is typically the source code for imple-
menting all database schema changes and update log
which contains the source code for future changes to the
database schema.

5. Migrate the data – this is the crucial step which involves
migrating and/or copying the data from old versions of
the schema to the new.

6. Modify all related external programs – this step is in-
tended to ensure that all the programs which access the
portion of database schema which is for the subject of
refactoring must be updated to work with the new version
of the database schema.

7. Conduct regression test – once the changes to the ap-
plication code and database schema have been put in

place, then it is good to run the regression test suite just
to ensure that everything is right and working correctly.

8. Keep the team informed about the changes made and ver-

sion control the work – this is an important step because
the database is a shared resource and it is minimally
shared by the application development team. So, it is
the prime responsibility of the DBA to keep the team
informed about the changes made to the database. Nev-
ertheless, since database refactoring definitely includes
some DDLs, change scripts, data migration scripts, data
models related scripts, test data and its generation code,
etc., all these scripts have to be put under configuration
management by checking them into a version control sys-
tem for better versioning, control, and consistency.

Once the database schema has been refactored successfully in
the application development sandbox (a technical environment
where your software, including both your application code and
database schema, are developed and unit tested), the team can
go ahead with refactoring the requisite Integration, Test/QA,
and Production sandboxes as well, to ensure that the changes
introduced are available and uniform across all environments.

Key Benefits of Refactoring

From a system/application standpoint, listed below are summa-
ries of the key benefits that can be achieved seamlessly when
implementing the refactoring process in a disciplined fashion:

 ■ Firstly, it improves the overall software extendability.

 ■ Reduces and optimizes the code maintenance cost.

 ■ Facilitates highly standardized and organized code.

 ■ Ensures that the system architecture is improved by
retaining the behavior.

 ■ Guarantees three essential attributes: readability, un-
derstandability, and modularity of the code.

 ■ Ensures constant improvement in the overall quality of
the system. ■

Narayana Maruvada

Narayana Maruvada is a computer science and

engineering graduate, currently working as System

Analyst – QA with ValueLabs. He has more than

7 years of experience working on both developing

and testing web-based applications. A major area

of work and expertise lies in testing the applica-

tions and products that are built on an open-source technology

stack for different domains. He is keenly interested in assessing

the system’s functional and non-functional attributes; investigating

and implementing new testing tools, techniques and methodolo-

gies; and contributing to augmenting best practices and quality

standards for test process improvement.

> about the author

Page 24 Agile Record – www.agilerecord.com

Marc-André
Cournoyer

Steve
Freeman

Bob
Galen

Sandro
Mancuso

Join our keynote and tutorial speakers for Agile Dev Practices 2014:

Sponsors & Exhibitors 2014

May 26–28, 2014 in Potsdam/Berlin, Germany
www.agiledevpractices.com

Andy
Palmer

Nat
Pryce

Dr. Axel
Rauschmayer

Vaughn
Vernon

“Agile Effectiveness:
Craftsmen, Hackers,

DevOps and Common Sense”
Stay tuned – program coming soon!

http://www.agiledevpractices.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=ADP

Page 25 Agile Record – www.agilerecord.com

How to Test Refactoring
by Jeroen Mengerink

A fundamental part of the Agile methodology is
refactoring: rewriting small sections of code to be
functionally equivalent but of better quality. Don’t
forget to test the refactoring! What do you test? The
answer is simple: you test whether the code really is
functionally equivalent.

To test the rewritten code, you use the unit tests that accom-
panied the original code. But does unit testing alone prove that
you really have functionally equivalent code? No! While refac-
toring, developers often change more than just the complexity
and quality of the code. A tester’s nightmare … It appears to
be a small change, but the code is quite likely used in several
parts of the solution. So you must perform a regression test
after testing the changed code itself.

First I will describe how to test the current and rewritten code
with unit test. I have identified three scenarios that occur in
practice. The code that needs refactoring has:

 ■ no unit tests;

 ■ bad unit tests;

 ■ good unit tests.

After these scenarios, I will go into the regression test and
explain the importance of proper regression testing while
refactoring.

Decide what
to refactor

Perform a
regression test

Test
rewritten code

Perform
refactoring

Test
current code

Unit test the current and rewritten code

Unit tests are tests to test small sections of the code. Ideally
each test is independent, and stubs and drivers are used to
get control over the environment. Since refactoring deals with
small sections of code, unit tests provide the correct scope.

Refactor code that has no existing unit tests

When you work with very old code, in general you do not have
unit tests. So can you just start refactoring? No, first add unit
tests to the existing code. After refactoring, these unit tests
should still hold. In this way you improve the maintainability of
the code as well as the quality of the code. This is a complex
task. First you need to find out what the functionality of the

code is. Then you need to think of test cases that properly
cover the functionality. To discover the functionality, you provide
several inputs to the code and observe the outputs. Functional
equivalence is proven when the code is input/output conformant
to the original code.

Refactor to increase the quality of the existing unit tests

You also see code which contains badly designed unit tests.
For example, the unit test verifies multiple scenarios at once.
Usually this is caused by not properly decoupling the code
from its dependencies (Code sample 1). This is undesirable
behaviour because the test must not depend on the state of
the environment. A solution is to refactor the code to support
substitutable dependencies. This allows the test to use a test
stub or mock object. As shown in Code sample 2, the unit test
is split into three unit tests which test the three scenarios
separately. The rewritten code has a configurable time provider.
The test now uses its own time provider and has complete
control over the environment.

Treat unit tests as code

The last situation deals with a piece of code which has good
unit tests. Just refactor and then you are done, right? Wrong!
When you refactor this code, the test will pass if you refactor
correctly. But do not forget to check the validity of the tests.
You might think the tests are good, but the unit tests are code
too. Every refactor action incorporates a check, and possibly
a refactor, of the unit tests.

Perform a regression test

After unit testing the code, you need to verify if the code works
in the solution’s context. Remember: In Agile you must provide
business value. To show the value, you need to perform a test
that relates to the business. A regression test is designed to
test the important flows through the solution. And these flows
embody the business value. Do you run a complete regression
test after each time you refactor? This depends on the risks
and on the scalability of the regression test.

Create a scalable regression test

The use case is a common way to describe small parts of
functionality. This is a great way to partition your regression
test. Create a small set of regression test cases to cover a
use case. When you use proper version management for the
code, it is easy to see which part of the code belongs to which
use case. Whenever a section of code is changed, you can see
to which use case it belongs and then execute the regression
tests for that use case.

However, when code is reused (another good practice), you
target a group of use cases. I generally use mindmaps for track-

Page 26 Agile Record – www.agilerecord.com

ing dependencies within my projects. The mindmaps provide
insight in which code is used by which use cases. This requires
a disciplined development team. When you reuse existing code,
you need to update the mindmap!

Expand the scope of the regression test

Do you test enough when you scale the regression test to the
scope determined in the mindmap? No, the regression test
serves a larger goal. You check if the (in theory) unaffected
areas of the solution are really unaffected. So you test the
part that is affected by the refactoring and you test the main
flows through the solution. The flows that provide value to the
customer are the most important.

Refactoring requires testing

Every change in the code needs to be tested. Therefore testing
is required when refactoring. You test the changes at different
levels. Since a small section of code is changed, unit testing
seems the most fitting level. But do not forget the business
value! Regression testing is of vital importance for the business.

 ó Refactoring requires testing.

 ó Testing refactoring requires a good understanding of
the code.

 ó A good understanding of the code requires a
disciplined development team.

 ó A disciplined development team refactors.

Code sample 1: Unit test depending on the
environment

From http://xunitpatterns.com.

1 public void testDisplayCurrentTime_whenever() {
2 // fixture setup
3 TimeDisplay sut = new TimeDisplay();
4 // Exercise sut
5 String result = sut.getCurrentTimeAsHtmlFragment();
6 // Verify outcome
7 Calendar time = new DefaultTimeProvider().getTime();
8 StringBuffer expectedTime = new StringBuffer();
9 expectedTime.append("");
10 if ((time.get(Calendar.HOUR_OF_DAY) == 0) &&

(time.get(Calendar.MINUTE) <= 1)) {
11 expectedTime.append("Midnight");
12 } else if ((time.get(Calendar.HOUR_OF_DAY) == 12) &&

(time.get(Calendar.MINUTE) == 0)) { // noon
13 expectedTime.append("Noon");
14 } else {
15 SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
16 expectedTime.append(fr.format(time.getTime()));
17 }
18 expectedTime.append("");
19 assertEquals(expectedTime, result);
20 }

Code sample 2: Independent unit tests

From http://xunitpatterns.com.

1 public void testDisplayCurrentTime_AtMidnight()
throws Exception {

2 // Fixture setup:
3 TimeProviderTestStub tpStub = new

TimeProviderTestStub();

4 tpStub.setHours(0);
5 tpStub.setMinutes(0);
6 // Instantiate SUT:
7 TimeDisplay sut = new TimeDisplay();
8 sut.setTimeProvider(tpStub);
9 // Exercise sut
10 String result = sut.getCurrentTimeAsHtmlFragment();
11 // Verify outcome
12 String expectedTimeString = "<span class=\"tinyBoldText

\">Midnight";
13 assertEquals("Midnight", expectedTimeString, result);
14 }
15 public void testDisplayCurrentTime_AtNoon()

throws Exception {
16 // Fixture setup:
17 TimeProviderTestStub tpStub = new

TimeProviderTestStub();
18 tpStub.setHours(12);
19 tpStub.setMinutes(0);
20 // Instantiate SUT:
21 TimeDisplay sut = new TimeDisplay();
22 sut.setTimeProvider(tpStub);
23 // Exercise sut
24 String result = sut.getCurrentTimeAsHtmlFragment();
25 // Verify outcome
26 String expectedTimeString = "<span

class=\"tinyBoldText\">Noon";
27 assertEquals("Noon", expectedTimeString, result);
28 }
29 public void testDisplayCurrentTime_AtNonSpecialTime()

throws Exception {
30 // Fixture setup:
31 TimeProviderTestStub tpStub = new

TimeProviderTestStub();
32 tpStub.setHours(7);
33 tpStub.setMinutes(25);
34 // Instantiate SUT:
35 TimeDisplay sut = new TimeDisplay();
36 sut.setTimeProvider(tpStub);
37 // Exercise sut
38 String result = sut.getCurrentTimeAsHtmlFragment();
39 // Verify outcome
40 String expectedTimeString = "<span

class=\"tinyBoldText\">7:25 AM";
41 assertEquals("Non special time", expectedTimeString,

result);
42 } ■

Jeroen Mengerink

Jeroen works as a test consultant for Polteq. In

addition to his work for clients, he is involved in

various test innovations. His main area of exper-

tise is Agile, for which he is the person to talk to

within Polteq. Jeroen teaches several test cour-

ses, e.g. about Agile, SOA and Cloud, and is a

teacher of the Certified Agile Tester course (CAT). He is co-author

of the book and approach Cloutest® on how to test when cloud

computing is involved. He has contributed as a speaker to a

number of internal and external events for Polteq and its clients.

In several international assignments he has presented the results

of TPI assessments to a variety of senior management. He has

presented several times at events like ChinaTest, Eurostar and

TestNet on a large variety of subjects.

Twitter: @angusvb

> about the author

http://xunitpatterns.com/
http://xunitpatterns.com/
https://twitter.com/angusvb

Page 27 Agile Record – www.agilerecord.com

Refactoring is about changing the internal structure of an ap-
plication without changing its interaction with the outside world.
Technical teams struggle to justify the need for refactoring in
their existing application.

From the business stand point, refactoring is an excuse to
spend more time on existing applications without adding any
business value. “Do it right the first time” is the mantra given
by the business whenever we approach them for technical
debt handling or refactoring sprints. Return on investment is
of utmost importance to the business. Refactoring does not
show any apparent monetary gain as it does not include any
business feature addition in the existing codebase.

The following are the top two questions asked by management
when you submit your proposal for refactoring the design of
existing code:

“Will there be measurable performance gains?”

“Will this application handle more load than it is currently
handling?”

Justifying the refactoring task might be very difficult, but not im-
possible. Here are the tips for justifying the need for refactoring.

1. Future business changes will require less time. Refactor-
ing will not give an immediate return but, in the long run,
adding features will be less expensive as the code will
become easier to maintain. Before refactoring, the code
is fit for machine consumption but after refactoring it is fit
for human as well as machine consumption.

2. Bugs will be fixed during refactoring. Hidden bugs or log-
ics embedded in complicated unnecessary loops will be
exposed, which might result in fixing some longstanding
non-reproducible issues.

3. The current application will have a longer life. Prevention
is better than cure. Refactoring can be considered to be a
prevention exercise which will help to optimize the struc-
ture of the application for future enhancements.

4. There might be performance gains. You cannot promise
any apparent or measurable performance gain. But if you
are planning to do refactoring to achieve some perfor-
mance gain, then you should have measurable counters
showing the performance of the current app before you
start refactoring. And after each change the performance
counters should be recalculated to check the optimiza-
tion.

5. Refactoring may result in a reduction in the lines of code,
making it less expensive to maintain in the long run.
During refactoring of your algorithm, you should follow
the DRY (Don’t Repeat Yourself) principle. Any application
that has survived for 6 months to 1 year will have ample
places to remove duplication of code.

While refactoring looks quite fancy and is required for most

software applications to work efficiently in the long run, it is not
recommended for applications without proper safety nets, as
changing the design and code after the application has gone
live requires us to have a solid foundation of good software
development practices. The following are a few prerequisites
that should be built in to your process if you would like to do
refactoring.

1. Unit test/behavior-driven development suite. Opening
the engine of a running car to fix something when you do
not know what it is requires a lot of courage. After fixing
and oiling some units in the car, we still want the car to
work in the same way it did when it was not performance-
tuned. The expectation that whatever was working before
refactoring is still working will be what the business
people expect and, to ensure that, we will need some
solid evidence to make them believe that the application
still works in the same way but the underlying engine/
framework has been optimized. This suite will act as a
safety net after applying major changes to the applica-
tion. But this courage to apply refactoring can become
very expensive if the safety net of an automated test
suite is not in place.

2. Configuration management tool. This will help you to
avoid OOPS while doing refactoring. You might tag/label
your build before going ahead with a change that requires
changes in multiple files. If, after checking in, your regres-
sion test suites fail or the testing team reports a critical
business case failure, the configuration management
tool will come to your rescue by giving you the power to
reverse the refactoring changes.

3. Pair Programming. Two pair of eyes and double brain pow-
er will help you make fewer mistakes. Pair programming
is an extremely powerful tool in coding, but in refactoring
it becomes invaluable as it helps you to think of many
scenarios that you could miss when working alone.

4. Refactoring Tool Set. Developers do not use the full
potential of the refactoring tools available on the market.
This might be due to a lack of knowledge or pressure of

Refactoring – “To Be or Not to Be”
by Rashmi Wadhawan

Page 28 Agile Record – www.agilerecord.com

timelines. During refactoring, these tools are extremely
helpful and valuable as they reduce the chances of intro-
ducing an error when making big changes.

Tool Technology

ReSharper Addon Visual Studio .Net

XCode Objective C

IntelliJ IDEA Java

5. Keep refreshing your refactoring principles – go through
the bible of refactoring i.e. Martin Fowler’s book on refac-
toring. The rules mentioned by Martin Fowler in 1999 are
still applicable and fresh irrespective of the language or
development environment. Keep reading and reapplying
the principles in the technology you are working on.

Refactoring using the right tools and good software develop-
ment practices will be a boon for any application’s long life
and sustenance. Refactoring is an opportunity to solidify the
foundation of an existing application that might have become
weaker after adding a lot of changes and enhancements. If you
are making changes to the same piece of code for the third
time, it means there is some technical debt that you have cre-
ated and there is a need to refactor this code. ■

Rashmi Wadhawan

Rashmi Wadhawan is Head of Quality Assurance

and Centre of Excellence at GrapeCity India and

has 12 years of experience in the software indus-

try. She is a certified Scrum Master, practicing

the agile Scrum process in her projects. Prior to

GrapeCity, she worked with Globallogic. She is an

active member of the process improvement group at GrapeCity

and is proud to be associated with one award winning product.

She has played all kinds of roles in the software Industry including

business analyst, technical lead, and test architect.

> about the author

Testing for Developers
Whilst training for testers has made great progress
in recent years – alone in Germany there are more
than 10,000 certifi ed testers – the role of the devel-
oper in software testing is mostly underestimated;
they are often the driving force in the area of com-
ponent testing. For these reasons it is important that
also developers receive basic knowledge in the
central themes of software testing.

As a result Díaz & Hilterscheid has created the two-
day course “Testing for Developers” on the basis of
the internationally recognized ISTQB® Certifi ed Tes-
ter training. The fi rst day covers the fundamentals
of software testing, including the terminology used,

the test process and its integration into the software
development process, and the various test levels
and testing types. The second day the techniques
of static testing are covered and specifi cation-
based test design techniques are demonstrated,
with exercises for deeper understanding. Finally,
the principles of risk-based testing are covered
and the principal aspects of defect management
taught.

After completion of the course, developers are
able to construct systematic test cases by them-
selves and can execute developer tests to achieve
the test completion criteria. In addition, they can

use the necessary terminology in order to confer
with system and acceptance testers. In this way an
optimization of the entire test process is possible.

For current training dates, please visit our
website or contact us:

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: training@diazhilterscheid.com
Website: training.diazhilterscheid.com

http://www.diazhilterscheid.de/en/courses.php?id=326&utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Testing+for+Developers

Page 29 Agile Record – www.agilerecord.com

As long as we can remember, humans have been using refac-
toring to make things better. The first wheel was made of a
round stone that later became wood, then steel, and now
carbon fiber. The same is applicable to the computer. Once it
could fill a living room, now it is in your pocket. The software
we write undergoes the same evolution. Let me explain this.
In 1842 some people started working on the Analytical Engine
to calculate Bernoulli numbers [1]. They wrote down a set of
notes that specified in complete detail a calculation method.
These notes evolved to punch cards and, in 1890, they agreed
on a standard for using this system. So you could say it was
the first standard program language.

Let’s take a leap in time to the 50’s. In 1950 we started out
with three widespread modern programming languages whose
descendants are still in use today. With the rise of the internet
in the 90’s, new languages developed such as Visual Basic,
Java and PHP. Over time we have acknowledged Open Source
as a developmental philosophy for languages, including the
GNU compiler collection that brought us universal languages
such as Python, Ruby, and Squeak. This made it possible for
great minds to continue the evolution of software languages.
With all these steps over time. we also became dependent on
these software languages to let our devices work.

The great minds that worked on the evolution of the language
from punch card to new offspring or simpler notation have made

great steps. Of course, nowadays our need for functionality
is far greater than back in the days of the punch card. With
all the new languages, the one thing that needed to remain
unchanged was the functionality. So, for testers, this evolution
means several things. We had to use Rapid Software Testing
to get up to speed with the developers and learn about the
new possibilities for testers to work with these new languages
and, of course, the other side effect was the large amount of
work for testers.

Refactoring

Now to this term “refactoring” – what does it mean? If you look
it up in Wikipedia you will see that they have added the word
“code” and, since I am constantly talking about software, it
is a logical add-on. So you will find the following definition:
“Code refactoring is a ’disciplined technique for restructuring

an existing body of code, altering its internal structure without

changing its external behavior.’” When I read this it sounds a
bit like “remixing a song”, so I also looked up the definition of
“remix”: “A remix is a song that has been edited to sound different

from the original version. For example, the pitch of the singer’s

voice or the tempo might be changed, it might be made shorter

or longer, or it might have the voice duplicated to create a duet.”

While in software development we do not want the functional-
ity to change, in music you do not want the essence of the
music to change when you do a remix. To my standards, a
good remixed song is one where you still feel its emotional
tension but everything else can be completely different. So,
for example, today’s artists sing songs from back in the day.
Or make a completely new song like Moby did with the song
Natural Blues [2]. A few years ago, Moby used elements from
various old songs in newly constructed songs and created a
completely new album. Just like in software development, the
elements of this song are old (1937) but made relevant again
on the album.

Definition of done

Let’s get back to the software and refactoring. Since we all
work with an agile mindset, we all know about the definition of
done (DOD) and which items should be in there. But refactor-

Refactoring or the Prevention of …
by Daniël Wiersma

Column

Page 30 Agile Record – www.agilerecord.com

ing is not always addressed there, although I think it should
be. Most of the time we start a project that is the next step of
development on from an existing baseline. So, therefore, a lot
of code has already been written, some going back to the 70’s.
Now we are going to work on that code in an agile way and we
speed up the writing of code, since we have to be finished in
a sprint of, say, 2 weeks. Most of the time the DOD does not
contain the element of hygiene on the code baseline or any
project-related hygiene. So you create a technical debt by not
including hygiene in your DOD.

My experience is that over time, during for example the second
sprint, while adding new functionality to this 70’s code, you
will notice a change. Most of the time it is the user expert or
tester who will notice a behavior change in the functionality.
The most obvious one is the response time of the functionality,
since we are adding code and functionality to the 70’s version
of our application. So, instead of working in the sprint on new
functionality, we are going to take time to refactor the code to
get the response time back to normal.

