
211

Chapter

10
EVO

There is only one move that really counts: the next one.
—Chess master Jose Capablanca

Evo (short for Evolutionary Project Management) is perhaps
the oldest IID method with a significant agile and adaptive qual-
ity, first taking shape in the 1960s and then published in 1976.
Evo emphasizes:

❑ short iterations, with evolutionary delivery each iteration

❑ evolutionary requirements and design

❑ adaptive client-driven or value-driven planning

❑ quantifiable measurements of value and progress

❑ defining all quality requirements with numeric measures

❑ optional use of a language, Planguage, for specifications

OVERVIEW

❑ Classification of Evo.

❑ Workproducts, roles, and practices.

❑ Demonstrate Planguage for Evo specifications.

❑ Common mistakes, adoption and process mixtures,
strengths and weaknesses.

212

10 — Evo

METHOD OVERVIEW

Classification

In terms of cycle and ceremony, Evo classification is illustrated in
Figure 10.1. For average projects, a common length of a timeboxed
iteration is one or two weeks.

Figure 10.1 Evo on the
cycles and ceremony
scale.

Evo recommends some initial work to define a “critical top ten” list
of measurable project objectives, and when specifications are writ-
ten, Evo encourages unambiguous precision. It also encourages
brevity, promoting one page summaries. Evo avoids big up-front
specifications, although evolving specs—that could be part of a
small or large set—are acceptable if shown to be valuable.

When describing high-level requirements, a structured language
call Planguage1 is possible; it encourages clarity, precision, and
measurement. If used, it raises Evo on the ceremony scale.

1. Rhymes with “language.”

C
yc

le
s

Ceremony

Strict waterfall (sequential)

Many short iterations (5 days)

Documents
Formal steps

. . .

Few docs
Few steps
. . . Scrum

XP

UP

Evo

213

Method Overview

impact estimation
table p. 235

Similar to Scrum, it has only a small set of predefined workprod-
ucts, such as an impact estimation table. Others may be
adopted from different methods as needed.

In terms of the Cockburn scale, Evo covers the cells shown in
Figure 10.2. Since the 1970s, it has been applied on a wide range
of projects of many sizes.

Figure 10.2 Evo on the
Cockburn scale

Introduction

Evo [Gilb76, Gilb88] was created by Tom Gilb, a pioneer of itera-
tive and evolutionary development.

Agile Principles p. 28

I’m including this chapter on Evo—less well known than Scrum,
XP, and UP—not only because of its inherent interest, but to bal-
ance the historical oversight of this pioneering iterative method
and to show that some agile method principles have long been part
of Evo, such as a adaptive, client-driven planning of iterations.

Evo

Number of people
1-6 -20 -40 -100

Life
(L)

Essential
money (E)

Discretionary
money (D)

Comfort
(C)

C6 C20 C40 C100

. . .

L6

E6

D6

L20

E20

D20

L40

E40

D40

L100

E100

D100

Criticality
(defects cause loss of...)

214

10 — Evo

Gilb has been an advocate for an iterative, light, and adaptive
approach to systems development since the 1960s; he first wrote
about this in 1976, and his 1988 Principles of Software Engineer-
ing Management is a milestone early book presenting an evolu-
tionary and iterative process.2

Evo’s evolutionary emphasis is consistent with the Shewhart/
Deming cycle of Plan-Do-Study-Act (PDSA), and makes reference
to PDSA as an underlying conceptual model.

Evo is not just for software. It is applicable in a larger systems
engineering context—new software is just one solution to fulfill
project objectives. For example, if more education (on the existing
software) or operational change has a better value-to-cost ratio
than new software, the former approaches are preferred.

It emphasizes—short iteration by iteration—making maximum
progress towards the client’s current highest-priority require-
ments, for the lowest cost. And each iteration, delivering into the
hands of some stakeholders some useful results, so that early ben-
efit and feedback is achieved. This is the practice of client-driven
adaptive planning and evolutionary delivery.