Testing

For testers, this means we have to test this functionality over
and over again. Luckily for us, developers are human like us
and they make mistakes like we do. So, often you will see that,
after you have had the refactored code delivered, you need test
more then once. Earlier we said that the functionality should
not change, so we should use test automation to determine
whether the software is still working. So when the team starts
refactoring the code, the tester should use the current version
of the software to make test cases.

Since developers are not the only ones causing a refactoring
sprint, we should also take a look at the testers. They often
use test cases or test scenarios to write down how they are
going to determine whether the software is still working as
it should. Often I see a lot of test cases in test databases
that are not relevant any more. Either the functionality is not
there any more or the process has changed and this test case
cannot be used. So this means that the test cases could use
some refactoring. If you are out of luck as a team, the tester
just uses these test cases to do testing and then says: “Well,
I think it’s still not fixed, because my test doesn’t work”. But
when you look in detail at the scenarios used, you will see that
the test cases have not been updated, but the functionality
has changed.

For test cases the same rules apply – don’t use old stuff, al-
ways review, and make it better or create new. Of course, the
core of testing never changes. But, as a tester, you should also
evolve, use, and learn new ways of testing like Rapid Software
Testing or Exploratory Testing. When describing test cases and
scenarios, make sure that you don’t write too much because
when it comes to reviewing before reusing, it will take you hours
to change your approach.

Preventing refactoring?

Can we prevent refactoring? I think there is not a single answer.
If you start with a blank canvas, there is no legacy code, so it
is easy to write beautiful clean code. If you are fully aware of
the responsibly you have as developer and as a tester to keep
it clean and simple, you are on the right path. My advice would
be take code and test case reviewing very seriously and to
make it part of the preparation of your sprint. If you first take
a good look at what you have, you can take action to prevent
a refactoring sprint from happening.

Remixing songs

I would like to take you back again to the remixing of songs.
I want to share some more examples of refactored (remixed)
songs because I am a real music geek. Let’s start with Be

Thankful for What You Got – William DeVaughn (1972) [2]. This
song is one of my favorite songs, but I know a more recent ver-
sion since I wasn’t yet born in 1972. It was remixed by Massive
Attack in 1991. Massive Attack liked the track so much that
they stayed very close to the original. They just added a beat
and hired another singer. Another song that has had a little
more work is a song by Phoenix – 1901 (2009) [2]. I think most
people know the version by Birdy, who had a great hit with her
version of this song. So sometimes you make a small change
that has a major effect, and sometimes you just need to start
over again and reuse only a small part.

Keep in mind that not everything is crappy, it just needs love
and attention. But beware of the time you spend loving and
caring, you still need to deliver a great product. Keep learning,
asking, coding, testing, and above all have fun in creating the
best product.

Resources

[1] http://en.wikipedia.org/wiki/History_of_programming_

languages

[2] the music in this article is available on:
testowanie.nl/remix ■

Daniël Wiersma

Daniël Wiersma is an Agile test consultant at

codecentric, where he shares his passion for

testing and Agile through his work and training

on a variety of subjects. With 7 years of experi-

ence in IT and software testing, Daniel is experi-

enced in many different testing roles. As a pada-

wan, Daniel is learning about Rapid Software Testing and

exploratory testing. Daniel maintains a blog at wiersma.net and

testowanie.nl.

Twitter: @dwiersma

> about the author

http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/History_of_programming_languages

Page 31 Agile Record – www.agilerecord.com

The world of the computer games industry is one of high pressure and fast pace. Game
development studios are typically working to tight deadlines in what is an extremely
competitive and ever-evolving marketplace. Modern games involve vast amounts
of artwork, audio, and animation in addition to source code, so a wide variety of
contributors are involved. Given aggressive release schedules, it is no surprise that
the Agile methodology is a good fit for the games industry and, indeed, is becoming
increasingly prevalent among game development teams.

One such example is Supermassive Games, based in Guildford in the UK. Since the
company launched in 2008, it has established a strong track record, mainly develop-
ing games for Sony. It is currently working on two major PlayStation projects: “Until
Dawn” and “Wonderbook: Walking with Dinosaurs”, which are both high-quality,
character-based games with rich audio and animation.

Jonathan Amor is Supermassive’s Director of Technology and has been with the com-
pany since its early days, having joined from world-renowned games firm Electronic
Arts. Jonathan describes how Agile has become an integral part of Supermassive’s
business.

How Agile Methods Help Supermassive Games
Deal with the Rapid Pace of Game Development
by Jonathan Amor

We have stuck to the core values of Agile beneath everything,
because we have found that it provides us with a strong frame-
work for helping projects keep on track in a fast-moving, creative
and highly technical environment. Here are some examples of
how we apply the four different pillars of Agile:

We value individuals and interactions over
processes and tools

Face-to-face really is the best way to communicate, especially
when trying to describe the idea for a particular game or feature,
so we encourage people to talk, not just send each other emails.

A lot of what we do in the early days of a project is to iterate
and discover the elusive “fun factor” that is so important to
the success of any game. That is not a process you could build
a tool or process to achieve, it can only be accomplished with
iteration and collaboration. Something may seem that it would
work in theory, but often it is not until you play the game that
you can really tell.

We use Scrum to one degree or another across the studio and
generally stick to its core tenets, with regular meetings to review
progress, blockers, and plans. Every sub-team generally has
its own task board, which is useful for making daily progress

visible. That said, how much we use Scrum does vary accord-
ing to each project and the stage at which it is at: we find it
works particularly well in the middle stages of a project when
it is easier to define the goals clearly.

We avoid having overly prescriptive design or technical docu-
ments, because things change so quickly here. However, good
tools and processes – while not as important as individuals
and interactions – are still very important and support our more
collaborative, iterative approach, as long as they are chosen
well. For instance, using Perforce software version management
gives us the freedom to focus on creating code and assets and
exploring new ideas, without the concern of losing the original
version: we simply roll back if needed.

A feature we find very useful within the version management
system is Protection Groups which, when coupled with well-
managed Client Specs, gives people a solid framework for what
they should be focusing on and prevents them from making
accidental changes outside of their remit. It also means that
they only need a subset of the whole project source, rather
than synchronizing everything. For example, we might put all
the audio team members on a project into one group and then
limit the folders and files they can use to just the audio and
other relevant project data.

Page 32 Agile Record – www.agilerecord.com

We value working software over comprehensive
documentation

We are constantly reviewing the game – towards the end of
the production process this can be every day, or even more
frequently – so having working software is vital. Again, tools
have a major support role here: we have built a dedicated
build server that is always integrating the latest data through
Perforce, so we can create a build of the game in just a few
hours at most, often as little as half an hour. To give that some
context, ten years ago it often took all night to create a build,
despite having far less data.

Another part of helping us ensure we have working software
is the use of branching within version management. For ex-
ample, if we want to create a demo version of a game for a
show, we can branch that out and work on it in isolation, so
any changes will not affect the working mainline, preventing
the propagation of bugs.

We value customer collaboration over contract
negotiation

Our customers are primarily our publishers, but can also be
colleagues within the company. We have found that taking a
brief, working with a rigid set of requirements, going away and
then coming back several months later just does not work well
in practice. Requirements change, and what was needed may
not have been clearly understood by either the developer or
the customer in the first place. We believe it is far better to sit
down with the “customer” (for instance, the tools programmer
who creates gameplay content tools sitting with a designer)
for about half a day and really understand the context of what
is needed. We find that this usually leads to a much more ef-
fective solution in the end.

We work closely with our publishers throughout the process of
developing a game, particularly their producers and QA teams.
While a lot is planned and agreed in advance, a regular face-
to-face relationship is invaluable for effective collaboration.

Customer collaboration also has to happen at a technical level.
For instance, one of our systems supports localization of the
text strings and voice-audio for a game. For an interactive drama
game like “Until Dawn”, this could be as many as 25,000 lines
of dialogue which is all stored in an online database. From our
side, we can then pull down new versions of the localized data
into Perforce or push any script changes back up; from the
client side, their translators can take a drop of anything that
has changed and put their translations back in the database.
It may not sound major, but it would otherwise have been a
laborious, time-consuming, and error-prone process of making
manual notes on a spreadsheet.

We value responding to change over following a
plan

We place a lot of importance on solid planning (and we now
even have dedicated production managers who are focused on
that). But within that framework, it is essential to be flexible
and able to respond to change, which is very much part of our
company’s ethos. The challenge is that embracing change is
not natural for everyone, so it makes it a lot easier for people
to deal with if the right supporting mechanisms are in place.
Again, version management is a good example, because people
can play around with ideas and make changes, safe in the
knowledge that they can revert back to the original whenever
they want.

Conclusion

The games industry is a fascinating business; the studios that
will survive are those that can innovate, and are able to react
to consumer behavior and market trends. As we continue to
grow, we believe that Agile will help Supermassive to maintain
that flexibility and responsiveness. ■

Jonathan Amor

Jonathan Amor is Director of Technology at Su-

permassive Games, a UK game development

studio. Since starting his career in the games

industry 19 years ago as a programmer on the

racing game “Formula 1” developed for the Sony

PlayStation console by Bizarre Creations, Jona-

than has worked as a programmer and technical director on 15

published titles. He has been interested in the use of Agile meth-

odologies, especially in their pragmatic application to game de-

velopment, since working for Electronic Arts where he was intro-

duced to Scrum.. Jonathan’s current role involves managing a

team of over 20 programmers, and helping to support the teams

and technology used for the studio’s two current projects: “Won-

derbook: Walking With Dinosaurs” and “Until Dawn”.

> about the author

Page 33 Agile Record – www.agilerecord.com

Ours was a typical Waterfall team that believed to the core
in the SDLC (systems development life cycle). Our requesters
were always adamant about sending countless changes to us
at all stages of the project flow. This led to a lot of rework, a
decrease in customer satisfaction, an increase in the number
of bugs, and other problems.

Hence our leadership thought about bringing in a new meth-
odology, which had proved fruitful when it had been applied a
few years earlier in another location: Agile. As the name sug-
gests, the whole framework is flexible. Our group started off
as the pilot project, and we finally implemented Agile across
the entire service line.

However, our team faced numerous stumbling blocks while we
were attempting to adopt Agile. I will focus below on the most
prominent ones:

1. Inertia

We are performing so well, we thought. Why would we change?
Why are we giving liberty to the client to change the scope at
any time? How will the projects be completed?

To be honest, it is very difficult to tame the inertia of a team.
We ran several rounds of meetings to educate the team about
the Agile (specifically, the Scrum) framework.

2. Lack of discipline

Discipline is the core of Scrum. We all needed to be on time
for all meetings, and we soon found that this was a problem.
So we set up a “Softy meter”, which meant that whoever was
late for a meeting (without advance notice) would have to bring
Softy ice creams for the entire team. This was advantageous:
we enjoyed a lot of Softies in the initial phase, and gradually
the Softies were abolished as there were no more latecomers.

We also faced a problem in not time-boxing the meetings.
Our stand-ups lasted for as long as 30 minutes, as parallel
discussions erupted and diverted the agenda. Eventually the
Scrum Master learned to intervene so that the team followed
Scrum stand-up practices.

3. Learning responsibilities

An Agile team is q self-organizing team, motivated enough to
work towards a common goal for the company. However, during
the initial adoption period, we realized people were not aware
enough about their roles. A product owner should focus on
achieving the client’s business piece of the project. A Scrum
Master should act as a facilitator to help remove the impedi-

ments. The team should be self-organizing and have the liberty
to size the stories, pull them individually, and assign them in
the product backlog of the sprint.

4. Learning the prerequisites

The product owner and the Scrum Master should not be the
same person, nor should either of them be the direct reporting
manager of teammates. A product owner needs to be a single
person, not a committee. Both the PO and the Scrum Master
should be dedicated 100 percent to the project. If someone
has to work on multiple projects, he or she needs to draw the
line to protect each individual project and team so that they
are always taken care of.

5. Expectation setting

The expectations of the client need to be set wisely. That is, if
the client is finicky about the budget, then we should communi-
cate clearly to him or her that we will give a daily, approximate
cost estimate. However, if there is a non-negotiable cost, we
will clarify that we will forward the product in its current state
to the client once that cost has been reached.

6. Learning empiricism

Scrum is empirical in nature. Never make it too calculated or
mathematical, or you will destroy its core purpose. For example,
always draw a rough burn-down chart to keep it simple and
meaningful. If tiy make it too “accurate”, using rules and scales,
you end up wasting a lot of time and missing the real work.

Sizing the story is another example. Never size a story for the
estimated time involved; sizing is a measure of the complexity
of the task. The size should not depend on whether a senior
developer takes it or a junior developer takes it. Sizing should
also be relative, meaning that stories should be sized relative
to each other.

Finally, the “Definition of Done” needs to be set. Acceptance
criteria need to be outlined so we can judge whether a particular
story is done or not.

7. Kill the Manager

We need to “kill” the manager as there is no manager role in a
Scrum Team. The entire basis of Scrum lies in the functioning
of self-empowered and cross-functional teams. If the Scrum
Master or Product Owner tries to act as a manager and pushes
the work to the team beyond the commitment, or change the
scope/UAC of the stories within the sprints, then Scrum fails.

Stumbling Blocks
by Gurpreet Singh

8. Destroy the Resource

Team members are “live” human beings. These are not “dead
resources” like office furniture, archived mail, or a desktop, etc.
We need to place huge emphasis on people and their communi-
cation, and this is clearly shown in the Agile Manifesto as well.

9. Possible need for customization

Agile hates people working on multiple projects simultaneously.
If a PO does not have the needed bandwidth, then a proxy PO
must be set up to fill that vacancy.

A few companies do not have Scrum Masters, and so the PO
handles the dual roles of being the “client’s person” and the
“team’s person” (Scrum Master). This leads to internal conflicts,
as those roles need distinct people.

Sometimes a person acting as PO for one project is Scrum
Master for another project, which can work well as long as
schedules are respected. Alternatively, one of the team mem-
bers doubles as a Scrum Master for some period (along with
his core work) and then the baton is passed to another team
member like in a relay race.

Our team today

Now we are a purely Agile team. Truthfully, the transformation
from Waterfall to Agile practices was extremely difficult. It

took us several pilots; extra hours; weekend training courses;
regular and ongoing coaching; learning to deal with ego clashes
and inertia conflicts; and more. But today we are a happy Agile
team. Scrum, sprints, retros, review meetings, discipline – they
are all now part of our DNA. ■

Gurpreet Singh

Gurpreet Singh is a Certified ScumMaster and

Agile enthusiast. He has over 8 years of experi-

ence in the software development industry. His

passion is bringing transformation of companies

to Agile. He has worked in Scrum, Kanban, and

XP practices.

He has worked as a ScrumMaster, Product Owner, and Agile coach

with geographically diversified teams spanning different industries

like US healthcare, mobile applications, content management

systems, etc.

His hobby is writing articles for blogs and newspapers (on general

topics). He has exposure in other fields like Six Sigma, PMP, risk

mitigation, SLAs and scoping.

> about the author

Accredited ISTQB® and IREB®

training material through licensing!

The Díaz & Hilterscheid GmbH has created
ISTQB® and IREB® training material incorporat-
ing best practices and ample training experi-
ence. It provides an aspiring trainer with the
necessary resources to successfully offer a
comprehensive training program.

Save time and money by licensing the
needed training material from Díaz & Hilter-
scheid GmbH. Course material is available
to prepare participants for the following
certifi cations:

• ISTQB® Certifi ed Tester – Foundation Level

• ISTQB® Certifi ed Tester – Advanced Level
(Test Manager, Test Analyst, Technical Test
Analyst)

• IREB® Certifi ed Professional for Require-
ments Engineering – Foundation Level

• Course material includes presentation
slides and exercises.

• Receive automatic updates and
reviews for the licensed material.

• Available in up to three languages:
English, German, and Spanish.

For pricing conditions and other related matters,
please contact us by e-mail or phone.

Díaz & Hilterscheid
Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99
E-Mail: training@diazhilterscheid.com
Website: training.diazhilterscheid.com

http://www.diazhilterscheid.de/en/training.php?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Licensing

Page 35 Agile Record – www.agilerecord.com

Risk Management in an Agile Way
by Edwin van Loon

Within risk-based test approaches, product risks are defined once beforehand and
mitigated within a predefined test approach. The consequence of this approach is that
changes within scope (backlogs), new insides or calculated uncertainties are not or
only limited taken into account. One of the principles of Agile is that requirements
changes have to be welcomed. This means that Agile and risk-based testing not go
hand in hand.

Since risks and requirements are related to each other, the risk management process
should be set up dynamically. This article describes a good practice, in which Agile
and risk management are combined.

Risk

The Oxford Dictionary defines risk as a situation involving ex-
posure to danger. It also states that all outdoor activities carry
an element of risk, in particular the possibility that something
unpleasant or unwelcome will happen. I have come up with the
following ICT definition when translating those descriptions: a
possible THREAT related to one or more REQUIREMENTS (user
stories) causing DAMAGE to an organization.

Risks and requirements go hand in hand. A requirement without
any risk is a non-needed requirement (a gadget) and a risk
without a requirement is a missing requirement (an incomplete
backlog). Combining the risk management and requirement
management processes will increase the efficiency and ef-
fectiveness of the project and will also increase the detection
of issues at an early stage.

Combining User Stories and Risks

User stories are normally described using the syntax:

“As a <person>, I would like <a need>, so that <the
added value of this need to the person>.”

An example is the following need for a department that is
responsible for managing financial master data.

“As an employee of the managed services organization, I would
like to be able to centrally manage the financial master data so
that changes in master data only need to be submitted once.”

The primary business risk related to this user story is imple-
menting this user story correctly.

This can be described using the following syntax:

“As a <person>, I fear that <a failure occurs>, due to
<an occurrence>.”

The following risk can be matched the user story example: “As
an employee of the managed services organization, I fear that
inconsistencies will occur in the master data, due to the fact
that the master data is not distributed correctly to the local
administrators.”

The introduction of this user story can also introduce some
additional secondary risks, such as: “As an administrator, I fear
that I am not able to submit the financial transactions, due to
the fact that master data is not available or outdated.” This
risk should be the trigger for introducing another user story.

This example shows the added value of combining risk manage-
ment with requirement management.

Risk Management Process

Let’s zoom in to the risk management process. Within the
regular risk-based test methodologies there are four stages.
Within the first stage the risks are identified using techniques
like interviews, workshops, and brainstorming. This stage will
result in a list of risks, which is the basis for the whole proj-
ect … but how can we be sure that this is the complete list
and what about dealing with changes? Nassim Nicholas Taleb
has written a book called “The Black Swan”. The Black Swan
theory is a metaphor for events that come as a surprise and
have a huge impact. Our thinking is usually limited in scope
and we make assumptions based on what we see, know, and
assume. Reality, however, is much more complicated and
unpredictable than we think. So, how can we be sure that this
list of risks is complete? We, as testers, are by nature the
best doom thinkers, because we have developed the ability
to “think negatively” during the hunt for defects. That will help
us to be as complete as possible, but we still need to be able
to reconsider this list at different stages within the project.

The next stage of the risk management process is the assess-
ment of the risks. A risk consists of two parameters, namely
business impact (the impact of the occurrence of that risk)

Page 36 Agile Record – www.agilerecord.com

and risk likelihood. The business impact is predictable. We
can know what financial or other damage will occur when a risk
with regular proportions happens, such as a department that
is not able to work for one regular hour. We can, of course,
not predict the impact of a “black swan” like the attack on 11
September or the bankruptcy of Lehman Brothers, but that is
not required. In the event a black swan happens, the project
should at least be reconsidered.

Predicting the likelihood is something else. How can we predict
the likelihood of the occurrence of a risk using factors like
complexity of technology, conflicts within a team, and legacy
versus new approaches? And how can we be that sure? If we
are that good in predicting the “future”, we should also be
able to predict what soccer team is most likely to win the FIFA
world cup in Brazil in 2014. I think, if we had the capability, we
would already be rich through winning many lotteries. This stage
results in prioritized/classified risks. Most of the time we use
four classes from “high business impact and high likelihood”
to “low business impact and low likelihood”. My practice is
to only use a maximum of two classes: high business impact
and low business impact. The classes are only used for dif-
ferentiating the test approach and, so, the assured quality. In
many organizations there is no need to differentiate and so
it is sufficient to merely identify the risks (and not prioritize
them). In regulated environments, for example, there is the
need to differentiate between requirements that are critical
and non-critical in terms of regulation.

Last year I attended a presentation by Randall Rice on Defect
Sampling. He compared testing with gold digging. Gold diggers
begin with dirt sampling before they start digging. In order to
be as efficient as possible in testing, we should also learn from
the defects we find (or other new insides) and revise our test
approach as required. In order to be able to work in such a way,
there is a need for flexibility within the testing approach/plan.
This flexibility is created by removing the “likelihood factor”
and by defining a test approach with variable test coverage
per risk class.

Normally the test specification techniques, including the cov-
erage per defined risk class, are defined in the test plan,
which does not allow a tester to revise the approach based
on detected defects. Therefore the minimum and average test
coverage have to be defined instead of the real test coverage.
The minimum test coverage is the coverage that needs to be
achieved within the first test execution sub-cycle. Within this
sub-cycle, the system under test will be “sampled” by executing
pre-defined test cases or by exploring. The minimum coverage
(for example requirement or risk coverage) will be achieved
within this cycle and the defects are logged, including the sys-
tem area in which the defect is detected. Within sub-cycle 2,
the real “digging” is executed. The number of defects per area
detected during sampling will determine the test approach per
area. So the likelihood factor is calculated dynamically during
the test execution instead of in the risk assessment stage.
This factor might also need to be re-calculated after every
test cycle/iteration. The average test coverage is needed to

estimate the required effort beforehand within the test plan
(and allocate the budget).

The last stage within the risk management process is called
risk management. Within this stage, the achievement of the
mitigating measures is managed. Regularly it is a rather “static”
process in which the test results including defects are collected
and reported, including any deviations from the original plan.

The defined risks are not static and need to be reconsidered
on a regular basis, as already mentioned in the previously de-
scribed stages. The dynamic way is to iterate the risk manage-
ment stages in combination with the test cycles or iterations.
So, after every test run, you need to reconsider the complete-
ness of the list of risks and the “digging approach”.

This dynamic approach to risk management can be called
“Agile-compliant”, because it can deal with changes and be
fitted in well in all Agile methodologies. ■

Edwin van Loon

Edwin van Loon is an ISEB practitioner and Lean

six sigma certified test consultant who has gained

a lot of ICT experience in different jobs and diffe-

rent sectors. He started his career in 1994 and

specialized in quality and testing in 1998. Be-

cause of his wide experience and ability to deal

with different kinds of situations, he uses a pragmatic approach

to arrive at tailor-made custom solutions. Edwin has fulfilled se-

veral different testing and QA roles within his career. During the

most recent years of his testing career he held test management

and test consulting roles and has seen organizations and test

projects increasingly adopting Agile principles. Valid is Edwin’s

current employer. At Valid, Edwin is responsible for the development

of the quality management competence. This competence consists

of the sub-competences Requirements Management, and Process

Improvement and Testing. Edwin is also an experienced speaker,

having presented three times at Eurostar and several times at

other conferences like TestNet and the Test Automation Day. In

October 2013, he spoke at the Agile Testing Days conference in

Potsdam. This article is based on that presentation.

LinkedIn: edwinvanloon

Twitter: @Edloon

E-mail: Edwin.van.loon@valid.nl

> about the author

http://nl.linkedin.com/in/edwinvanloon
https://twitter.com/Edloon
mailto:Edwin.van.loon%40valid.nl?subject=

Page 37 Agile Record – www.agilerecord.com

Agile Architecture Engineering:
Dynamic Incremental Design Selection and Validation

by Tom Gilb & Kai Gilb

Agile project management offers us a whole new method for
approaching architecture and design engineering, of both IT
systems and software.

Agile is iterative (cyclical, repetitive), and incremental (cumu-
lating stakeholder value delivery), and evolutionary (learning
from experience, and changing plans). This means we have
very useful opportunities to manage systems and software
architecture, and design, better.

Figure 1

Architecture and design is complex, and we really know very
little about the impact on values and costs of most of our
initial design suggestions. They need to be considered as
mere hypotheses – to be proven or disproven. The outcome
is only roughly understood in advance, and our scope for es-
timation error is intolerably wide (at least in terms of order of
magnitude) [8].

Agile offers a useful practical solution. But most Agile cul-
tures, as taught and practiced today (Agile Manifesto, Scrum,
XP for example) do not take a position on the measurement
and management of architecture and design. But some ear-
lier Agile methods, such as Evo (1970–2013 [3, 6, 10]) and
Cleanroom (1970–1980s [1, 2, 6]), have long since exploited
the architecture management opportunity inherent in cyclical
incremental evolutionary system delivery to successfully man-
age the architecture and design itself.

Harlan Mills, IBM Federal Systems Division, comments on
the ability of the Evolutionary “Cleanroom” method to control
projects perfectly: “LAMPS software was a four-year project of
over 200 person-years of effort … in 45 incremental deliveries.
There were few late or overrun deliveries in that decade, and
none at all in the past four years” – Harlan Mills, in 1980 [1].

His colleague in the “Cleanroom” method, one of the first
“Agile” methods, Robert Quinnan, comments on the “dynamic
design-to-cost” aspects: “The method consists of developing
a design, estimating its cost, and ensuring that the design is
cost-effective.” (p. 473, [2])

He goes on to describe a design iteration process that tries
to meet cost targets either through redesign or by sacrificing
“planned capability”. When a satisfactory design at cost target
is achieved for a single increment, the “development of each
increment can proceed concurrently with the program design
of the others”.

“Design is an iterative process in which each design level is a
refinement of the previous level.”

But they iterate through a series of increments, thus reducing
the complexity of the task and increasing the probability of
learning from experience, won as each increment develops and
as the true cost of the increment becomes a fact.

“When the development and test of an increment are com-
plete, an estimate to complete the remaining increments is
computed” (Quinnan, [2]).

The “developers” in the current Agile culture are not going to do
anything about this. The just want to “code”. The responsible
architects, such as IT Architects, are going to have to figure
out how to exploit Agile for their purposes.

The first stage of this is to recognize that architecture (the
overall discipline of managing a system development through
design) and design (which includes specialist disciplines such
as Human Interfaces Design, Security Engineering, Perfor-
mance Engineering, and other such disciplines supervised by
the overall architect) need to be conducted as an engineering
discipline. Not as art or poetry.

“Engineering” means managing a numeric set of objectives
and constraints, which are our architecture requirements.
Engineering then implies managing the corresponding numeric
attributes of all design and architecture (defined as the things
we do to achieve our performance and quality requirements,
within our resource constraints).

Column

Page 38 Agile Record – www.agilerecord.com

One interesting side-effect of managing architecture as an
engineering discipline, is that we not only get control over
performance and quality aspects of the system, but we simul-
taneously get far better control over our budget and deadline
[1,2, 6, 8], as Cleanroom experience proved long ago.

Technical Prerequisites

In order to do this, (and several groups have done it for decades,
so this is not idle speculation, but observation of known meth-
ods!) we need to learn and practice the following architecture
engineering disciplines:

1. Quantification of all critical quality aspects (security,
maintainability, usability etc.) [9].

2. Design of suitably cheap processes for measuring at
least leading indicators, then better final indicators,
of the incremental delivery of technical qualities (like
degrees of security or usability) and then of their intended
knock-on effects to a higher level of stakeholder inter-
est (e. g. stakeholder perceptions such as “saving time”,
“feeling confident”).

3. Ability to decompose [10, 11] our larger high-level archi-
tecture ideas into smaller implementable components (so
we can get earlier delivery of their value).

4. Ability to test design-component hypotheses in a safe,
but realistic, way before confidently scaling up, once they
are working as required.

5. Contracts for outsourcing that envision, allow for, and as-
sist our ability to do all the above engineering and explo-
ration; with the ability to be agile and exchange what does
not work for that which does! The real heart of agility [7].

The Agile Architecture Engineering Process [10,
13]

The Architecture Engineering process using “Planguage” as a
planning language, or any other way to express qualities quanti-
tatively, goes like this. I use a week to get through these initial
plans, before diving into cycles of delivering real value from the
implementation of architecture components [5].

1. Quantify the top few critical performance and quality
objectives for the system. This means a defined scale of
measure and at least one level of performance expected
in the future. The agenda is that the project will be done,
and successful, when these levels of requirements have
been reached. Day 1.

2. List and define in some detail (maybe a page each of ten
major architecture ideas) [3, the CE book, Design Chapter
template for detail] the major architecture components.
These should be the set of ideas you believe will enable
you to reach the critical requirement levels in the first
step above. Day 2.

3. Rate the expected effectiveness of each architecture
component on all critical objectives, as well as on criti-
cal resources such as money and time. Use an Impact

Estimation Table [14]. One rating is to estimate the %
effectiveness expected by the deadline. (100 % means we
reach numeric goals on time). Day 3.

4. Using the information in the Impact Estimation Table,
find subsets of the architecture that are estimated to
give very high value (performance and quality require-
ments level) in relation to resources used [15]. The most
efficient designs. Schedule these for early value-delivery
cycles [10]. Day 4. Day 5 is presentation to management.

5. Evaluate results (feedback from delivery cycles, on
measures of value and costs). Decide what you need in
order to improve or learn. Plan the next steps, with a view
to maximizing fast progress towards your requirements
levels.

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Develop
Develop the packages
that deliver the value.

Measure

Learn

Figure 2. The Evo Cycle [16] – an extension of the Shewhart/Deming
“Plan Do Study Act” cycle of SPC methods. Developed by Kai Gilb.

In Summary: we can engineer the architecture in incrementally.
We get earlier results and better results, as a result [4].

References

[1] Mills, H. 1980. “The management of software engi-
neering: part 1: principles of software engineering”,
IBM Systems Journal 19, issue 4 (Dec.): 414–420.
Reprinted 1999 in IBM Systems Journal, Volume 38,
Numbers 2 and 3.
A nice sample, in slides, of how Cleanroom reaches
the highest military and space performance and quality
levels “always on time and under budget”:
http://www.gilb.com/dl602, “Architecture Prioritization”,
Oct 2013. See ref. [6] for source of Mills and Quinnan.

[2] Robert E. Quinnan, “Software Engineering Management
Practices”, IBM Systems Journal, Vol. 19, No. 4, 1980,
pp. 466–77.
A nice example in slides for Oct 9 2013 1.5 hour talk
at London “Software Architect” conference.:
http://www.gilb.com/dl602 “Architecture Prioritization”
Oct 2013. Quinnan goes into detail on his dynamic
design to cost practice within Cleanroom. See ref. [6]
for source of Mills and Quinnan.

[3] Gilb, T. 2005. Competitive engineering: A handbook for

systems engineering, requirements engineering, and

software engineering, using planguage. Oxford: Elsevier
Butterworth-Heinemann. Free digital copy for first 50
Agile Record readers who email me with a request

http://www.gilb.com//dl602
http://www.gilb.com//dl602

Page 39 Agile Record – www.agilerecord.com

within one week after publication of this paper. After
that, see 9 and 10 below.

[4] Gilb: “What’s Wrong with Software Architecture”.
Keynote Software Architect Conference, London 10 Oct
2013. http://www.gilb.com/dl603
Slides in PDF: http://vimeo.com/28763240

[5] “Confirmit” Company Cases (use of Evo). Johansen,
T., and Gilb, T. 2005. From waterfall to evolutionary

development (Evo): How we rapidly created faster, more

user-friendly, and more productive software products for

a competitive multi-national market. Available at: http://

www.gilb.com/tiki-download_file.php?fileId=32.

And: The Green Week: engineering the technical debt

reduction in the Evo Agile Environment by Confirmit.
http://www.gilb.com/dl575
A Gilb’s Mythodology column published in May 2013 in
Agile Record No. 14, www.agilerecord.com. This paper
highlights a case of reengineering a legacy system to
give reduced technical debt, using Evo, in a small Nor-
wegian international market software package house.

[6] Gilb, T. 1988. Principles of software engineering man-

agement. Boston: Addison-Wesley. See http://www.

gilb.com/tiki-list_file_gallery.php?galleryId=15. “Some
deeper and broader perspectives on evolutionary deliv-
ery and related technology”, chapter 15 of the book.

[7] Agile Contracting for Results The Next Level of Agile Proj-

ect Management: Gilb’s Mythodology Column Agilere-
cord No. 15, August 2013, www.agilerecord.com.
http://www.gilb.com/dl581

[8] Estimation Paper: Estimation: A Paradigm Shift Toward

Dynamic Design-to-Cost and Radical Management. SQP
VOL. 13, NO. 2/© 2011, ASQ. http://www.gilb.com/

dl460

[9] CE book. Chapter 5: Scales of Measure:
http://www.gilb.com/tiki-download_file.php?fileId=26

[10] CE Book. Chapter 10: Evolutionary Project Management:
http://www.gilb.com/tiki-download_file.php?fileId=77
Evo Standard 2012 for DB, Non-Confidential
http://www.gilb.com/tiki-download_file.php?fileId=487

[11] Gilb, T. 2010b. The 111111 or Unity Method for

Decomposition, presented at the 2010 Smidig (Agile)
Conference, Oslo. Available at: http://www.gilb.com/

tiki-download_file.php?fileId=350

[12] Agile Contracting for Results The Next Level of Agile

Project Management: Gilb’s Mythodology Column Agile-
record August 2013
http://www.gilb.com/dl581

[13] Evo standards Feasibility Study paper. “Project Startup”

for agile architecture. http://www.gilb.com/dl568

Our column in Agile Record No. 13, www.agilerecord.

com, as published 7 March 2013

[14] Impact Estimation Tables: Understanding Complex Tech-

nology Quantitatively. http://www.gilb.com/dl23

[15] On Decomposition. See ref. 11 above and: Decomposi-

tion of Projects: How to Design Small Incremental Steps
http://www.gilb.com/dl41

[16] See gilb.com for a dynamic version of the Evo cycle
and for more explanation. http://www.gilb.com/

Site+Content+Overview ■

Tom Gilb and Kai Gilb

Tom Gilb and Kai Gilb have, together with many

professional friends and clients, personally de-

veloped the agile methods they teach. The meth-

ods have been developed over five decades of

practice all over the world in both small companies

and projects, as well as in the largest companies

and projects. Their website www.gilb.com/downloads offers free

papers, slides, and cases about agile and other subjects.

There are many organisations, and individuals, who use some or

all of their methods. IBM and HP were two early corporate-wide

adopters (1980, 1988). Recently (2012) over 15,000 engineers

at Intel have voluntarily adopted the Planguage requirements

specification methods; in addition to practicing to a lesser extent

Evo, Spec QC and other Gilb methods. Many other multinationals

are in various phases of adopting and practicing the Gilb methods.

Many smaller companies also use the methods.

Tom Gilb

Tom is the author of nine published books, and hundreds of pa-

pers on agile and related subjects. His latest book ‘Competitive

Engineering’ (CE) is a detailed handbook on the standards for the

‘Evo’ (Evolutionary) Agile Method, and also for Agile Spec QC. The

CE book also, uniquely in the agile community, defines an Agile

Planning Language, called ‘Planguage’ for Quality Value Delivery

Management. His 1988 book, Principles of Software Engineering

Management (now in 20th Printing) is the publicly acknowledged

source of inspiration from leaders in the agile community (Beck,

Highsmith, and many more), regarding iterative and incremental

development methods. Research (Larman, Southampton Univer-

sity) has determined that Tom was the earliest published source

campaigning for agile methods (Evo) for IT and Software. His first

20-sprint agile (Evo) incremental value delivery project was done

in 1960, in Oslo. Tom has guest lectured at universities all over

UK, Europe, China, India, USA, Korea – and has been a keynote

speaker at dozens of technical conferences internationally.

Twitter: @imtomgilb

Kai Gilb

Kai Gilb has partnered with Tom in developing these ideas, holding

courses and practicing them with clients since 1992. He coa-

ches managers and product owners, writes papers, develops the

courses, and is writing his own book, ‘Evo – Evolutionary Project

Management & Product Development.’ Tom & Kai work well as a

team; they approach the art of teaching their common methods

somewhat differently. Consequently the students benefit from

two different styles.

> about the authors

http://www.gilb.com/dl603
http://www.gilb.com/dl575
http://www.gilb.com/tiki-list_file_gallery.php?galleryId=15
http://www.gilb.com/tiki-list_file_gallery.php?galleryId=15
http://www.gilb.com//dl581
http://www.gilb.com/dl460
http://www.gilb.com/dl460
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com//tiki-download_file.php?fileId=77
http://www.gilb.com/tiki-download_file.php?fileId=487
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com/tiki-download_file.php?fileId=350
http://www.gilb.com//dl581
http://www.gilb.com/dl568
http://www.gilb.com/dl23
http://www.gilb.com/dl41
http://www.gilb.com//Site+Content+Overview
http://www.gilb.com//Site+Content+Overview
http://www.gilb.com/downloads
https://twitter.com/imtomgilb

Page 40 Agile Record – www.agilerecord.com

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: training@diazhilterscheid.com
Website: training.diazhilterscheid.com

Book your training with Díaz & Hilterscheid!

CAT – Certified Agile Tester

CAT is no ordinary certifi ca-
tion, but a professional
journey into the world of
Agile. As with any voy-
age you have to take
the fi rst step.

HP Quality Center

Incorporate the abundant tool knowl-
edge of HP Quality Center in this work-
shop: From the module architecture to

analyzing and customizing. You will be able
to confi gure your test project, utilize require-
ment data, execute effi cient test cases, and
apply effi cient solution to discovered issues.

HP QuickTest Professional

This workshop enables the quick and effi cient
Use of QTP. Discover the individual functions:
documentation, reproduction, object reposi-
tory, application of Sync points and Verifys,
utilization of Active Screens, Features Data
Tables, and the linkage to QC for automatized
testing, producing and applying results.

Certified Agile Essentials

This two-day course is aimed at anyone in-
volved in software engineering who wants
to become familiar with working in an Agile
environment, giving candidates a solid under-
standing of roles, processes and techniques
used in Agile projects. It provides an overview
of the activities building on a basic under-
standing, reinforced through a heavy empha-
sis on discussion and practical application.

IREB® Certified Professional
for Requirements Engineering –
Foundation Level

This training course introduces you to the
correct and complete specifi cation, docu-
mentation, checking
and management of
requirements. You will
learn techniques, proce-
dures and tools, and you will be introduced to
the fundamentals of communication theory.
The training course is aligned to the syllabus of
the independent International Requirements
Engineering Board (IREB®).

ISTQB® Certified Tester

Foundation Level

In this training course
you will learn about the
most important test tech-
niques and procedures
that you can use to pre-
pare and execute software tests effi ciently
and effectively, and which will help you
to make a decisive contribution to your
project’s success.

Advanced Level – Test Manager

Building on the fundamental knowledge of
the Foundation Level, this course teaches
you all of the theoretical planning, steering
and control tasks in test management and
discusses your possibilities for their practical
implementation using examples.

Advanced Level – Test Analyst

Based on the basic knowledge taught in
the Foundation Level course, this training
will teach you in-depth knowledge about
technical testing tasks and review tech-
niques. In this connection, your possible
course of action in every-day work situ-
ations will be discussed with the help of
numerous examples.

Advanced Level –
Technical Test Analyst

Based on the basic knowledge taught in
the Foundation Level course, this training
will teach you in-depth knowledge for
structure-based testing tasks and test au-
tomation matters. In this connection, your
possible course of action in practice will
be discussed with the help of numerous
examples.

In-house Training: All of our training courses are available as private/in-house training.
Please contact us for details.

For more training courses and current training dates, please visit our website or contact us:

Online Training

Save up to 60 % with online training!
Visit our online shop to see what courses
are available:
www.te-trainings-shop.com

−60 %

http://www.diazhilterscheid.de/en/training.php?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Book+your+training+with+D&H!

Page 41 Agile Record – www.agilerecord.com

Test automation is the process that executes generated test
cases with automated testing tools and compares the predicted
output with actual output. Although many defects can be found
with manual testing, it is a time consuming (and, to be honest,
too boring) process. Automated tests generate test cases
automatically and execute all the test cases in the same way
each time. This process reduces human error and costs, since
automated tests can be run repeatedly and quickly.

There are various automated test tools used in the software
test life cycle. In this paper I want to demonstrate an auto-
mated dynamic black box testing approach with Selenium IDE
and Webdriver. Firstly, why Selenium? Selenium is a browser
automation framework and Selenium IDE is the integrated
development environment that allows recording, editing, and
debugging tests. You do not need to learn a test scripting
language to use Selenium. It is implemented as a Firefox exten-
sion and deploys on different Linux, Windows, and Macintosh
platforms. Once you record a test case using Selenium IDE,
the recorded test case can be exported in most programming
languages such as Java, .net, Perl, Ruby, and HTML. You can
record scripts automatically and edit manually. Editor provides
you with autocompletion.

Selenium Webdriver is the automated testing tool for testing
web applications. With Selenium 2, Selenium Remote Control
has been deprecated in favor of Selenium Webdriver. It provides
Java API for ease of use and understanding. Simply, it is the
process of writing a JUnit or Test NG test case in a Java Project
and executing the test case in a “main” method. Any condition
in the test case can be controlled using if-else conditions. It
enables the creation of dynamic test cases which means you
can test dynamic web pages whose data can be different at
any time, so the test case can fail. In Selenium 1, Selenium
Remote Control was necessary to run the tests. With Selenium
2, Selenium Remote control has been officially deprecated in
favor of Selenium Webdriver. Selenium Webdriver does not
need a server to run the tests. It directly starts a browser and
executes tests.

Selenese is the name of Selenium commands. You can de-
velop tests and use Selenium IDE running on Firefox. So you
can execute your tests against other browsers instead of only
executing on Firefox. A test script is formed as a sequence of
selenese. Selenium provides very rich command sets so you
can completely test your web application. In selenese, you
can test your UI elements based on HTML tags, list options,
form submissions, or table data. Selenium provides testing
windows size, alerts, and dynamic contents on your webpage,

mouse position, alerts, pop-ups, and so on. Selenium has
three different command types, which are Actions, Accessors
and Assertions. Actions indicate the “select this” or “click
on this”, etc. Accessors are the commands that examine the
state of the application and store the result. Assertions verify
the state of the application and make comparisons with the
expected result. You can control that the application is on the
correct page using Assertions.