Agile Manifesto p. 28

Evo is pragmatic, has some qualities similar to newer agile meth-
ods, is customer focused and results oriented—in the spirit of the
Agile Manifesto and Principles. Anything necessary can change
(based on the PDSA model) to reach the requirements (function or
performance) within the project constraints.

these bold terms are
official Evo terms

One of Evo’s distinguishing ideas is its emphasis on clearly defin-
ing, quantifying, estimating, and measuring the performance
requirements that need improvement over time.

2. Gilb also wrote the first book on software metrics, coining the
term in [Gilb76], and continues to refine Evo, e.g., [Gilb03].

215

Method Overview

example requirements
p. 233

Performance includes quality requirements such as reliability,
workload capacity requirements such as throughput, and
resource savings requirements such as money. The impact of
Evo steps on budgeted resource consumption is monitored both in
design activity and iteration project management activity.

Evo requires evaluating proposed solutions for their impact on the
state of these requirements, and then actually measuring the
impact of those introduced.

Thus, note that in Evo there is explicit recognition that the
requirements delivered may be either functions or performance
objectives (quality, workload capacity, or resource saving).

adaptive planning
p. 253

Evo expects that each iteration there is a re-evaluation of solu-
tions which yield the highest value to cost ratio, guided by feed-
back and estimates. As such, Evo requires active stakeholder
participation to steer the project each iteration—client-driven
adaptive planning. These practices are part of evolutionary
project management.

Measurable progress is a key principle of Evo, which takes seri-
ously Drucker’s maxim: If you can’t measure it, you can’t manage
it. Quantifiable measures for performance requirements, and their
regular measurement, is required. Unproven improvements, and
vague quality goals such as “usable” are discouraged.

In Evo, the value system is that management doesn’t schedule the
details of the entire project, but they must be able to measure, con-
trol, and steer a dynamically evolving project. In other words,
adaptive planning.

This structured approach and emphasis on improving the per-
formance characteristics, rather than just on delivering func-
tionality, is a key part of Evo’s unique flavor.

216

10 — Evo

Planguage p. 231

Evo encourages precision and (where relevant) quantification in
specifications. It does so by encouraging (but not requiring) the
use of a compact, structured specification language called Plan-
guage to record requirements—iteratively and incrementally.

It is a misunderstanding to interpret Evo’s promotion of high-
quality, low-volume critical specifications as an attempt at large
up-front analysis. Evo promotes avoiding unnecessary analysis
and detail—until it is needed.

inspection p. 230 Inspection—especially of these specifications—is encouraged in
Evo as an economical method to improve quality. Indeed, research
verifies this [Russell91], and Gilb has been an active promoter of
inspections for decades, including co-authoring the text Software
Inspections.

Evo also encourages a risk-driven approach, as does the Unified
Process. As Gilb has aptly said,

If you do not actively attack the risks in your project, they will
actively attack you.

217

Lifecycle

LIFECYCLE

1. In the Strategic Management cycle, stakeholders decide
which solutions ready for delivery (perhaps from the back-
room activities) will actually be delivered, usually based on
highest value-to-cost and risk. This activity also includes
approving changes to objectives and solutions, analyzing
feedback measurements, and obtaining resources.

2. These cycles may be concurrent. Ideally, each week some-
thing is delivered to stakeholders for use and feedback. In
parallel, timeboxed development and production cycles work
on incrementally building solutions ready for delivery,
although it may be weeks (or longer) before they are eligible

STRATEGIC
MANAGEMENT CYCLE

DEVELOPMENT
CYCLE (OPTIONAL)

DELIVERY
CYCLE

Purpose:
- Objectives and solutions defined
- Next delivery decided

Activities:
- analysis

- measurement

- acquire resources

Purpose:
- Product ready for delivery

BACKROOM Activities:
- integration
- manufacturing

Purpose:
- Solution ready for production

BACKROOM Activities:
- new development
- acquisition of solution

Purpose:
- Solution deployed

FRONTROOM Activities:
- installation

- education

- field-testing

PRODUCTION
CYCLE (OPTIONAL)

1

2a

2b

2c

218

10 — Evo

for delivery. The analogy Evo offers is a business with the fol-
lowing organization:

– Backroom—products are prepared, and when ready, are
“placed on a delivery shelf” available for delivery.