Matrix Tree Sample Test Set

include testSetup.html

open ${GIPATH}/shell.html?jsxapppath=
${SAMPLESPATH}/32test-matrix

waitForElementPresent JsxToolbarButtonName=tbbTree 5000

assertElementPresent JsxToolbarButtonText = Tree

click JsxToolbarButtonText = Tree

verifyElementNotPresent JsxMatrixTreeItemId=mtxTree,4

verifyElementNotPresent JsxMatrixTreeItemId=mtxTree,5

clickJsxMatrixToggleTree JsxMatrixTreeItemId=mtxTree,3

pause 1000

verifyVisible JsxMatrixTreeItemId=mtxTree,4

clickJsxMatrixToggleTree JsxMatrixTreeItemId=mtxTree,4

pause 500

verifyVisible JsxMatrixTreeItemId=mtxTree,5

Table 1. Selenese

Blackbox testing is the process of examining the functionality
of an application without taking into consideration the internal
progress. If we think of the application as a black box, the black
box testing approach is about whether the black box gives the
same output with the same input. It does not consider what
happened inside the black box. You can use Selenium Webdriver
for automated black box testing of your webpages.

Black Box Testing

Executable
Program

Input Output

Figure 1. Blackbox Testing

Automated Blackbox Testing
of New Age Websites
by Nilay Coşkun

With Selenium Webdriver you can check if you are on the right
web page with Assertions. Selenese allows that to check the
page elements. You can verify whether an element is on the
page, if a text is on the page, or if a text is at the special lo-
cation of the page. You have to give a target to the Selenium
commands and this can be XPath. Xpath shows the location
of nodes in an XML document. So you can use Xpath to refer
to an element in the HTML. You can use a name or attribute
for locating, but using XPath makes your tests more robust.

When developing a test, Selenium allows debugging and the
use of breakpoints and starting points.

Let’s assume that you are going to generate an automated
test case for booking a flight from New York to San Francisco
for today. When recording a test case with Selenium IDE, the
steps are simply:

 ■ Open the web page with a given url.

 ■ Verify the page

 ■ Select From

 ■ Verify the From node *Optional

 ■ Select To

 ■ Verify the To node *Optional

 ■ Select today’s date

 ■ Verify the date node *Optional

 ■ Verify the Submit button *Optional

 ■ Submit the form

 ■ Check the result

The expected result would be the list of flights. The next step
is selecting a flight and making a reservation. With Selenium

IDE, we can select a flight and submit the form. But if the
selected flight is not available or there is no available flight at
all for this date, what will happen? We should control such a
case dynamically so the test case executes successfully at
any time. In this case, if the flight result list is empty our test
case will fail. Webdriver allows controls to be made in the test
case for any situation.

The reason why we use Selenium IDE and Webdriver together is
because we record a test case using Selenium IDE and execute
the test case using Webdriver API. It enables the exported test
case to be edited instead of having to write the entire case
right from the beginning. There are various cases in which
exported Java code cannot be executed by Webdriver, since
some codes are not compatible with Java. But this approach
enables effective automated test cases to be generated for
most of the cases. ■

Nilay Coşkun

Nilay is from Turkey and has been living in Istan-

bul for 3 years. She received her Bachelor of

Science in Computer Engineering at University of

Kocaeli. She still continue Masters at Istanbul

Technical University, Computer Engineering De-

partment. She has been working for Eteration for

3 years. She had different roles on different projects for telecom-

munication companies such as Business Analyst, Quality and Test

Manager and Project Manager.

Twitter: @nlycskn

> about the author

https://twitter.com/nlycskn

Page 43 Agile Record – www.agilerecord.com

The famous Refactoring book by Martin Fowler (martinfowler.

com/books/refactoring.html) is focused on improving the de-
sign of object oriented code. Now, functional programming
is becoming more and more popular for several reasons and
modern programming languages are becoming multi-paradigm,
supporting functional programming (FP) in addition to object-
orientation (OO). In this article I present ideas on applying
refactoring through functions with JavaScript, not necessarily
using FP.

One of the popular multi-paradigm languages is JavaScript
whose functional aspect was inspired by Scheme, a Lisp dia-
lect. Like many other people, I started using JavaScript as an
object-oriented language, trying to port my style from C# or
Java, or even Python. And you can do it, but it is not natural,
as you are not taking advantage of the powerful features of
the language. I like the idea of OOP for high-level design and
FP for lower level operations. They can be mixed up in any way,
but I prefer OOP for the high level because I find it expresses
better the metaphors from the business domain. It depends
on the problem, though.

FP brings immutability which makes it suitable for concur-
rency and parallel algorithms, as the state of the variables
does not change. This avoids race conditions and deadlocks,
for example. The multi-core machines we have today are one
reason for FP to become popular. Immutability saves us from
defects related to the state of the objects, even if we do not
have concurrency.

But the fact that we use functions in JavaScript does not mean
we are using a functional programming approach. You can
use functions and still change the state because it is a hybrid
language. Thus, not only the multi-paradigm aspect is an ad-
vantage in JavaScript, but also the way it supports functions.

Functions in JavaScript are first-class citizens like any other
type in the language, so they can be passed in as arguments
or returned from other functions. Moreover, every function
defines an environment that can have nested functions and
closures. A closure is a function that has “free” variables, i.e.
variables defined in an outer environment:

1 function() { // pure function
2 var x = 1; // local variable
3 function() { // closure
4 x = 2; // free variable
5 var y = 3; // local variable
6 }
7 }

The inner function in the example is a closure. It has access to
the variable “x”. The outer function is a pure function because

it has no free variables. Variable “y” is only accessible in the
closure, whereas “x” is visible in both functions.

Some time ago I used to think that, given an OOP design, I
should not pass functions as arguments to other functions
because that could break encapsulation. Well, JavaScript blurs
the lines because functions are also a particular kind of object:

1 var f = function(a,b) { return a + b;};
2 f.length; // 2
3 f.someOtherDynamicProperty = 5; // created on the fly

It turned out that I was wrong. To decide whether you are
breaking design principles like encapsulation or the Single Re-
sponsibility Principle, you have to look at each particular case.

And the same applies to other multi-paradigm languages like
C# or recent versions of Java.

Douglas Crockford in his book “JavaScript: The Good Parts”
shows an alternative way to design classes, called functional

inheritance. This is the style I use now in my code:

1 function someClass() {
2 var self = {};
3 var privateMember;
4 function privateMethod() {/*...*/}
5 self.publicMethod = function() {/*...*/}
6 return self;
7 }
8 function someChild() {
9 var self = someClass();
10 self.publicMethod = function() {

/* overriding method... */};
11 return self;
12 }
13 var someInstance = someChild();
14 someInstance.publicMethod();

It is clear and saves me from making typical mistakes with the
“this” and “new” keywords. I would like to say “thank you” to
my friend Guillermo Pascual for telling me about this and also
about the JavaScript Allongé book (leanpub.com/javascript-

allonge), which is the one that gave me the following ideas on
refactoring.

Let’s see how combinators provide a very interesting way to
refactor duplicated code.

As Reginald Braithwaite explains in the book, a basic definition
of combinator is a function that takes only functions as argu-
ments and returns a function. I cannot think of combinators
straight away when I start off a new piece of code, my brain
just does not work that way. The code is too smart for me to
start with. In this case, smart does not mean hard to read. So,
reading the book could be a bit frustrating until you see how
powerful combinators can be in removing duplication. Say you
have these two functions:

Refactoring to Combinators
by Carlos Blé

http://www.martinfowler.com/books/refactoring.html
http://www.martinfowler.com/books/refactoring.html
https://www.leanpub.com/javascript-allonge
https://www.leanpub.com/javascript-allonge

Page 44 Agile Record – www.agilerecord.com

1 function doSomething(arg1) {
2 if (arg1 !== null && arg1 !== undefined)
3 doTheStuff(arg1);
4 /*... some code ...*/
5 }
6 function doOtherThing(arg1) {
7 if (arg1 !== null && arg1 !== undefined)
8 doTheOtherStuff(arg1);
9 /*... some code ...*/
10 }

As you can see, there is duplication. The first thing we can
do is to extract a method with the condition we are checking.
I always encapsulate complex conditions into methods, and
I consider them complex when there is a logical operation
or anything that makes me think in order to understand the
condition. But, even if we create a method and the code reads
better, we still have some kind of duplication. Let’s get rid of
it with a combinator:

1 function maybe(fn) { // our combinator
2 return function(arg1) {
3 if (isSomething(arg1)) // the extracted method

containing the former conditional
4 return fn(arg1); // invoking the target function
5 }
6 }
7 // The refactored code:
8 function isSomething(arg1)
9 return arg1 !== null && arg1 !== undefined;
10 function doSomethingWith(arg1) {
11 doTheStuff(arg1);
12 /*... some code ...*/
13 }
14 var doSomething = maybe(doSomethingWith); // new function
15 function doOtherThingWith(arg1) {
16 doTheOtherStuff(arg1);
17 /*... some code ...*/
18 }
19 var doSomeOtherThing = maybe(doOtherThingWith);

// new function

There is no duplication now! The behavior is exactly the same
and we have not broken anything. Now, this “maybe” combinator
borrowed from Haskell is not generic, it will not work for all the
cases. But you might not need it to be generic at this point.
Especially if you are test-driving the code, you know it will get
more generic as the tests get more specific so you don’t have
to take too big steps. If all your usages of the “maybe” combi-
nator are the ones above, you can leave it like that as long as
the combinator is placed where other developers understand
that it is not generic enough for other cases. The good part
is that this code is simpler and easier to understand than
the generic maybe combinator (www.leanpub.com/javascript-

allonge/read#maybe) you can find in the book. It is up to you
and your needs. I would keep it as a private function if it is not
a general purpose combinator.

Another example is the “fluent” combinator for creating fluent
APIs. Fluent interfaces (www.martinfowler.com/bliki/FluentInter-

face.html) are often used in the Test Data Builder (www.c2.com/

cgi/wiki?TestDataBuilder) pattern as well as test doubles librar-
ies and, of course, production code.

This is the code without the combinator. Can you find the
duplicated behavior?

1 function someClass() {
2 var self = {};
3 var someProp, otherProp;
4 self.withProperty = function(val) {
5 someProp = val;
6 return self;
7 };
8 self.andProperty = function(val) {
9 otherProp = val;
10 return self;
11 };
12 return self;
13 }
14 var someInstance = someClass().withProperty(5).

andProperty(7); // usage

As you can see, both setters return the object itself in order for
the API to be fluent. We can consider this as a kind of duplica-
tion. Let’s remove it with the “fluent” combinator:

1 function someClass() {
2 var self = {};
3 var someProp, otherProp;
4 function fluent(fn) { // our combinator
5 return function(arg1) {
6 fn(arg1);
7 return self;
8 }
9 }
10 self.withProperty = fluent(function(val) {
11 someProp = val;
12 });
13 self.andProperty = fluent(function(val) {
14 otherProp = val;
15 });
16 return self;
17 }
18 var someInstance = someClass().withProperty(5).

andProperty(7);

This gives the same behavior with no duplication, and it also
documents the code by making it explicitly part of a fluent API.
As with the previous example, the combinator is not generic
enough. A generalization could be this:

1 function fluent(fn) {
2 return function() {
3 fn.apply(self, arguments);
4 return self;
5 }
6 }

These two combinators can give you an idea of how powerful
functions can be in removing duplication, which is one of the
major aims of refactoring. Notice how the second code example
is object-oriented and we still use functions to remove duplica-
tion without breaking encapsulation.

When working with collections, the benefit of the combinators
is more obvious. Repeating the same kind of loop over and over
may be a symptom of the fact that we can extract a combinator
to solve the problem for us. The combinators I have seen so
far that operate on collections have their basis in the “Array.
prototype.map” function that comes with ECMAScript 5, now
supported by all modern browsers (for older browsers there are
powerful libraries like Underscore (underscorejs.org)).

Imagine I have a list of objects and I want to collect only a
certain attribute:

https://www.leanpub.com/javascript-allonge/read#maybe
https://www.leanpub.com/javascript-allonge/read#maybe
http://www.martinfowler.com/bliki/FluentInterface.html
http://www.martinfowler.com/bliki/FluentInterface.html
http://www.c2.com/cgi/wiki?TestDataBuilder
http://www.c2.com/cgi/wiki?TestDataBuilder
http://www.underscorejs.org/

Page 45 Agile Record – www.agilerecord.com

1 var items = [
2 {propA: 1, propB: 2},
3 {propA: 7, propB: 8}
4];
5 function collectPropA(items) {
6 var result = [];
7 for (var i = 0; i < items.length; i++)
8 result.push(items[i].propA);
9 };
10 function collectPropB(items) {
11 var result = [];
12 for (var i = 0; i < items.length; i++)
13 result.push(items[i].propB);
14 };

You can remove duplication by passing the name of the property
as a parameter to the function:

1 function collectProp(items, propName) {
2 var result = [];
3 for (var i = 0; i < items.length; i++)
4 result.push(items[i][propName]);
5 };

But you can also use the “map” built-in function:

1 function collectProp(items, propName) {
2 items.map(function(i) { return i[propName]});
3 }

Now imagine I need to implement another functionality in the
array of objects:

1 function calculate(items) {
2 items.map(function(i) { return i.propA + i.propB});
3 }

We can extract that particular behavior using the “mapWith”
combinator:

1 function mapWith(fn) {
2 return function(items) {
3 return items.map(fn);
4 };
5 };
6 var calculate = mapWith(function(i) {

return i.propA + i.propB; });
7 var collectPropA = mapWith(function(i) {

return i.propA;});

We are avoiding duplicating the loop, where I usually make
mistakes because I tend to write “lenght” rather than “length”
and it does not complain about this. Even if we use the map
function for both implementations, that is duplication. If we
need to replace the “map” implementation with Underscores,
we would need to change several lines. On the other hand, if
it is encapsulated in the “mapWith” combinator, we only have
to change it in one place.

I am looking forward to reading the book “Functional JavaScript”
by Michael Fogus.

I believe someone will write a book on “Refactoring for JavaS-
cript” in the near future. In the meantime, enjoy the great books
mentioned in this article, I totally recommend them. ■

Carlos Blé

Carlos Blé started using computers at the age of

six, when his father bought a PC with the Intel

8086 and some books on the Basic programming

language. Since then, he has been learning how

machines can be used to build a better world. He

started earning money by writing software back

in 2000. In 2008, Carlos started using TDD for pretty much every

piece of software he needed to write. In 2010, he published the

first book on TDD in the Spanish language. Over the last three

years, he has been training developers in several countries and

writing code with them. Apart from that, he has been investing

his time and money in several web start-ups, always applying what

he teaches to his own crafted software.

Twitter: @carlosble

Website: www.carlosble.com

> about the author

https://twitter.com/carlosble
http://www.carlosble.com

Page 46 Agile Record – www.agilerecord.com

I like metaphors, they help people see things from differ-
ent perspectives and also stimulate thinking that normally
wouldn’t happen when discussing a subject in a traditional
one-dimensional way.

My metaphor is between the human body and the code base
of an application you are building and maintaining. Let’s think
about your application as a living organism, in particular I will
compare it to the body of a teenager.

Artwork by Xavier Salvador

Teenagers grow quickly and so does our software when our
business partners constantly seek the delivery of new require-
ments to satisfy our customers. Teenagers grow fast, their
bones get longer, their hair grows in places that were bare
before, and their muscles become bigger and stronger. Agile
teams often have to cope with ever-changing requirements and
a fast-growing code base. Now think of a user story like a meal
or a drink that our teenager will have. Food and water (some
alcohol, we’re in Ireland) will be transformed in the teenager’s
body and will turn into larger bones, stronger muscles, facial
hair, etc. All good until now, right?

Then what happens when the teenager eats food that is out
of date, or maybe one night he has too much to drink? Well

the human body is equipped with an amazing self-defence
tool called the immune system that will do its best either to
eject the poisonous food and drink or to combat it and make
a dangerous situation into a simple stomach ache or at worst
a hangover.

Imagine what would happen if the human body did not have
such a defence mechanism. Out of date food could kill the
teenager, and an excess of alcohol could poison his blood
and cause a lot of damage to our poor silly teenager who had
one too many.

Our body is really good at dealing with these situations, but
is our code base?

What happens when some really bad code gets into the sys-
tem? Well the first to know will be our customers. They will
not be able to get the value that they normally expect and this
might mean that they go and get that value somewhere else.
Following that sequence might mean that one day we end up
with no customers and our software and company will die, just
like a sick teenager with no antibodies.

What do I mean by really bad code? Really bad code is code that:

1. Doesn’t have any tests.

2. Has bad naming conventions.

3. Contains duplications.

4. Is tightly coupled.

5. Is not maintainable.

6. When a developer looks at it for the first time he says
“What the heck?” (thanks uncle Bob), holds his head in
his hands, and asks himself: “Why didn’t I go to business
school?”

What can a developer do to stop the rot? What is the software’s
immune system? Fear no more, REFACTORING comes to the
rescue. You might say: “Yeah, sure, easy said, but what if I
break something else?” Well, look at the above list once again.
What do you read in point 1? Tests, uhm …

Tests are the first defence; they are your vaccine for the next
time that you inject similar bad code. The vaccine will tell you
straight away not to push that change into your body, how
about that?

If you are dealing with a bad piece of code with no vaccine and
you want to cure it, the first thing you need to do is to write a
lot of tests. To guarantee that you will not break anything, you
need to build a safety net around your poisonous code. If the
code is so coupled that resembles an Italian dish also known
as Bolognese, then you might not be able to write good unit

Build Your Immune System
and Maintain a Healthy Codebase
by Augusto Evangelisti

tests at first until you untangle it a bit. You could write some
integration tests that cover a group of tangled classes; they
will not be pretty but they will represent some kind of safety
net when you start refactoring. The deeper you get into refac-
toring, the more you will discover that writing tests becomes
easier, because clean code is also more testable code. See,
we are getting there.

Step back for a minute now and you will be thinking: “OK this
is painful and I don’t want to do it, so what can I do to avoid it
all together?” Well, there is a solution. Start writing only clean
code with loads of tests and refactor every time it is neces-
sary; don’t think somebody else will do it for you. Writing a lot
of unit and integration tests will give you the confidence of
refactoring without having to worry about having unleashed a
chain reaction that will ignite a nuclear war. Because your code
is clean, simple, and has a lot of tests that will warn you very
quickly when something is not quite right. Make sure that you
keep that beautiful teenage body in perfect shape, so that if
he eats a poisonous user story, you can be the immune system
and refactor him into good health!

A few months ago we were releasing the MVP (Minimum Valuable
Product) for a very important and risky project on the Sunday
and at the stand-up on Friday one of our most senior developers
said: “Lads, I found a small issue with component X and I think
we need to change the way we operate there. I will need to do
a refactor, I will be finished today anyway.” Nobody said any-
thing and I thought I had reached “agile development nirvana”
because the fact that nobody said anything and worried about
anything demonstrated clearly that our code was in such good
state and had such a great automatic regression suite that
our friend’s refactor was not going to break anything and we
would be releasing on schedule on Sunday with no problems.

Now ask yourself, how many times have you worked in a team
that has had to postpone a small change without even men-
tioning refactors because it was too close to delivery day and
considered too risky? Well, in my career about a thousand
times. And now imagine a team that trusts so much with its
codebase that you can change it 10 minutes before going to
production. In which team would you rather be?

Defend your teenager codebase, write loads of tests, and
always refactor! ■

Augusto Evangelisti

Augusto “Gus” Evangelisti is a software develop-

ment professional, blogger, foosball player with

great interest in people, software quality, agile

and lean practices. He enjoys cooking, eating,

learning and helping agile teams exceed customer

expectations while having fun.

Twitter: @augeva

Website: mysoftwarequality.wordpress.com

> about the author

https://twitter.com/augeva
http://mysoftwarequality.wordpress.com

Page 48 Agile Record – www.agilerecord.com

The Magazine for Testers, Developers and Managers

Testing Experience DE is our fi rst German-language magazine that deals
with current topics of the software development industry. Subscribe to the
free online edition and download the fi rst three issues, “Testing made in
Germany! Was machen wir gut?”, “Der Weg zum agilen Testen”, and “Mobile
App Testing”.

Call for Articles
Calling all German software wizards and gurus! Your article submissions
are now being accepted for the fourth issue of Testing Experience DE, on the
topic of “Testautomatisierung” (test automation). Share your insights and
submit your articles by November 15, 2013!

www.testingexperience.de

http://www.testingexperience.de/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=TE+DE+CfA

Page 49 Agile Record – www.agilerecord.com

One of the main reasons for refactoring software frameworks
is the need to enable reuse of the software developed. This
process often occurs as a generalized act where a specific
solution becomes an abstract superclass [1]. This refactoring
not only clarifies the design of the framework, but ensures
better consistency by defining the abstraction in one place.
The concrete classes retain the behavior, although it is now
inherited rather than being locally defined. This wisdom and
other observations on the nature of software refactoring were
first presented by WILLIAM F. OPDYKE in his doctorate thesis
(1992). TDD involves short, rapid iterations of “write a test,
write the code to make the test pass, and refactor”. These
short iterations provide rapid feedback. Refactoring of both
the test and code ensures that everything is performed to
ensure simplicity and readability of the emerging code. In
other words, refactoring is a transformation that preserves
the external behavior of a program and improves its internal
quality[2], and there is some concern to ensure refactoring
is not actually rework. Needless to say, while writing the unit
test the developers have the white-box testing techniques that
assist them in ensuring a wide coverage of the written code.
Nowadays the world is much more advanced through the recent
TDD approach where Refactoring of the code has become a
mandatory part of the development process. The goal of this
article is to suggest a similar approach to unit test code. Here
we try to shift the reuse into expanding the functionality of
the unit test. The importance of refactoring the unit test is
increasing and there is the need to use the White-box Test
Techniques, because in some cases it is only after you have
implemented the code that the developer understands which
technique needs to be implemented (e.g. decision coverage
or branch coverage).

Test-driven development (TDD) is a disciplined development
practice that involves writing automated unit tests prior to
writing the unit under test [3]. By writing a test first, the soft-
ware developer must make detailed design decisions such
as determining the interface and expected behavior of a unit
before actually implementing the unit.

Traditionally TDD focuses on unit tests (methods and classes)
and occurs primarily in the software construction phase, often
following some level of requirements engineering and software
architecture definition.

Sometimes unit test patterns are not enough. As a result,
developers have to refactor their code to make it ‘testable’.
Examples of code that needs to change include:

 ■ Singleton classes

 ■ Calls to static members

 ■ Objects that do not implement an interface (as required
for the mock object pattern)

 ■ Objects that are instantiated in the code being tested

 ■ Objects that are not passed to the method (as required
for mock object pattern)

The main problem is that refactoring without unit tests to make
the code testable, e.g. for the benefit of writing tests for it,
does not make sense. It is risky and costly.

Exploring the origin for the unit test will make it easier to under-
stand the current situation and status of tools, and its usage:

Some history. At the beginning of the software development,
when attempting to test a certain functionality, the testers
were faced with the challenge of needing to have the program
ready and operational before attempting to actually execute the
test (the compiler would not let you execute the code before
completing all the necessary declaration and build of all affili-
ated infrastructure). Only then was the tester able to perform
the specific test. Apart from running the program in a debug
mode, when we needed to test the precise functionality we had
to develop an isolation mechanism to ensure we were testing
a specific code behavior. In order to do so we had to develop
new code to mask the tested unit and inject artificial informa-
tion into the tested object so the program would be executed

Reuse of Unit Test Artifacts
Allow Us to Dream
by Yaron Tsubery & Dani Almog

Page 50 Agile Record – www.agilerecord.com

(this sometime called mock mechanism). In many cases, the
tested program and the actual final code were very different. It
was only when the world moved into interpreter mode program
execution that isolation was enabled more naturally and unit
test infrastructure appeared.

Unit test infrastructure was designed as a key element to enable
isolation of the tested code prior to the full implementation of
each object. Today we have literally hundreds of similar tools
and add-ons for almost every software development environ-
ment. The following is just an example of the many Unit-derived
test tools [4].

xUnit Family Members

JUnit The reference implementation of xUnit, JUnit is by far the most
widely used and extended unit test framework. It is implemented in
and used with Java

CppUnit The C++ port of JUnit, it closely follows the JUnit model.

NUnit The Unit for .NET. Rather than being a direct port of JUnit, it has
a .NET-specific implementation that generally follows the xUnit
model. It is written in C# and can be used to test any .NET lan-
guage, including C#, VB.Net, J#, and Managed C++.

PyUnit The Python version of xUnit. It is included as a standard component
of Python 2.1

SUnit Also known as SmalltalkUnit, this is the original xUnit, and the basis
of the xUnit architecture. It is written in and used with the Smalltalk
language.

vbUnit vbUnit is xUnit for Visual Basic (VB). It is written in VB and supports
building unit tests in VB and COM development.

utPLSQL utPLSQL is xUnit for Oracle’s PL/SQL language. It is written in and
used with PL/SQL.

MinUnit A great example of a minimal but functional unit test framework. It
is implemented in three lines of C and is used to test C code.

xUnit Extensions

Beyond the xUnits themselves, many add-on tools are available
that extend the functionality of existing unit test frameworks into
specialized domains, rather than acting as standalone tools.

XMLUnit An xUnit extension to support XML testing. Versions exist as exten-
sions to both JUnit and NUnit.

JUnitPerf A JUnit extension that supports writing code performance and scal-
ability tests. It is written in and used with Java.

Cactus A JUnit extension for unit testing server-side code such as servlets,
JSPs, or EJBs. It is written in and used with Java.

JFCUnit A JUnit extension that supports writing GUI tests for Java Swing
applications. It is written in and used with Java.

NUnitForms An NUnit extension that supports GUI tests of Windows Forms appli-
cations. It is written in C# and can be used with any .NET language.

HTMLUnit An extension to JUnit that tests web-based applications. It simu-
lates a web browser, and is oriented towards writing tests that deal
with HTML pages.

HTTPUnit Another JUnit extension that tests web-based applications. It is
oriented towards writing tests that deal with HTTP request and
response objects.

Jester A helpful extension to JUnit that automatically finds and reports
code that is not covered by unit tests. Versions exist for Python
(Pester) and NUnit (Nester). Many other code coverage tools with
similar functionality exist.

Regardless of the specific tool, the unit test principle is de-
scribed in the following diagram:

Unit Test
(Param1, Param2,
expected results)

assertions

Unit to be tested
(Param1, Param2)

Param1 Param1

Natural operation environments

Many organizations have already adapted the unit test as a
standard development procedure. So a lot of effort is allocated
to this task. It is our claim that most of this effort is made for
one-time use regardless of the reusability nature of the unit test
infrastructure. Actually most of these tools make it relatively
easy to repeat the test action automatically, especially if the
organization has adapted TDD as well. It is understandable,
since there is no reason to repeat the tests provided nothing
has changed. Remember – most of the unit will not change
after the refactoring action. Since unit test is testing isolated
code, there is no reason to add unit test artifacts into your
regression test suite if the code has not been changed.

Does it have to be like this? Ideally we would like to see the
refactoring process for the unit test code enable it to integrate
with other unit test artifacts. Hoping for this to happen is like
saying “We want a circle to transform into a square”. In other
words, I want to transform the isolated unit test item (repre-
sented by an independent sphere) into a cubical shape where
each edge connects to another cube. This means refactoring
the unit test into a different type of test – one that interacts
with external entities.

Flow of integrated unit testsIsolated – independent unit tests

Refactoring

You could say: “This is a contradiction of all we have achieved;
the unit test was created to isolate not integrate.” we do believe
we are mature enough to try to overcome this contradiction and
present two modes of operation for the unit test.

In order to better understand the implication of this change,
we must explore the unit test mechanism a bit more deeply.

Assertions are the key to unit testing

We probably all know about the importance of a good unit test
suite for our projects and about the Arrange-Act-Assert (AAA)
pattern we should be using in our tests. The one thing we do
consider a must in each and every unit test is an assertion.

Page 51 Agile Record – www.agilerecord.com

Unit Test

Basic Blockassert assert assert assert

assert assert assert

Assert Classes
(Void)

Input

No output

An assertion not only decides whether the test passes or fails,
it also makes the purpose of the test clear and ensures it is
verifiable. A test without an assertion is nothing more than a
random snippet of code. The key to this revolution is centered
in the unit test isolation and assertion principles. The asser-
tion mechanism is articulate in different forms in the different
tools and infrastructures. In order to demonstrate this aspect,
we will elaborate and present the two leading tools and their
assertion mechanisms in the following chapter.

Assertions in Nunit

In a similar way to some small differences in Nunit (for C#), the
Assert classes only deal with static arguments. As explained
in: www.nunit.org/index.php?p=assertions&r=2.2.8

In the Nunit test tool, the Assert class provides the most com-
monly used assertions. Assert methods are grouped as follows:

Equality Asserts

These methods test whether the two arguments are equal.
Overloaded methods are provided for common value types so
the languages that do not automatically box values can use
them directly.

Identity Asserts

 ■ Assert.AreSame and Assert.AreNotSame test whether
the same objects are referenced by the two arguments.

 ■ Assert.Contains is used to test whether an object is
contained in an array or list.

Comparison Asserts

The following methods test whether one object is greater than
another. Contrary to the normal order of Asserts, these meth-
ods are designed to be read in the “natural” English-language
or mathematical order. Thus Assert.Greater(x, y) asserts that
x is greater than y (x>y).

Type Asserts

These methods allow us to make assertions about the type
of an object.

 ■ Condition tests

 ■ Methods that test a specific condition are named for
the condition they test and take the value tested as
their first argument and, optionally, a message as the
second.

Utility methods

Two utility methods, Fail() and Ignore(), are provided in order
to allow more direct control of the test process.

StringAssert class

The StringAssert class provides a number of methods that are
useful when examining string values.

Assertions in JUnit

In JUnit the Assert class is a static one. Formal declarations
and usage example can be found at junit.sourceforge.net/

javadoc/org/junit/Assert.html#assertArrayEquals(byte[], byte[])
and provide a set of assertion methods useful for writing tests.
Only failed assertions are recorded. These methods can be
used directly.

Assert classes are defined as Void (not returning specific or
internal values), so the only information we get is a pass or
fail verdict.

In addition to the isolation of the unit test, there are three
irritating qualities with the assertion APIs used by the major
unit testing frameworks:

1. You can’t use expressions.

2. We have difficulty in achieving descriptive failure mes-
sages.

3. Unit testing frameworks are not as smart as our compil-
ers.

The root problem of all these difficulties

All of these issues are caused by the same root problem.
Conceptually, unit testing frameworks are an extension of your
compiler. Compilers report static errors such as malformed
code and type mismatches, and unit testing frameworks report
run-time errors such as unexpected values. The reason why unit
testing APIs are so clunky is that our unit testing frameworks do
not have access to as much information as our compiler does.
Compilers have access to the expression trees generated by
our code. They can analyze the code and determine what type
of comparison we are attempting, and whether it is a value
or reference comparison. If the compiler encounters an error
it can print the exact line of code or expression responsible.

An example of current development towards reusability and
ease of use for unit test is the Should Assertion Library (github.

com/erichexter/Should/blob/master/README.markdown). This
provides a set of extension methods for test assertions for AAA
(Assemble, Act, Assert) and BDD (Behavior Driven Development)
which promote /given //when //then style tests. It provides
assertions only, and as a result it is Test-runner-agnostic. The
assertions are a direct fork of the xUnit (unit.codeplex.com)
test assertions. This project was born because test runners
should be independent of the assertions!

Following this description and some experimentation that has
been done, it seems the operational and internal design of unit
test, having the test deals with one assert at the time, does

http://www.nunit.org/index.php?p=assertions&r=2.2.8
http://junit.sourceforge.net/javadoc/org/junit/Assert.html#assertArrayEquals(byte[], byte[])
http://junit.sourceforge.net/javadoc/org/junit/Assert.html#assertArrayEquals(byte[], byte[])
https://github.com/erichexter/Should/blob/master/README.markdown
https://github.com/erichexter/Should/blob/master/README.markdown
http://xunit.codeplex.com/

Page 52 Agile Record – www.agilerecord.com

not enable us to integrate them. When attempting to reuse
unit test in integrated manner, the only possible solution we
currently have is to address the order and the hierarchy of
the tests when trying to use and execute them, so we have a
logical cover of tests for the several units and, therefore, this
shows some sense in the application. Currently we are not

testing integration using unit test artifacts.

In order to achieve this we need to revolutionize our way of

thinking – let’s call this thinking RTF (Right First Time). Devel-
oping test automation is like developing any other software.
If the requirement of the software we are designing includes
integrating tested elements – consider it from the beginning.
It is time to throw down the gauntlet to the X-unit test makers.

We challenge the tools makers to develop a new generation
of I-unit test family tools. These new tools will show new types
of assertions:

 ■ Double toggle ones between

 ò The original static null assertion classes

 ò Integrated assertion where partial parameters used
during the assertion are replaced by the real applica-
tion responses.

 ■ Integrated assert classes where the insertion of param-
eters is done dynamically and the outcome of the previ-
ous test could be used at the next one.

Ideally we can see a new process resembling the software
development. At the beginning you take a quick and dirty ap-
proach and then you refactor your work towards a better stan-
dardized shape.

Unit test items Integrated test“Open” unit test

assert

Refactor
pack

Transform
integrate

Of course, refactoring enabling the “open” quality can come
later (after performing the initial unit isolated unit test). But
results from the new strategy, like the code refactor, could
have been implemented earlier.

Summary

This article proposed a revolution in addressing the unit test
artifacts from an isolated and single purpose (used mostly
by developers) to being an integrated part of reusable testing
artifacts used by all levels of development and quality assur-
ance teams.

All new technologies started with an impossible mission – let us

dream the impossible.

References

[1] Opdyke, W.F., Refactoring object-oriented frameworks.
1992, University of Illinois.

[2] Soares, G.S. Automated behavioral testing of refactor-
ing engines. in Proceedings of the 3rd annual conference

on Systems, programming, and applications: software for

humanity. 2012: ACM.

[3] Hayes, J.H., A. Dekhtyar, and D.S. Janzen. Towards trace-
able test-driven development. in Traceability in Emerging

Forms of Software Engineering, 2009. TEFSE’09. ICSE

Workshop on. 2009: IEEE.

[4] Hamill, P., Unit Test Frameworks: Tools for High-Quality

Software Development. 2009: O’Reilly Media, Inc. ■

Dani Almog

Dani Almog: From Ben Gurion University – senior

researcher and lecturer on Software Quality and

test automation. Dani has very vast experience

in the industry – former test automation managing

director for Amdocs product development division.

Dani is a speaker in professional and academic

international conferences such as, STARW, CAST2009, STP pro-

fessional, Cise2010, STEP2012, ExpoQA-2012, Agile Testing Days,

2012.

Yaron Tsubery

Yaron Tsubery has been working in software since

1990 and has more than 20 years of experience

as a test engineer and test manager. His original

profession was system analyst.

Yaron is the current VP Testing Division Manager

at Ness Technologies. He worked in product and

project management and development for over 3 years before

becoming director of QA and testing manager at Comverse from

2000 until 2013, as well as the CEO and founder of Smartest

Technologies Ltd from 2010 to 2012. Yaron was in charge of a

large distributed group of testing team leaders and test engineers

dealing with functional and non-functional, load and performance

tests.

Yaron has wide experience in banking business processes. For

the last 10 years he has implemented best practices in a field

where he is in charge of producing complex systems for telecom-

munication companies. Yaron is the current president of ISTQB®

and is also the president and founder of the ITCB. Yaron has been

invited as a speaker to a number of international conferences to

lecture on subjects related to testing. He has written articles that

were published in professional magazines.

> about the authors

Page 53 Agile Record – www.agilerecord.com

Autumn had arrived. The trees were wearing a colorful dress
of leaves, the sky was blue, and Jack enjoyed his walk through
the fallen leaves that the wind has arranged in piles along the
footpath. He felt a bit like a little boy again.

When he arrived home he met Lisa who was – as usual – hav-
ing a cup of herbal tea. It smelled delicious.

“Hi,” she said, “How was your day?”

“Fine, actually great. We did some good team work. You might
remember, we are currently designing the new holiday web site
“off you go”. And because my colleagues did not open their
mouths during the meeting with the customer, I could bring up
all my ideas. Et voilà – we are going to do it exactly the way I
want it to be done!”

“Well, that sounds like a real successful day for you. But what
about your team, and the customer – how was it for them?”

“Actually, I think the colleagues were happy that I cut through
that unpleasant silence and made some creative suggestions.
And the customer – well, they listened to everything, they took
my notes and we agreed on a follow up meeting for next week.”

“So you are happy and the customer as well – that’s great!”
Their eyes met and Lisa could tell by the sound of his voice
that not everything was fine.”

“Well…” Jack replied, “Simon, my senior colleague seemed to
be a bit annoyed, but he has mood swings anyway. And Sarah,
our young one, was very quiet – but that is typical for her. And
the customer – hmm, that’s difficult for me to judge. But I think
it’s a good sign that they want to see us again next week in
order to see how we are doing as a team.”

Lisa sipped her cup of tea. She was wondering why Jack was
not able to see that he had lost track of the others. In his world
everything seemed to be okay.

“By the way, we still have to prepare our garden for the cold
season,” she said, looking up from her cup. “Some of our plants
will make it easily through winter, whereas others cannot handle
temperatures below zero, so we urgently have to shift some of
these into the cellar before it gets colder.”

Jack felt this change of subject had taken him harshly out of his
state of self-contentment. He turned towards Lisa and dutifully
asked, “Right – but how do we know which plant needs what?”

Lisa smiled, “Well, we cannot ask them, can we? It’s up to us
to find out. I know what some of them need, but for others we
have to investigate carefully. We want to make sure that none
of them gets harmed accidentally. They are all very different.”

“That’s right”, Jack thought. It would be so much easier if they
could all be treated the same. He opened his notebook and
started his research. And in less than one hour he had all the
facts together and knew what to do.

Lisa brought him a new cup of tea. She was pleased with her
psychology lesson that had made Jack realize his fault. “So,
what have you learnt?” she asked.

“How do gardeners do their job”, Jack sighed, “Every plant
needs a different treatment. I could never keep all of that in
my head. I’m glad that handling my people is not that difficult!”

Lisa dropped her cup and it shattered on the paved floor. ■

Tanja Schmitz-Remberg and Werner Lieblang

Tanja Schmitz-Remberg and Werner Lieblang com-

bine half a century of experience in software

engineering and training various groups. Werner

is working as a tester trainer and agile coach,

Tanja works as a communication and group work

trainer.

Being friends for ages and sharing an enthusiasm

for working with agile groups, they passionately

play impro-theatre and love to dare out-of-the-box

stuff. Together they have developed several trai-

nings for members of the agile community.

> about the authors

By the way …
by Tanja Schmitz-Remberg & Werner Lieblang

Column

Page 54 Agile Record – www.agilerecord.com

Refactoring is well understood today. It is done either seam-
lessly as we write with automatic refactoring tools, or we can
refactor our production code manually with the aid of tests, so
it will be easier to read and maintain over time.

Production code gets all the refactoring glory and fun, but what
about its sibling – the test code? Tests need refactoring too!

Production vs. test code

They look similar, since we use the same tools and languages.
However, production code and test code are different. The
difference lies not in semantics, but rather in the purpose of
the code. With production code we solve a functional problem:
sort an array, complete an operation, or shoot birds to hurt
unsuspecting pigs.

Tests have a different goal altogether. In fact, two goals. The
first is to tell us if something went wrong – functionality that
worked before has stopped working. The second goal is to help
us analyze what went wrong and fix it as quickly as possible.

TDD tests, additionally, help us in the design of the production
code, but this benefit is irrelevant to our refactoring discus-
sion. Even in TDD, you start refactoring when all tests pass,
not when you have a red test. But then we still attribute the
refactoring to the production code, now protected by the tests.

So if tests serve a different purpose, do they perhaps have
different refactoring rules?

What’s in a name?

Test names are important. In fact, they are the second most
important thing about the test. (If you are wondering what is
#1, it is that the test is testing the correct behavior). “Why?”
you ask.

A test lives as long as your application does. That means years,
if not decades. And five years from now it is going to happen
that a programmer who is not even working in this company
yet will break existing functionality. All he has to start with
is a list of test names. Once a test fails, it does its job best
getting you from “found a bug” to “fixed a bug” as quickly as
possible, and the test name is the first clue. It should tell you
as much as it can.

For example: test13 is not a good name for a test. It also
brings bad luck.

The existence of refactoring is the acknowledgement that we
cannot write our best code straight off. We need to iterate
until we find the best suitable design. We can apply the same
acknowledgement to test naming, too. We do not usually find
the best name the first time we write it. In fact, it is only when
we have a bunch of tests surrounding different cases sur-

rounding a functionality that we have enough information to
craft their names.

So the obvious conclusion is that renaming a test (much like
renaming methods and variables) is something we want to do
iteratively, until we believe that it will give us enough informa-
tion to close the bug investigation quickly.

How do we know that the test name works? There are a couple
of questions you want to ask yourself:

 ■ Is this name readable to me?

 ■ Does it describe the test in terms of context and ex-
pected result?

 ■ Is the name of this test differentiated enough from its
other brothers that test close yet different cases?

 ■ If this test alone fails, and its brothers pass, can I un-
derstand the problem?

If you answered “yes” to all of the above, you can move to
the actual exam. Grab someone who does not work on the
feature and ask him the same questions. The longer we wait,
the greater the chances are that we are not going to be the
ones who have to deal with the failing tests. A second set of
eyes can give you the feedback you need.