– Frontroom—some eligible products are taken off the
shelf and delivered to stakeholders (see Figure 10.3).

Figure 10.3 backroom and
frontroom delivery

Projects carry on, driven by the goal of maximizing stakeholder
value at lowest cost, until there are no more profitable require-
ments to fulfill.

Niels Malotaux, another Evo consultant, describes the lifecycle of
Evo projects from his experience working with clients
[Malotaux03]:

1. A project kick-off “Evo Day” that includes the project man-
ager, architect, and all other development team members.
Activities include presenting an overview of Evo ideas and
practices, explaining the product vision and architectural

Backroom (creation of solutions)

Frontroom (delivery of solutions)

ITER 1 2 3 4 5 6 7 8

B

D

E F

G

A

E

C

I

H

H

I

F

B

C

A

219

Lifecycle

ideas, identifying and estimating tasks for the first two-week
iteration, and prioritization. Finally, people choose and com-
mit to a set of individual tasks for the next week.

2. Execution of the two-week iteration.3

3. On the last day of the iteration:

– First, the project manager visits each developer and dis-
cusses the task results and completion. If things were not
completed, there is reflection on the causes.

– Second, the project manager discusses the project status
with stakeholders (e.g., the product manager). Require-
ments are revisited and re-prioritized. Those chosen for
the next iteration are analyzed and specified in greater
detail, with measurements and so forth.

– Third, the project manager and development team gener-
ate a new set of tasks. Again, developers choose and com-
mit to the highest-priority tasks for the next week. In a
team meeting, experiences of the last iteration may be dis-
cussed for process improvement ideas, and the product
vision and evolving architecture may again be summa-
rized or refined, to promote a common team goal.

3. Malotaux has found that two-week delivery iterations are more
sustainable than one-week delivery iterations.

220

10 — Evo

WORKPRODUCTS, ROLES, AND PRACTICES

Requirement Specification

Configuration & Change Management
Environment

Test & Verification

Design

Project Management

Implementation

Requirements

Evo Plan

A tentative description of
the frontroom and
backroom iterations

An adaptive plan--the
next iteration is definite,
but later ones may be
unspecified or change

What the
system does Solutions to the

requirements

Each idea explains how it
contributes to the
performance requirements

Function
Requirement Spec

WORKPRODUCTS
(non-software)

Design
Spec

How well it
does it:
- qualities
- workload
- savings, ...

Impact
Estimation

Table
Shows analysis of impact
of design ideas on the
performance and cost
requirements

Performance
Requirement Spec

Performance
Requirement Spec

Each spec
includes
"meter" or test
methods

221

Workproducts, Roles, and Practices

Roles

DevelopmentCustomer

OtherManagement

ROLES
We see only relatively
generic roles in Evo,
as it is a general
systems engineering
method.

Owner
- responsible for the
specifications for the next
iteration

Implementer
- responsible for
implementing the
iteration

Project
Manager

- responsible for
measuring the
results of
solutions,
coordination, etc.