Divide and conquer

If your test name looks like Recover_Password_Form there is
a smell. Unless you are really starting out, this name usually
means that you are testing big workflows or long scenarios,
and that there is not just one thing to assert. That is good for
integration tests and bad for unit tests.

The way tests have worked for ages is that once something
is wrong (an assertion failure, or a thrown exception), the test
does not continue. So if you have multiple assertions and the
first one fails, you are left with this knowledge alone, without
any information about the rest of the test.

1 [Test]
2 public void Authenticated_Index() {
3 var authenticatedUser = new User();
4 authenticatedUser.Email = "authenticated@email.com";
5 var m_Controller = CreateController<AccountController>

(authenticatedUser);
6 var authorized = ControllerActionInvoker<View Result>().

InvokeAction (m_Controller.ControllerContext,
"Index");

7 Assert.AreEqual(true, authorized);
8 var result = m_Controller.Index() as System.Web.Mvc.

ViewResult;
9 Assert.AreEqual(result.ViewName, string.Empty);
10 var user = result.ViewData.Model as ERPStore.Models.

User;
11 Assert.AreEqual(user.Email, "authenticated@email.com");
12 }

Three Tips for Test Refactoring
by Gil Zilberfeld

Page 55 Agile Record – www.agilerecord.com

As you can see in this example, we are testing three different
assert criteria: authorized is true, view name is empty, and
user’s email is what we originally put in. No wonder we cannot
find a good name for the test!

And, if the first Assert fails, we do not have results for the
other two. We are missing information that could have been
enough for us to understand the problem. Our way to “fix the
bug” just got longer.

Instead, we can refactor our encompassing test into separate
tests, like these:

1 [Test]
2 public void ControllerInvokedIndex_AuthenticatedUser_

True() {
3 var authenticatedUser = new User();
4 var m_Controller = CreateController<AccountController>

(authenticatedUser);
5 var authorized = ControllerActionInvoker <ViewResult>().

InvokeAction(m_Controller.ControllerContext,
"Index");

6 Assert.AreEqual(true, authorized);
7 }

1 [Test]
2 public void Controller_ViewNameOfNewUser_IsEmpty() {
3 var authenticatedUser = new User();
4 var m_Controller = CreateController<AccountController>

(authenticatedUser);
5 var result = m_Controller.Index() as System.Web.Mvc.

ViewResult;
6 Assert.AreEqual(result.ViewName, string.Empty);
7 }

1 [Test]
2 public void Controller_AuthenticatedUser_EmailIsFilled(){
3 var authenticatedUser = new User();
4 authenticatedUser.Email = "authenticated@email.com";
5 var m_Controller = CreateController<AccountController>

(authenticatedUser);
6 var result = m_Controller.Index() as System.Web.Mvc.

ViewResult;
7 var user = result.ViewData.Model as User;
8 Assert.AreEqual(user.Email, "authenticated@email.com");
9 }

Now if one of them fails, we will know how the others fare. This
will give us more information that can help pinpoint the bug
and fix it quickly. And we have managed to find more accurate
names in the process.

The WET principle

We all know about the DRY (don’t repeat yourself) principle.
We know that duplicated code is evil, and for good reasons.
When you need to change code, it is in one place – no need to
look for it, or remember (or usually forget) where you put it last.

But if tests are not like production code (we know that already),
does that mean that DRY does not apply to them?

I have passed through a couple of learning iterations going
through this topic. I finally decided that WET is better than
DRY: Write Expressive Tests.

What does that mean? Consider our three refactored tests from
the previous section. They have the same setup:

1 var authenticatedUser = new User();
2 var m_Controller = CreateController<AccountController>

(authenticatedUser);

DRY fanatics will tell you to extract the initialization into the
setup method, like this:

1 [SetUp]
2 public void Setup() {
3 authenticatedUser = new User();
4 m_Controller = CreateController<AccountController>

(authenticatedUser);
5 }

In real life, tests will be long, setup is long, and there are many
tests in that file. Now let’s imagine a test failing. You look at the
failing test, but the initialization is not there! It is in the Setup
method. To compare, it is like reading a mystery book starting
from the middle. Now you need to search for the beginning,
then maybe jump and scroll around the code until you get a
picture of what the context is.

There is a better way.

Good tests lead you quickly and closely to the problem. Applying
DRY may not be the right choice. Ask yourself and, preferably,
a colleague whether the test is readable, whether it tells the
story clearly. Expressive tests that tell the story are better. If
not, prefer extracting initialization to private methods, rather
than moving them into separate setup methods which are used
by the framework. Private methods create some continuity,
while framework setups break it.

Conclusion

Refactoring is a means to an end: better code. With produc-
tion code, it is clearer and meaningful. In test code, it is about
making tests as helpful as possible, so when they fail they can
quickly lead you to the bug and its solution. ■

Gil @gil_zilberfeldfeld

Gil Zilberfeld has been in software since childhood,

starting out with Logo turtles. With twenty years

of developing commercial software, he has vast

experience in software methodology and practi-

ces. Gil is the product manager at Typemock,

working as part of an agile team in an agile com-

pany, creating tools for agile developers. He promotes unit testing

and other design practices, down-to-earth agile methods, and

some incredibly cool tools. Gil speaks in local and international

venues about unit testing, TDD, and agile practices and commu-

nication. And in his spare time he shoots zombies, for fun.

Gil blogs at www.gilzilberfeld.com on different agile topics, including

processes, communication and unit testing.

Twitter: @gil_zilberfeld

> about the author

https://twitter.com/gil_zilberfeld

CaseMaker SaaS systematically

supports test case design by

covering the techniques taught in

the ISTQB® Certi� ed Tester program

and standardized within the British

Standard BS 7925. The implemented

techniques are: equivalence

partitioning, boundary check, error

guessing, decision tables, pairwise

testing, and risk-based testing.

CaseMaker SaaS is your perfect � t

between requirement management

and test management/test

automation.

Quit struggling

with the decision

and enjoy test

case design in

the cloud today!

Subscribe today

and enjoy a 14-day

trial period for free!

Your license starts at 75 €/month (+ VAT).

saas.casemaker.eu

https://saas.casemaker.eu/

Page 57 Agile Record – www.agilerecord.com

1. The Problem

Acceptance Test Driven Development (ATDD) has emerged and
rapidly gained popularity in recent years. Acceptance tests
serve to verify the system interaction from the user perspec-
tive (“what”) and thus abstract the technical implementation
level (“how”).

Although the advantages of ATDD are uncontested in the agile
software community, many IT managers are still struggling to
convince the business side to fund ATDD. The reason for this
business reluctance is twofold:

First, customers view ATDD as scope with no business value
that conflicts with features which they do associate with busi-
ness value. Second, it is often the timeline that dictates the
trade-offs between scope and quality decisions. Most custom-
ers have a traditional QA team in the plan that covers quality
issues at project end.

As a result, many customers trade off a sustainable level of
quality in favor of more features because they associate more
business value with the latter. If IT managers or agile teams
want to convince business to decide the other way, the solution
is quite simple: they need to create business value from ATDD.

Although this goal can be set quickly, it is not easily attained.
The reason why business people do not see the business
value in ATDD lies in its nature. It is designed to provide test
engineers and software engineers with the technical details
for debugging. It hence follows that the only way to convince
customers to give higher priority to ATDD is (a) to make them
see something that they haven’t seen in it before and (b) they
associate with business value.

2. The Solution

The key to the solution is to view ATDD from a customer’s
perspective. As customers are not involved in the technical
processes of continuous integration and debugging, they do
not see the immediate benefit of ATDD. To them, the only vis-
ible parts of ATDD are the test reports.

However, ATDD proponents often neglect the fact that many cus-
tomers find the format of many tools too difficult to understand.
For example, many tools rely on a tabular format like FitNesse,
or an abstract syntax like “Gherkin” as used by the Cucumber
tool. These tools provide an easy way to read and add new

cases with the same requirement in the corresponding tables.
Yet, people perceive this requirement representation more as
a configuration of the requirement than the requirement itself.

The next step to the solution is to apply a psychological view
to the problem. A human mind can only perceive things that
are already represented in its mental model. If test reports are
the only visible part of the ATDD process to a customer, and
the information contained in these test reports are not part
of her mental model, it is evident that she does not attribute
any value to it. Nevertheless, it is easy to find the customer’s
mental model what matters most to her – requirements – and
whether they have been or will be implemented.

Under condition that we can map the requirements world to the
testing world in such a way that it reflects what the customer
wants to know – the status of the requirement implementa-
tion – it follows that we can actually create business value
which the customer has previously not perceived.

Presenting this requirement status information in an intuitive
manner could further increase the new business value of such
a testing framework. In addition to business and IT top manage-
ment, the development team could benefit from such a testing
framework because it alleviates their burden of generating and
aggregating information solely for top management reporting.

I propose a solution for such an acceptance test framework
that embodies the principle “design to communicate” and
consists of two building blocks:

a. Mapping requirements to the testing world

b. Simple design

3. Mapping Requirements to the Testing World

One way of realizing ATDD is to implement test cases in user
story syntax. This concept is called “executable acceptance
tests” and communicates the acceptance tests in the form
of user stories and linked user scenarios to the customer. To
implement executable acceptance tests in an agile project, we
need to follow two steps:

1. Build different requirement abstraction layers

2. Synchronize the acceptance test model with the require-
ments model

Business First, Not Test First:
How to Create Business Value from
Acceptance Tests
by Dr. Chaehan So

Page 58 Agile Record – www.agilerecord.com

Step 1: Build Different Requirement Abstraction Layers

The majority of SCRUM projects model requirements in user
stories. However, for business-critical features it is more prac-
tical to model requirements in use cases because use case
scenarios provide a level of process detail that user stories
do not specify.

Figure 1 shows a naming convention that allows to extend user
stories into use cases in a seamless manner:

a. The title remains identical (e.g. “as an iPhone user, I want
to read an article”)

b. The original scenario of the user story is titled “main suc-
cess scenario” (e.g. “iPhone user reads news article”)

c. The extensions of the main success scenario are labeled
“alternative success scenarios” and “failure scenarios”
according to conventional use case modeling

Figure 1. Requirement Model Linking User Stories to Use Case Sce-
narios

This naming convention creates a robust requirements archi-
tecture that accounts for all levels of requirement maturity and
business criticality.

A team models and implements a first version of a user story
that contains the user story title (1st level) and the main success
scenario (2nd level). This, in essence, represents a stripped-
down version of a use case that the team can extend with
alternative and failure scenarios in subsequent iterations.

Step 2: Synchronize the Acceptance Test Model with the
Requirements Model

Figure 2. Synchronized Acceptance Test Architecture

After Step 1, we have all the requirements in a user story-use
case scenario structure. Step 2 consists of aligning the accep-

tance test model exactly with the structure of the requirements
model (see Figure 2).

To ensure the alignment, we need to label the acceptance
tests identically to the corresponding requirements. This is
critical because the customer can then perceive the resulting
acceptance tests directly as requirements due to the identical
labeling. In other words, the acceptance tests do not merely
reference the requirements, they are the requirements from
the customer’s perspective (see Figure 3).

Figure 3. Customer’s Perception of the Acceptance Test Model

4. Simple Design

After building the synchronized acceptance test model, the
crucial factor for creating business value for customers is to
abstract and hide all layers of complexity until we can pres-
ent them with the big picture of all the requirements in the
simplest way.

The 1st level (titles of user stories for each use case) commu-
nicates an aggregated status (green or red) that reflects the
summarized view of all underlying use case scenarios of the
2nd level. The latter is used in product demos after additional
scenarios have been added to the initial requirement.

The advantage of building acceptance tests on the require-
ments abstraction hierarchy of Step 1 is that the team can
easily integrate the evolving maturity states of requirements
along a project’s timeline (cf. Figure 4) with the presentation of
business value in the form of implemented acceptance tests.

Figure 4. Conceptual Model

Page 59 Agile Record – www.agilerecord.com

5. Results

The depicted testing framework and its underlying principle
“design to communicate” quickly began to facilitate manage-
ment reporting on project progress, and served as a monitoring
tool after go-live.

Customers at all management levels, even including one board
member, stated that they found the framework’s design very
intuitive to understand. Some emphasized the value of using
natural language without any technical terminology. Other team
members attributed the ease of understanding to the simple
design: green and red icons structured into a simple matrix
of use cases vs. channels. This overview page only contained
the names of the user stories, which in turn linked to the use
case scenarios.

IT top management saw the framework’s benefit as delivering
top-level status reports about project progress. As a conse-
quence, the CIO approved the project proposal of another
internal department to implement the framework and tailor it
to their needs.

We found that building the test framework was easy and did not
take much time to build in its initial stage. Yet, we encountered
drawbacks in getting new-hires up to speed, so we decided to
switch from the Robot framework to Cucumber because most
developers found Cucumber integrated better into Eclipse.
The team tried but eventually did not follow the “test first”
approach in ATDD, i.e. start by writing an acceptance test for
a given requirement entity (user story, acceptance criterion),
and then write the corresponding implementation of the code
until the acceptance tests passes.

6. Summary

This article addresses many companies that have customers
who do not see a direct benefit of ATDD and thus are reluctant
to approve the corresponding budget. For such customers, the
proposed solution may be a vehicle to demonstrate business
value in ATDD. The underlying principle “design to communicate”
is a step-by-step recipe how to transform acceptance tests until
the customer perceives them as requirements.

I conceptualized the solution and had it implemented in an
industrial setting in a major IT project with over 50 project
members. Not only did the customer approve that we used
this framework to communicate project progress in terms of
implemented requirements. It also served as a major feedback
tool for all software engineers. By keeping everybody focused on
delivery, the framework became a major project success factor.

It is important to keep in mind that “design to communicate”
goes beyond the implementation of executable acceptance
tests. Without a deep understanding of cognitive information
processing, it is not possible to conceptualize “simple design”.
Only then can we shield the complexity and structure of different

abstraction layers, cross browser tests, and multiple mobile
device tests from the big picture view that is most beneficial
to top management.

Last but not least, the visibility of the acceptance test results
was a major driver for business approval. Placing the accep-
tance test result view near the project requirement documen-
tation in a wiki may have served as the final twist to increase
business approval. ■

Dr. Chaehan So

Chaehan So is an agile coach and consultant

since 1999. He specializes in transforming large

organizations to agile.

His emphasis on real psychological insight is how

he differs from mainstream agile consultants. He

draws on his psychological research (tinyurl.com/

agileTeamwork) in how agile software development teams become

effective through motivational and learning mechanisms. Dr. So de-

veloped the first psychological measurement instruments for agile

practices (www.psychologie.hu-berlin.de/personal/7777269/PAM)

which won him a best paper award at the XP 2009 conference.

Apart from his Ph.D. in Psychology, he holds master’s degrees

in engineering (Technical University Berlin) and business (Ecole

Supérieure de Commerce de Paris).

Chaehan So’s first encounter with agile software development

dates back to his Silicon Valley experience at Netscape in 1997

and to research conducted at Stanford University in 1998.

> about the author

http://tinyurl.com/agileTeamwork
http://tinyurl.com/agileTeamwork
http://www.psychologie.hu-berlin.de/personal/7777269/PAM

Page 60 Agile Record – www.agilerecord.com

The dilemma of automating unstable UI

If you write acceptance tests for Web applications, no matter
how you arrange your work, you have to spend some time on
figuringing out how to reach certain UI elements and how to
make them perform the requested action. While you can navi-
gate and command these elements directly from your tests,
this is considered to be bad practice that makes tests both
brittle and hard to read. The better approach is to build a test
automation framework around the Web application under test,
so acceptance tests will only access it via its automation API.

Test automation frameworks for Web applications have their
own challenges. Firstly, if the framework is developed in one of
the traditional object-oriented languages, such as C# or Java,
the process of inspecting Web UI elements and embedding
their CSS or XPath selectors into program code may not be
very efficient. Programmatic management of DOM elements
involves some trials and failures, and these languages usually
lack REPL tools that let developers focus on single statement
execution without wrapping those statements in classes and
modules. Secondly, in an iterative development process the
structure of a Web application under development will continu-
ously change, so attempts to build an automation API around
it will face not just revisions but sometimes full rewrites.

Here comes the dilemma. If you practice BDD, ATDD, or any
flavor of development methodology that tries to reduce the gap
between requirements, specifications, and programming code,
then you will try to automate early validation of UI, perhaps by
making specifications directly executable (e.g. writing them
in Gherkin and running in Cucumber or one of its flavors). So
you will need to provide UI automation for your Web sites. But
again and again you will come to work in the morning to find
out that full nightly test of your system failed: div IDs changed,
CSS classes were renamed, or maybe the entire page has been
turned into a tab inside another page, so the way you struc-
tured your automation API no longer makes sense. And such
test failures do not indicate a lack of following TDD principles
because these are not unit tests. UI design, Web programming
logic, and acceptance tests are usually in the hands of different
people, so the best that can be done to improve the stability
of UI tests is to make them more responsive to frequent and,
sometimes, radical changes. And the changes may come both
from higher (specifications) and lower (UI elements) abstraction
levels of the system under development.

From pages and elements to expression of
intensions

So how can we make a Web test automation framework more
responsive to frequent changes? Let’s have a quick look at
a simple C# code example that automates a Google search:

1 public class SearchPage {
2 private readonly IWebDriver _driver;
3 public SearchPage(IWebDriver driver) {
4 _driver = driver;
5 }
6 public void Goto() {
7 _driver.Navigate().GoToUrl("http://google.com");
8 }
9 public IEnumerable<IWebElement> Search(string text) {
10 var search = _driver.FindElement(By.Id("gbqfq"));
11 search.SendKeys(text);
12 var button = _driver.FindElement(By.Id("gbqfb"));
13 button.Click();
14 var resultsPanel = _driver.FindElement(By.

Id("search"));
15 return resultsPanel.FindElements(By.XPath(".//a"));
16 }
17 }

The code above uses Selenium Web Driver and should be
familiar to anyone who has worked with Web UI test automa-
tion. The code uses a Page pattern that encapsulates details
of specific UI elements and exposes action results. If we want
to avoid tests and deal with IWebElement objects directly,
we could change the return type of the Search method so it
would extract strings from the IWebElement collection before
returning results. The test validating the Google search page
functionality might contain the following code:

1 var driver = new ChromeDriver();
2 var searchPage = new SearchPage(driver);
3 searchPage.Goto();
4 var results = searchPage.Search("Agile Testing Days");

Is this code simple? Yes it is. Does it encapsulate UI element
access details? Yes it does. Then what can be wrong with
this code?

Well, there is nothing wrong with this code, especially since
it works. But let’s imagine we are automating access not to
Google (where the key UI elements in its front page are not
going to change any time soon), but to a page that is a part of
a Web site developed by a startup company planning to offer
services to its members within a few months. How good are
the chances that tomorrow this page will still have an element

Explorative C# Web Scripting
Using scriptcs and FluentAutomation
by Vagif Abilov

Page 61 Agile Record – www.agilerecord.com

with id “gbqfq”? How good are the chances that the Web ap-
plication will still have a dedicated search page instead of a
placing a search section into a common toolbar accessible
across the whole Web site?

Since we are dealing with the search functionality, the applica-
tion under development most likely has a user story describing
the search feature. Expressed in Gherkin, it might look like this:

Feature: Search for professional events
 In order to keep updated about professional events
 As a service subscriber
 I want to be able to search for conferences

Scenario: Search for professional conference Web sites
 Given I am a service subscriber
 When I search for "Agile Testing Days"
 Then I should receive results starting with
 "www.agiletestingdays.com"

At first glance, the difference between the Gherkin specifica-
tion and the exposed Web test automation UI is not signifi-
cant, because human readable text and programming code
will always be different and it will not take that many lines of
code to bridge Given-When-Then statements and SearchPage
class. But what if our programming code had a closer match
of both our intensions and steps required to achieve them?
Would we need the SearchPage class at all if we could write
something like this:

1 I.SearchForConferences("Agile Testing Days");
2 I.ExpectSearchResult("www.agiletestingdays.com");

… and the SearchForConferences method implementation
would simply list the sequence of steps to perform this action:

1 public void SearchForConferences(string text) {
2 I.Enter(text).In("#gbqfq");
3 I.Click("#gbqfb");
4 }
5 public void ExpectSearchResult(string text) {
6 I.Expect.Text(text).In("#rso li cite");
7 }

Now, we have not eliminated the Web automation layer – but
we have nearly eliminated the translation layer that we had
to keep between our specifications and the Web driver that
transformed the steps needed to achieve our intentions into
an API exposed by the test automation framework. Now it looks
like what we do is the automation API. And what we want to
achieve in user story scenarios is expressed as the sequence
of steps performed by us – as opposed to a driver or a page.
So we can record a script of what we are doing and group
script lines to match scenario steps of user stories – and we
will have an internal DSL that we can use to command our Web
application. So what can bring us such scripting capabilities?

Enter scriptcs: an open source project that enhances C# with
an REPL (read-eval-print loop) tool. Enter FluentAutomation:
an open source project that wraps Selenium Web Driver API
in a fluent interface closely resembling user interactions and
extensible to expose higher level user intentions.

Getting started with scriptcs and
FluentAutomation

A detailed introduction to scriptcs and FluentAutomation is
outside the scope of this article, so we will just list the steps
required to get both products up and running. The easiest
way to install scriptcs is by requesting it from Chocolatey – a
Windows analog of apt-get. If you do not have Chocolatey,
grab it from chocolatey.org – it only takes a few minutes. Once
Chocolatey is installed, open the command line Window and
write the following:

1 cinst scriptcs

This will install scriptcs on your machine, so you can start
scripting in C#. To start a scripting session, type scriptcs in a
command line prompt (you may need to open a new command
line window to get scriptcs into PATH environment variable).
Once scriptcs is up, you can start invoking C# statements:

Scriptcs is both simple to use and powerful. By using C# com-
piler services (codenamed Roslyn) internally, it turns C# and
the whole of .NET with any third-party libraries into a scripting
engine.

Our third-party library for this story will be FluentAutomation.
In the previous section we already showed a few examples
of its API modeled after user interactions (“I.Open”, “I.Click”,
“I.Enter(…).In(…)”, “I.Expect”). The easiest way to obtain the
FluentAutomation library is via NuGet, and scriptcs uses NuGet
to load additional components.

To add FluentAutomation to scriptcs, type the following com-
mand in a command line window (since scriptcs will be down-
loading some packages, it is recommended that you do it in a
directory dedicated to the scripting session):

1 scriptcs FluentAutomation.SeleniumWebDriver

FluentAutomation requires you to choose a specific Web driver
to command Web pages, so we installed a NuGet package for
Selenium. In addition, we will need to specify a browser to be
used with the Web driver. This can be done from the actual
scripting session.

Page 62 Agile Record – www.agilerecord.com

Scripting the Web

After restarting scriptcs type the following commands:

1 using FluentAutomation;
2 SeleniumWebDriver.Bootstrap(SeleniumWebDriver.Browser.

Chrome);
3 Settings.MinimizeAllWindowsOnTestStart = false;
4 Settings.DefaultWaitUntilTimeout = TimeSpan.

FromSeconds(1);

The first line of the script will import FluentAutomation (just
like in a regular C# file, so we do not need to use fully qualified
class names). The rest of the lines configure browser session
parameters. Once these preparations have been made, we
might be tempted to start using fluent Web API and write the
following statement:

1 I.Open("http://www.google.com")

But this will not work yet, scriptcs will complain:

Don’t worry – the fix is simple. It is just that FluentAutoma-
tion expects its fluent API to be used from inside a class that
inherits from a FluentTest base class. But we are scripting, we
do not need to declare any classes, so we will simply define a
variable I inside our script:

1 var I = new FluentTest().I;

This will do – now we can start commanding Google!

1 I.Open("http://www.google.com")

… and a new Chrome window is created and points to a Google
front page.

Now we just need to send C# commands – using FluentAuto-
mation API. We type

1 I.Enter(text).In("#gbqfq")

… and Google opens its search text combo:

We continue with the button click:

1 I.Click("#gbqfb")

… and the result page appears:

We can try now to assert for a match to “www.agiletestingdays.
com”:

1 I.Expect.Text("www.agiletestingdays.com").In("#rso li
cite")

But the scriptcs engine will show an exception raised by Flu-
entAutomation: the specified element does not contain the
expected text. If we have a closer look at the results, we will
understand why. In the resulting text “www.agiletestingdays.
com”, Google highlighted the “agiletestingdays” part so the ele-
ment contains a combination of parts of the URL and formatting
options. But we may refine our match criteria, and we do not
need to restart or recompile anything. Even after the thrown
exception we can continue sending new script commands. The
following will succeed:

1 I.Expect.True(x => x.Contains("agiletestingdays")).
In("#rso li cite")

The statement above includes a lambda-expression, this is
because our expectation is based not just on a simple text
comparison, but requires an invocation of a delegate function
(string.Contains). So instead of passing a string literal, we
need to pass a delegate method containing the match logic.

You can see how easy it is to explore and automate Web sites
without leaving a scriptcs REPL window. We can send Fluen-
tAutomation commands, validate execution results, and, in
the event of failure, inspect UI elements and re-try commands
with corrections.

From scripts to internal DSL

But perhaps the greatest efficiency is reached at the stage of
building a domain-specific Web test automation framework. Be-
cause our script statements are written in C#, we can just copy
and paste them as a body of higher-level methods. Remember
the SearchForConferences shown in the first section? Its code
was very close to a real one that needs to be implemented
as extension methods for the INativeActionSyntaxProvider
interface:

1 public static class ExtensionMethods {
2 public static void SearchForConferences(

INativeActionSyntaxProvider I, string text) {
3 I.Enter(text).In("#gbqfq");
4 I.Click("#gbqfb");
5 }
6 public static void ExpectSearchResult(

INativeActionSyntaxProvider I, string text) {
7 I.Expect.True(() => I.Find("#rso li cite")().Text.

Contains(text));
8 }
9 }

Use of C# extension methods makes it possible to extend
original actions available for the “I” role with new ones that
come from our product specifications and express actions and
expectations from user story scenarios. The set of extension
methods forms an internal DSL and effectively becomes our
Web test automation framework. Forthcoming changes – wheth-
er they come from specifications or user interface design –
should have a smaller impact on such DSL than if it exposed
its own proprietary API. And updating the DSL should be less
time-consuming – thanks to scriptcs and FluentAutomation.

Conclusion

In this article we had a quick look at fairly new (launched in
2012–2013) open source projects: scriptcs and FluentAutoma-
tion. Scriptcs one provides a REPL environment for extensible
C# scripting and is highly recommended as a canvas for ac-
ceptance and integration tests. FluentAutomation is specific to
Web testing but is a perfect match for the scriptcs environment
because its syntax resembles complete user interactions.
FluentAutomation API can also easily be extended with custom
user actions to match steps from user story scenarios. In com-
bination, scriptcs and FluentAutomation provide an efficient
tool for .NET developers and testers to implement executable
specifications and acceptance tests.

Resources

[1] Scriptcs. http://scriptcs.net/

[2] FluentAutomation. http://fluent.stirno.com/ ■

Vagif Abilov

Vagif Abilov is working for a Norwegian company

Miles. He has more than twenty years of program-

ming experience that includes various program-

ming languages, currently using mostly C#, F#

and Gherkin.

Vagif writes articles and speaks at user group ses-

sions and conferences. He is a contributor to several open source

projects, such as SpecFlow and Simple.Data, and a maintainer of

Simple.Data.OData, Simple.OData.Client and MongOData.

Twitter: @ooobject

> about the author

http://scriptcs.net/
http://fluent.stirno.com/
http://twitter.com/ooobject

Page 64 Agile Record – www.agilerecord.com

©
 iS

to
ck

ph
ot

o.
co

m
/n

um
be

os

Prof. van Testing
recommends

Course Details

The three-day training course “IREB®
Certifi ed Professional for Requirements
Engineering” is given by Díaz & Hilters-
cheid in German and English and can
be completed with an independent
certifi cation exam.

Incomplete or inconsistent requirements
engineering leaves scope for interpre-
tation in software development and
makes verifi cation and validation diffi -
cult. Corrections during the project can
have serious consequences on time and
cost planning.

The training introduces you to the cor-
rect and complete capture, documen-
tation, checking and administration

of requirements. You will become ac-
quainted with procedures, techniques
and tools and will shown the fundamen-
tals of communication theory. The train-
ing is based on the independent syllabus
of the International Requirements Engi-
neering Board (IREB®).

Requirements

Information regarding the required
knowledge can be found in the IREB® syl-
labus, which can be downloaded from
the IREB® website: www.certifi ed-re.com.

In-house Training

All of our courses are available as pri-
vate/in-house training. Please contact
us for details.

Target Audience

The training is intended for requirements
managers, project managers, quality
managers, software testers and soft-
ware developers who preferably have
experience in IT projects and some initial
experience with the handling of require-
ments.

See all dates at
training.diazhilterscheid.com.

IREB® Certified Professional for Requirements Engineering
Foundation Level

©
 iS

to
ck

ph
ot

o.
co

m
/d

av
id

na
y

Follow me @vanTesting

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: training@diazhilterscheid.com
Website: training.diazhilterscheid.com

For more information, please visit our website
or contact us:

http://www.diazhilterscheid.de/en/courses.php?id=315&utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=IREB

Page 65 Agile Record – www.agilerecord.com

Abstract

Nowadays software products/applications indisputably form an
integral part of our business, day-to-day activities and social
life. With the continuously growing importance of contemporary
applications, it has become business critical to establish an
effective and efficient process for ensuring the sustainable
quality of the product.

With the Agile software development methodologies and con-
tinuous delivery practices widely used these days, software de-
velopment cycles have been reduced dramatically to maximally
shorten time-to-market and achieve customer satisfaction.
This makes it even harder to ensure the sustainable quality
of applications which are becoming ever more complex, and
this requires the review and adoption of existing functional and
regression techniques.

Motivated by this challenge, this article proposes test scenario
and test script generation algorithms that are based on the
imitational model of application from the high level description
of its functionalities. The suggested methodology can be used
for black box functional and regression testing of the product
in Agile development environment where neither application
model nor functional specification documents are available.

Practicing Agile development

These days, numerous companies apply incremental software
development methods such as Agile software development
[4]. The Agile Manifesto has a few principles that can be sum-
marized as: “Individuals and interactions over processes and
tools”, “Working software over comprehensive documenta-
tion”, “Customer collaboration over contract negotiation” and
“Responding to change over following a plan”.

The Agile development process assumes short development
life cycles and reduced time-to-market by achieving the main
goal: customer satisfaction.

Continuous integration and continuous delivery

Continuous integration (CI) is the practice, in software engi-
neering, of merging all developer working copies with a shared
mainline several times a day [5]. Having continuous integration
allows you to have all the newly implemented features integrated
into the product. However, as a result, you may lose the ability
to have a shippable product at every point in time. In the same
vein, the practice of continuous delivery (CD) further extends

CI by making sure the software checked in on the mainline is
always in a state that can be deployed to users and makes
the actual deployment process very rapid.

Continuous Delivery (CD) is a pattern language used in software
development to automate and improve the process of software
delivery. Techniques such as automated testing, continuous
integration, and continuous deployment allow software to be
developed to a high standard, easily packaged, and deployed
to test environments, resulting in the ability to rapidly, reli-
ably, and repeatedly push out enhancements and bug fixes
to customers [6]. However, with CD you will not always have
all the new features integrated (only the ones that are ready).

As it is hard to achieve both at the same time, your company
may choose either continuous integration or continuous deliv-
ery, depending on your business strategy.

Improving the testing process

Whether your company has decided to go with continuous
delivery or not, it is critical to establish the quality assurance
process so that the quality is built into the product.

Once you have released the product, the sustainability of
the product quality starts to play a critical role in customer
satisfaction. When it comes to the testing phase, you should
ensure that the existing product functionality does not suffer
as a result of integrating new features.

In the testing phase of product development, quality can be
controlled by:

1. Maximally covering the functionality of each new feature
with automated tests

2. Using the continuous integration tool to run the whole
regression suite after each new feature integration

Usually automated tests are written based on the test sce-
narios/paths prepared beforehand. Test scenario preparation
and automated test development is done manually in many
companies. This makes the process time consuming and hu-
man-dependent, so leaves gaps in functional path coverage.

To make the testing process more efficient by reducing time
required for scenario/path preparation and test automation
and eliminating the human factor, this article proposes test
scenario and test script generation algorithms based on the
imitational model of the application from the high level descrip-
tion of its functionalities.

Ensuring Sustainable Quality of the Product in an
Agile Environment with Automated Test Generation
by Anahit Asatryan

Page 66 Agile Record – www.agilerecord.com

Algorithm for test scenario
generation

Suggested test-generation methodol-
ogy can be used for black box func-
tional and regression testing of the
contemporary applications in an Ag-
ile development environment where
neither the application model nor the
functional specification documents
are available. The proposed test sce-
nario and test script generation algorithms are based on the
high level description of the application functionalities [1][2][3].

The test-scenario-generation algorithm consists of the follow-
ing steps:

1. Splitting the full set of functionalities into equivalence
classes.

2. Sorting the functionalities by relations count.

3. Selecting not equivalent functionalities.

4. Generating the adjacency matrix based on the set of non-
equivalent functionalities.

5. Generating test scenarios in three different ways based
on the adjacency matrix:

a. Test scenarios generated from a set of non-equivalent
functionalities.

b. Test scenarios generated from a full set of functional-
ities (including equivalent ones).

c. Test scenarios generated for the given functionality.

When test scenarios are generated, test scripts can be gener-
ated for the test scenarios.

A test tool implementing the suggested algorithms is developed.
This supports easy extension and integration with contemporary
testing frameworks such as Selenium Web Driver.

An application window displaying the generated list of test
scenarios is shown in Figure 1.

Conclusion

The proposed algorithms make the black box functional and
regression testing of the applications under test more efficient
by reducing the time required for test scenario preparation
and test automation, and by eliminating the human factor. The
proposed test generation methodology can be used for testing
different types of applications and can be applied in an Agile
development environment where the application model and
functional specification documents are not available.

Further reading

[1] Sayadyan G.A., Arakelyan A.A., Aleksanyan N.A. ”On the
automation of synthesis of functional tests for blocks of
micro-computers”, Automation and Computer Engineering,
1981, N1, pp. 29–33.

[2] Arakelyan A.A., Sayadyan G.A., Ohanjanyan S.R. “Algo-
rithms for automatic synthesis of functional control LSI
Firmware”, Automation and Computer Engineering, 1983,
N1, pp.55–59.

[3] Boshyan K.G., Development of methods for the automated

synthesis of functional control tests of microprocessors,
Yerevan, 1992.

[4] http://en.wikipedia.org/wiki/Agile_software_development

[5] http://en.wikipedia.org/wiki/Continuous_integration

[6] http://en.wikipedia.org/wiki/Continuous_delivery ■

Anahit Asatryan

Anahit is a Senior QA Automation Engineer at

AtTask, the SaaS leader in project management

solutions. Anahit has more than nine years’ ex-

perience in quality assurance and test automation

in different areas. She graduated from the State

Engineering University of Armenia and has the

degree of Research Engineer. She is currently working on her PhD

thesis, which is devoted to the “Development of an imitational

model for testing Web-based applications”. Her hobbies are pho-

tography, dancing, and hiking.

Twitter: @Anahit_Asatryan

> about the author

Figure 1. Test scenarios generated

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_delivery
https://twitter.ciom/Anahit_Asatryan

Page 67 Agile Record – www.agilerecord.com

Over half of all Nobel Prize winners were once
apprenticed to other Nobel laureates.

As a volunteer counselor who is passionate about growing other
great talent in our Agile community, I often take on opportunities
to mentor others. I believe in the power of mentoring others. I
believe in the power of helping people grow and begin to taste
their potential. It is so very exciting for me to help others. Isn’t
this what servant leadership is all about?

Let’s talk about mentoring for a bit …

What exactly is mentoring?

 ■ To help mature someone in a practice or discipline

 ■ To show them how you walked the path and to lead
them through their own path

 ■ To teach them to mentor someone else, what you are
doing to them.

 ■ Make a distinction between mentoring and teaching. If
you are teaching, you are telling. If you are mentoring,
you are walking with them through it (high-touch).

What mentoring is not primarily concerned with:

 ■ A methodology and exact praxis of how to do something.
It is not prescriptive. The person you are mentoring is
not your disciple.

 ■ Mentoring is not a two-way street like friendship.
Mentoring is not accountability, but it is focused, unlike
friendships.

 ■ Personal agendas.

 ■ You. The focus is on them, not you. We are to pour our
life into someone else.

6 Tips for Mentors

1. A mentor takes time to know people and reveal to them
new possibilities and realities.

 ■ Mentors are good listeners and they have the ability and
willingness to step over familiar ground to get to know
people and bring them into the circle.

 ■ If you are mentoring someone for a particular role, help
an individual by inviting them into communities of that

practice. Always try to bring people not in the inner
circle into the circle.

2. A mentor gets excited when good things happen to
others.

 ■ One of the wonderful, nourishing characteristics of a
mentor is the ability to get excited about the good things
that happen to other people.

 ■ A mentor is someone who constantly celebrates the
wins, while also giving firm guidance where necessary
about areas of potential trouble. Mentors need to be
situationally aware and experienced, so they can point
to examples where trouble can (potentially) happen…but
provide enough freedom for the individual to experiment
and even fail.

3. A mentor takes the initiative to help others.

 ■ Take the first step. Have margin in your life to reach out
to those that you believe could use your help. This is not
about ego, it is about a willingness to help.

 ■ I have never been turned down when I have spoken
to someone and let them know that I would “love to
intentionally spend more time with you to help you grow
your craft”. Offer your services. You will be even more
rewarded than the person you mentor!

4. A mentor raises up leaders.

 ■ You raise up others so they can pass you in leadership.
Of all the things we will talk about on mentoring, this
may be the best part. You see, the reality is that the
one you mentor can (and will) be more successful than
you are now. This is a great thing. You have created a
legacy.

 ■ We need more leaders. Do your part by helping leaders
grow. This is how you ‘scale yourself’. Great mentors de-
velop leaders who are better than themselves. Wouldn’t
that be your definition of success as a mentor: to pour

your life into someone until they pass you?

 ■ A mentor’s goal. We have all heard the statement:
“There’s no success without successors”. But how
about this? “Real success is having a successor who
does a better job than we do.” This is the highlight. This
is what mentors live for. They live to be bypassed by
somebody they have taught.

Refactoring Your Best Asset –
Your People – Through Mentoring
by Peter Saddington

Page 68 Agile Record – www.agilerecord.com

5. A mentor is willing to take a risk with a potential leader.

 ■ Take risks with the one you mentor. Put them in posi-
tions where they can grow and even put them in posi-
tions where your reputation may be at risk if they fail.
This imbued trust that you give the one you mentor is a
huge step. But it will be the biggest win for all when he
does well!

 ■ You want to be able to say: “You know what (mentoree)?

I’ve mentored you – you’re bigger than I am and it’s time

for me to find someone else to mentor. I’m going to take a

risk for (a new person) as I did for you … and I’d like your

help. Want to help me grow another person?”

6. A mentor is not position-conscious.

 ■ Another Agile coach once said to me that “servant lead-

ership is influencing upwards and influencing outwards

since no one is below you”. He was right. You will always
(in a sense) be a peer to others … and there will always
be people who position themselves higher than you.
That is ok. You are growing others to be higher than you,
with the hopes they will not have an egotistical attitude
about it (agilescout.com/agile-coaching-is-about-being-

available-to-help-others). That is a risk indeed!

 ■ Your fanfare and rewards will be seen in others. You will
have to be ok with that. Period.

6 Areas of a Mentor Relationship

Some practical guidelines for those who are interested in
mentoring others. I always want to go over principles first, and
then move on to practical guidelines, as it allows us to know
why we are doing what we are doing.

 ■ Authority/desire

 ■ Intensity

 ■ Duration

 ■ Format/structure

 ■ Intentionality

 ■ Goals

My experience

1. Authority/desire – These are focus areas – what are you
focusing on?

2. Intensity – Low key. How often are we going to engage?

3. Duration – 1 year. Length of mentorship program.

4. Format/structure – Book, talk, workshops, or problem
solving?

5. Intentionality – Observe them. Yes, watch them in action
if possible.

6. Goals – They can mentor others.

What Will You Live For: Titles or Testimonies?

In Tony Campolo’s book Who Switched the Price Tags?, he
talks about a Baptist preacher who was speaking to a group
of collegians in his congregation. The following are a couple
of paragraphs I want to read to you:

“Children you’re going to die. One of these days they’re
going to take you out to the cemetery, drop you into a
hole, throw some dirt on your face, and go back to church
and eat potato salad (it’ll be kimchi and duk in our case).
When you were born you alone were crying and everyone
else was happy. The important question I want to ask is
this: when you die are you alone going to be happy, leaving
everyone else crying? The answer depends on whether
you live to get titles or whether you live to get testimonies.

When they lay you in the grave are people going to stand
around reciting the fancy titles you earned, or are they go-
ing to stand around giving testimonies of the good things
you did for them? Will you leave behind just a newspaper
column telling people how important you were, or will you
leave crying people who give testimony of how they’ve
lost the best friend they ever had? There’s nothing wrong
with titles. Titles are a good thing to have. But if it ever
comes down to a choice between a title or a testimony,
go for the testimony.”

He is talking about leaving a legacy.
Start leaving yours now. ■

Peter Saddington

Peter Saddington owns a successful research

and analytics consultancy and has been integral

in multi-million dollar Agile Transformation projects

with some of the biggest Fortune 500 companies,

including Cisco, T-Mobile, Capital One, Blue Cross

Blue Shield, Aetna, Primedia, and Cbeyond. He

is a sought-after speaker at many industry events and is a Certi-

fied Scrum Trainer (CST). He has also received three master’s

degrees, one of which is in counseling, and provides life-coaching

services in addition to his consultancy.

Twitter: @agilescout

> about the author

http://agilescout.com/agile-coaching-is-about-being-available-to-help-others/
http://agilescout.com/agile-coaching-is-about-being-available-to-help-others/
https://twitter.com/agilescout

WE WANT YOU!

Grow with us – we are
recruiting!
We are looking for dedicated and quali-
fi ed colleagues to strengthen our Consul-
tancy Services team at the next possible
date.

We are a market-oriented and innovative
company based in Berlin with 40 employ-
ees. Apart from our high-value consul-
tancy services in the areas of Financial
Services, IT Management & Quality Ser-
vices and Training Services, our customers

also appreciate the international confer-
ences and publications on the subject
of IT quality, which are organized by our
Events & Media division.

Profit from our experi-
ence. We offer:

 ■ interesting and challenging IT projects
in the area of IT processes and projects,
staff qualifi cation and coaching, soft-
ware testing and test management,
as well as architecture and security

 ■ a direct working relationship with the
division leader and the team leaders
of IT Management & Quality Services

 ■ career development within a fl exible
company

You’re looking for some-
thing special? So are we!
Let yourself be infected by the friendly
working atmosphere in a strong and mo-
tivated team.

For more job details, please visit our website or contact us:
Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: hr@diazhilterscheid.com
Website: jobs.diazhilterscheid.com

our job offers

Testers, Developers, Consultants or Senior Consultants
for Consultancy Services (m/f) for agile software development

and software testing – Germany and Europe

http://www.diazhilterscheid.de/en/jobs.php?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Jobs

Page 70 Agile Record – www.agilerecord.com

One of the most frequently used modeling techniques for describing, designing, and
testing requirements is the use case diagram. A use case diagram consists mainly of
actors and use cases, either traditional or smart use cases. Other than the nowadays
more popular user stories, use cases present teams with the opportunity to structure
their requirements.

This little bit of additional structure then allows testers in teams to also test the
requirements using more standardized techniques than apply to user stories. This
article shows how to model and design your use cases so they become testable.

Writing Testable Use Cases Using
Enterprise Architect
by Sander Hoogendoorn

But before looking into the use case diagram, it is worthwhile
delving into the format for describing use cases.

A use case template

The specification of the individual use cases in the model fol-
lows a template that at least should contain:

 ■ Name. Every use case should have a clear descriptive
name that will, in most use cases, suffice to make clear
what this use case is all about. Please name use cases
in the active sense, most often using a combination of
an active verb and a noun.

 ■ Goal. What is it that the use case should do? This can
also be used for a brief description of the use case and
is often a first draft of the use case.

 ■ Pre-conditions. The set of conditions that must be met
before the use case can be executed.

 ■ Post-conditions. The set of conditions that must be met
by the use case on completion. In my opinion, these can
be both positive and negative conditions.

 ■ Basic flow. A sequence of steps that describes the inter-
action between the actors and the system that leads to
the desired result. The actors can be both the execut-
ing actor (often a person or role) as assisting actors (in
many cases other systems, or services).

 ■ Alternative flows. Deviations from the basic path may
lead to one or more alternative flows. Each alternative
flow again describes a sequence of steps that starts at
a certain step in either the basic flow or another alterna-
tive flow, and returns to possibly the same step, or to
another step (in the same scenario), or even possibly
ends the use case.

Constraints

In addition, we often model other types of constraints (next to
pre- and post-conditions) with a use case:

 ■ Input. Parameters that are passed into the use case
when the use case is started. Note: these are not pre-
conditions.

 ■ Validation. With certain steps validation can occur. In
most cases validation concerns the domain objects or
view models that are handled by the use case. These
should be modeled with the object they concern. How-
ever, sometimes additional validation is typical for the
use case at hand. These validations are modeled as
constraints on the use case.

Describing use cases in Enterprise Architect

Enterprise Architect is a commonly used modeling tool, tar-
geted at modeling UML and BPMN diagrams. In Enterprise
Architect every use case comes with a property window which
is opened, for instance, on double-clicking a use case in the
diagram. Unfortunately this property window is implemented
as a modal window, which means it is not possible to navigate
away from the window without pressing OK or Cancel. Thus it
is hard to check on other diagrams or elements in the model
while specifying a use case.

On the main page of the property window the use case is named.
We usually use the Notes property to specify the goal of the
use case. Keep this description short, as it is not intended to
capture one or more of the flows in the use case. In the example
below, the Notes property is clearly far too long.

Page 71 Agile Record – www.agilerecord.com

Describing constraints in Enterprise Architect

We consider a number of types of constraints with a use case,
as described above. Enterprise Architect allows you to define
your own constraint types, in addition to the pre-defined types,
so we have added Input and Validation.

The constraints for a specific use case can again be described in
Enterprise Architect in the property window. We usually specify
both a name and a description for each of these constraints.

In the example here, the use case has defined a pre-condition,
a post-condition, requires both a valid Contact and a Relation-
ship to be passed in (constraint type Input), and describes a
number of validations (constraint type Validation).

Please note that names for validation constraints should be
clear and descriptive, as they will also appear in code on the
implemented use case, resulting in a method of the use case
class, as suggested in the C# code example below.

1 [BusinessRule]
2 public ValidationResult OtherContactIsNotEmpty() {
3 return !Relationship.To.IsEmpty
4 ? ValidationResult.CreateError(this.Prop(t =>

t.Relationship.To), "Other contact in relationship
may not be empty")

5 : ValidationResult.Success;
6 }

Different types of validations

When describing validations, it is vital to understand which
validations are handled by the use case and which validation
are handled by the domain object or view model that is handled
by the use case.

Validations on domain objects

During the execution of a particular use case, the state of a
domain object (or view model) might be altered, e.g. due to
user input, but also due to specific steps in the use case.
When this happens, the domain object can be considered as
dirty. This is a state where it is uncertain whether the domain
object is actually valid, or that it has become invalid. Valida-
tions may now be performed on the domain object, for e.g.
before persisting it.

Such validations may include required fields, validation prop-
erties that are value typed (think of email, zip codes, social
service numbers), but can also be business rules (start date
for a contract must be before the end date of a contract).
These validations are always true when the domain object is
in a valid state.

Modeling validations on domain objects

Such validations are best modeled and described with the
specific domain object.

Page 72 Agile Record – www.agilerecord.com

In the example above we have modeled different types of
validations:

 ■ Required. The properties Description, StartDate and End-

Date of the domain object Relationship are not manda-
tory for the domain object to be valid. The multiplicity of
these properties is set to [0..1] – which implies that zero
or one instances of this property are present.

 ■ Value object. Although not visible in the example, proper-
ties may have types that are defined as value objects,
such as Email or Isbn. This means that the validation
rules for this particular value object will apply to this
property.

 ■ Enumeration. In the class RelationshipType, the property
To is modeled as ContactType, which is an enumeration
of possible values. This enumeration is modeled else-
where in the domain model.

 ■ Association. The class Relationship described three
associations with other classes. The properties From
and To are modeled as associations with Contact and,
given the multiplicity, are mandatory for an instance of
Relationship to be valid.

 ■ Rule. Additionally, we have modeled some business
rules as methods on the domain object Relationship,
such as ToContactMustMatchRelationshipType(). We have
used the stereotype business rule to make sure devel-
opers will implement these accordingly, such as in the
code example below.

1 [BusinessRule]
2 public ValidationResult ToContactMustMatchRelationshipTy

pe() {
3 return !To.IsEmpty && RelationshipType.To !=

To.ContactType
4 ? ValidationResult.CreateError(this.Prop(r =>

r.To), "Contact type '{1}' for {0} does not match
required contact type '{2}'.", To, To.ContactType,
RelationshipType.To)

5 : ValidationResult.Success;
6 }

Validations on use cases

With some use cases validations may occur during the execu-
tion of the use case steps. Such validations will validate the
correct behavior of the use case and are not specific to the
domain objects that are handled by the use case.

A good example would be a use case Change Password, where
the user has to enter his old password for his Account, and a

new password twice. Typically, Password is a property of the
domain object Account. But entering a new password twice
is only temporary and checking whether the new password
entered first matches the new password entered second does
not validate the state of the attached Account object.

Therefore both new passwords are not modeled and imple-
mented as properties on Account, but rather it is the use case’s
responsibility to validate equality on the new passwords. It is
only after these appear to match, and the old password entered
matches the Password property of the Account object, that this
property gets set, and the Account object is validated and saved.

Modeling validations on use cases

Such validations can be modeled in Enterprise Architect in the
property window of the use case.

Use the (custom) constraint type Validation. Give the validation
a name that will match the name of the method on the use
case in code to guarantee traceability. Also write an indisput-
able description for the validation.

Use case scenarios

There are different ways of modeling and describing what action
a use case is comprised of. In general we consider use case
scenarios. Each scenario describes a way the use case can
be executed. There are three types of scenarios:

 ■ Happy day scenario. Executing this scenario leads to the
desired result, the goal that the actor wants to achieve,
via the optimal path.

 ■ Fail scenario. Running this scenario results in not reach-
ing the desired result, but an alternate result where the
actor does not achieve his goal.

 ■ Recovery scenario. During this scenario some anomaly
is encountered that leads away from the optimal path.
But, by using some additional action, in the end the pos-
itive result is reached and the actor’s goal is achieved.

Each scenario consists of a number of consecutive steps. As
you might expect, every result that can be reached is in fact

Page 73 Agile Record – www.agilerecord.com

a post-condition of the use case. Thus, in my opinion, use
cases can (and will most often) have multiple post-conditions.

Scenarios are very useful when it comes to testing the func-
tionality of a use case, as testers are used to describing test
cases that match one of the scenarios.

Use case scenarios, basic flows, and alternative
flows

In Enterprise Architect and most other modeling tools, scenarios
are not literally described as such, but rather use a different
terminology based on flows. Here a basic flow represents the
happy day scenario. Next to the basic flow, modeling tools
represent alternative flows. Unfortunately these do not always
map to either fail or recovery scenarios.

An alternative flow is described as a replacement of one or more
of the steps of another flow – either the basic flow or another
alternative flow. This differs from scenarios. An alternative flow
does not describe a particular scenario, but only a part of it.

Combing the basic flow with one or more alternative flows again
leads to a scenario – always a fail or recovery scenario – if it
ends at one of the post-conditions of the use case. To facilitate
the use of basic and alternative flows, the steps they describe
(in a similar way to scenarios) are usually numbered.

Alternative flows and exception flows

Enterprise Architect distinguishes alternative flows and ex-
ception flows. Although the concept and differences are not
explained, in general an exception flow is modeled when some-
thing goes wrong during the execution of a use case, for in-
stance if some validation fails. An alternative flow is modeled
when the execution is correct, but takes a slightly different path
from the basic flow. For instance, the user presses a button
that executes some additional action.

In general, when the execution of an alternative or execution
flow is finished, the flow returns to the calling flow. In theory
this can be any other flow. However, Enterprise Architect (using
structured specifications) only allow for a single level of alter-
nate and exception flows – which is good because it disallows
complex scenarios. After a flow is finished, the flow can return
to the calling flow, but it might also end the use case, resulting
in reaching one of the post-conditions.

Structured specifications

Use cases are usually specified in Word or other text editors,
because there are few tools that allow for a more structured way
of defining numbered flows. Although writing plain text allows for
maximum flexibility, trouble arises as soon as the numbering
of the steps needs to change, due to newly inserted steps or
steps that are deleted. Here, references to these steps from
other flows need to be updated too.

From version 8.0, Enterprise Architect offers the possibility
of writing flows in a more structured way using the structured
specifications tab in the use case properties window.

Although not perfect, this structured specification offers a
number of other interesting additional features:

 ■ Generate activity diagram. The tool can generate an
activity diagram that displays all scenarios for the use
case based on the structured specifications. This is
quite similar to how it is described in my UML book.

 ■ Generate test documentation. Using a document tem-
plate, the tool allows for quite extensive generation of
the test scenarios for the use case.

So, structured specifications are an interesting alternative to
writing use case scenarios. Here are some tips.

Tip. First write a basic flow

Start with describing the steps for the basic flow. Do not add
any of the alternate or exception flows yet. A basic flow contains
all steps that are required to reach the goal for the use case,
or the success post-condition.

A flow does not include if-then constructs (these will be alter-
nate or exception flows). However loop constructs can appear.

Tip. Actor or System

Start each step with the actor executing the step. If there is only
one actor, I would prefer to use the term Actor to avoid issues
when the name of an actor changes in the model. Steps that
are executed by the system always start with the term System.

Note that Enterprise Architect specifies an icon in front of the
steps indicating actor or system. This icon can be flipped from
the context menu (although it should recognize it when you
type Actor or System).

Tip. Note called use cases

When modeling smart use cases (http://www.accelerateddeliv-

eryplatform.com/SmartUseCase.ashx), in some steps of your

http://www.accelerateddeliveryplatform.com/SmartUseCase.ashx
http://www.accelerateddeliveryplatform.com/SmartUseCase.ashx

Page 74 Agile Record – www.agilerecord.com

flow other use cases might get called. Describe calling the other
use case as a single step, executed by the system.

As shown in step 6, we use the syntax System invokes Use Case

Name, and sometimes add the parameters we pass to the called
use case. In the Uses column of the structured specification,
we note the name of the use case, as this column immediately
shows when looking at the specification.

Tip. Check post-conditions of called use cases

Right after a use case is called, such as Select Contact in step 6
in the example above, you should check for the post-conditions
of this use case. In most cases, the positive post-condition
for the called use case is the desired result. Note this post-
condition in the next step.

In the example above, step 7 mentions that Other Contact
is selected. This literally is one of the post-conditions of use
case Select Contact. Although this step is not necessarily an
action, such as regular steps are, it is of vital importance that
post-conditions are checked. Moreover, adding the positive
post-conditions as a step in the (basic) flow allows for validating
the other post-conditions of the called use case in alternate of
even exception flows that, in this case, branch off from step 7.

Here the alternate flow Other Contact not selected describes
what happens in that particular case. After finishing, it re-joins
the basic flow in step 3. Do not forget to add these alternate
flows.

Tip. Synchronize user actions

Many use cases have a strong component of interaction with
the user. In this case, the user can often start many actions
independent of their order. Think of starting another use case
by pressing a button, starting some action by pressing a but-
ton, filling in fields on a form, submitting it, or pressing the
cancel button.

The trouble with these user actions is that, in general, they do
not follow a specific order. This makes describing user actions
in a sequence of consecutive steps a bit awkward.

I therefore recommend the following. First, create a step in the
basic flow that is simply called User action. This step is used
to allow loops and trigger actual user actions in random order.
All paths now return to this specific step.

In this example, step 3 represents this step and is called Ac-

tor action.

Next, add the user actions that are essential for reaching the
positive post-condition in the basic flow. In this example, steps
5 to 7 represent such an essential user action.

And thirdly, add all other user actions as either alternative or
exception flows. All of these branch off from the step right after
the Actor action step. If these flows return to the basic flow,
they always return to step 3.

Tip. Put post-conditions in results

The post-conditions of a use cases can be reached in several
locations. Of course, the positive post-condition is reached at
the end of the basic flow, but alternative and, certainly, excep-
tion flows can also result in ending the use case if one of the
post-conditions is met.

It is a good habit to note these post-conditions as results in
Enterprise Architect’s structured specification, as shown in the
alternative flow Actor clicks Cancel below.

We usually precede the actual post-condition (No Relationship
is saved) by either OK or Cancel to show whether or not a posi-
tive result has been achieved.

Tip. Skip details in fields in forms

When the user needs to fill in a number fields on a form, it is
very tempting to add details on these fields to the structured
specifications, such as:

 ■ Label. Name of the label associated with the field.

 ■ Mandatory. Can the field be left empty?

 ■ Display format. Is the field displayed as a text box, a
radio button list, a drop down list, a checkbox, a link?

 ■ Edit format. Does the field have a specific edit format,
such as with currencies or bank accounts?

 ■ Validations. All kinds of field validation, such as amounts
not allowed below zero, or dates not before today.

However, adding these details to the structured specifications
clutters the flows. It is better to add these field details in another
location, either in a user interface diagram, or to an additional
document added to the use case. Enterprise Architect uses a
linked document for this purpose. We use a formatted template
to create these linked documents.

For the flows it is then sufficient to simply add a single step
that defines that the user enters the fields in the form, as in
step 9 in the example below.

Page 75 Agile Record – www.agilerecord.com

Tip. Skip details on validation

A similar approach can be used to describe validation. As
mentioned earlier, validation can be part of the use case or
can be part of elements of your domain – your domain objects,
value objects, enumerations, repositories, services. In the lat-
ter case, validation has already been modeled and described
there. There is no need to repeat these validations in your
basic and alternative flows. Validation that is specific to this
use case should be specified with the use case, again not in
the flows, but in the conditions.

Thus, in the flows of your use case it suffices to describe that
validation takes place. But, due to the fact that validation can
have different outcomes, add an additional step that handles
the validation results. Always put the positive result directly
below the validation step, such as in step 12 below.

Model any other outcome either as an alternative or exception
flow that branches off from the positive outcome. In this case it
branches off from step 12, such in alternative flow 12a below.

Tip. Check results for save and remove actions

Although with the current state of technology it appears that
implementing save or remove actions on a domain object is
trivial, in fact both actions can end in an undesirable result.
For instance, a remove from the database might fail due to the
fact that other records depend on the record you are deleting.
A save might fail due to concurrency, or due to rules in the
database failing.

So, again, in a similar way to checking the result of validations,
it is good practice to also monitor the result of a save or remove
actions with an additional step.

Concluding

Working with use cases, their basic flows, and alternative flows
allows teams to more easily design and test the requirements
for a system. The modeling tool Enterprise Architect facilitates
modeling and designing flows and validation. Testers can use
these scenarios, flows, and validations to easily create test
scenarios and test cases.

We have successfully applied this approach with small fine-
grained use cases to many, mainly agile projects, where a joint
effort between analyst, developer, and tester thus creates well
developed and tested requirements. ■

Sander Hoogendoorn

In his roles of principal technology officer and

global agile thoughtleader at Capgemini, Sander

is involved in the innovation of software develop-

ment both at Capgemini and its many interna-

tional clients. Sander has coached many organi-

zations and teams, has written books on UML

and agile, and published over 200 articles in international maga-

zines. He is an appreciated and inspiring speaker at many inter-

national conferences, and he presents seminars and training

courses on a variety of topics such as agile, Scrum, Kanban,

software estimation, software architecture, design patterrns, UML,

.NET, writing code, and testing. Sander is also a member several

editorial and advisory boards, and he is the chief architect of

Capgemini’s agile Accelerated Delivery Platform (ADP). More at

www.sanderhoogendoorn.com, www.smartusecase.com, and www.

speedbird9.com.

Twitter: @aahoogendoorn

> about the author

http://www.sanderhoogendoorn.com
http://www.smartusecase.com
http://www.speedbird9.com
http://www.speedbird9.com
https://twitter.com/aahoogendoorn

Page 76 Agile Record – www.agilerecord.com

EDITOR
Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: info@diazhilterscheid.com
Website: www.diazhilterscheid.com

Díaz & Hilterscheid is a member of “Verband der
Zeitschrif tenverleger Berlin-Brandenburg e. V.”.

EDITORIAL
José Díaz

ARTICLES & AUTHORS
editorial@agilerecord.com

ISSN 2191-1320

LAYOUT & DESIGN
Díaz & Hilterscheid
Lucas Jahn
Konstanze Ackermann

WEBSITE
www.agilerecord.com

ADVERTISEMENTS
sales@agilerecord.com

PRICE
online version: free of charge

In all of our publications at Díaz & Hilterscheid Unternehm-
ensberatung GmbH, we make every effort to respect all copy-
rights of the chosen graphic and text materials. In the case
that we do not have our own suitable graphic or text, we utilize
those from public domains.

All brands and trademarks mentioned, where applicable,
registered by third-parties are subject without restriction to
the provisions of ruling labelling legislation and the rights of
ownership of the registered owners. The mere mention of a
trademark in no way allows the conclusion to be drawn that it
is not protected by the rights of third parties.

The copyright for published material created by Díaz & Hilter-
scheid Unternehmensberatung GmbH remains the author’s
property. No material in this publication may be reproduced in
any way or form without permission from Díaz & Hilterscheid
Unternehmensberatung GmbH, including other electronic or
printed media.

The opinions mentioned within the articles and contents herein
do not necessarily express those of the publisher. Only the
authors are responsible for the content of their articles.

Agile Dev Practices24

Agile Record ... 8

CAE – Certified Agile Essentials 5

CaseMaker SAAS 56

CAT – Certified Agile Tester........................ 6

Díaz & Hilterscheid GmbH 28

Díaz & Hilterscheid GmbH 34

Díaz & Hilterscheid GmbH 40

Díaz & Hilterscheid GmbH 64

Díaz & Hilterscheid GmbH 69

Mobile App Europe C2

Mobile App Europe 11

Testing Experience 15

Testing Experience17

Testing Experience DE 48

Index Of Advertisers

Picture Credits
© DouDou – Fotolia.com C1

Masthead

mailto:info@diazhilterscheid.com
http://www.diazhilterscheid.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Masthead+D&H+URL
mailto:editorial@agilerecord.com
http://www.agilerecord.com/?utm_source=Agile+Record+No.+16&utm_medium=Magazin&utm_campaign=Masthead+AR+URL
mailto:sales@agilerecord.com