Stakeholder
- those who receive
results of next iteration
- any other party with an
interest in the system

Systems
Architect

- responsible for
identifying and
advising on
architectural
choices

222

10 — Evo

Practices

Configuration & Change Management
Environment

Test and Verification

Design

Project Management

Implementation

Requirements

Specification
quality control
through early

inspection

Describe how
design ideas

meet reqs
Use "Planguage"

for specs

PRACTICES
(one may support
many disciplines) Use "Planguage"

for specs

Define clear,
measurable reqs

Define
performance specs

=
repeated

Impact estimation

Specify tests and
measures in the

requirements

Impact estimation
Evolutionary

delivery

Evolutionary
project mgmt

Measure impact
of delivered

solutions

Define clear,
measurable reqs

Define
performance specs

Define
function specs

Define
design specs

Define "top 10"
key reqs

Find
stakeholders

Specification
relationships

Measure
performance and

quality levels
during testing

Design reviews

Design reviews

223

Workproducts, Roles, and Practices

Core Practices

Requirements
Practices

As with the other IID methods covered, Evo promotes evolutionary
requirements analysis. Yet, when requirements and design ideas
are written, Evo requires analysis with respect to a measurable
evaluation of the value and impact of requirements and designs.
Evo is infused with the practice and value of measurable, measur-
ing, and adaptive response to the results.

Evo applies to systems engineering in general—not only soft-
ware development—although software projects are a common
domain of application.

Practice Description

Find
stakehold-
ers

Both internal and external, friendly and foe, and
across the lifecycle of the system.

Define
“top 10”
key reqs

Evo, as with other IID methods, encourages an early
definition (in Planguage) of “critical top ten” high-
level requirements. They need not all be decomposed
into fine details, although those facing early imple-
mentation may be. Each iteration, they are reviewed
and refined.

Define
function
specs

Evo functions describe what the system does. Evo
does not promote major up-front detailed functional
requirements analysis, but it does require at least
clear definitions for the next iteration, optionally
described in the Function Requirement Specifi-
cation, using Planguage. example p. 232

224

10 — Evo

Define
perfor-
mance
specs

Evo promotes describing system performance—how
well the system works, its benefits, and how it affects
the environment. Written and refined incrementally.

Performance attributes are attached to functions.
Specifically, Evo performance attributes fall into
three categories: 1) quality—how well it performs
(usability, reliability, …), 2) workload capacity, and 3)
resource savings.

The Performance Requirement Specification captures
this information using Planguage. example p. 233

Define
clear, and
(where
possible)
measur-
able,
specs

When specifications are written, do so in a manner
and language which exposes and minimizes misun-
derstanding or ambiguity. The Evo Requirement
Specification examples illustrate this.

Evo promotes a balance between too little and too
much detail in requirements. It wants clarity and
detail for the key specifications you have chosen to
implement in the next short iteration. Other more
speculative or unassigned requirements can wait.

Evo’s performance specifications should have mea-
surable impact, which should be identified. examples
p. 231

Use Plan-
guage for
specs

Planguage is Evo’s structured language for specifica-
tions in both requirements and design. It is optional,
but encouraged.

Evo includes Planguage templates for its require-
ments and design specifications. notation p. 231,
examples p. 231

Practice Description

225

Workproducts, Roles, and Practices

Project Management
Practices

Practice Description

Evolution-
ary
project
manage-
ment

Key ideas include:
– evolutionary delivery to stakeholders for real use

and feedback
– small steps (ideally bi-weekly, or between 2–5% of

total project financial cost and time)
– steps with highest quality-to-cost ratios given high-

est priority for delivery
– the existing system is preferred as the initial sys-

tem base
– feedback modifies future plans and requirements;

adaptive planning and evolving specifications
– total systems approach; do anything that helps
– early results-orientation

discussion p. 227

Evolution-
ary deliv-
ery

Evolutionary delivery emphasizes delivering a par-
tial solution into production early, in order to obtain
early business value, and feedback to guide and
evolve future deliverables. A common delivery fre-
quency in Evo is weekly, or more specifically, every 2–
5% of duration and budget.

In Evo, the solution chosen for delivery in the next
iteration is based on highest value-to-cost ratio and
early risk reduction.

Each iteration’s solution can be of a different type.
For example, within a project to replace an older
mainframe payroll application, early deliverables
could be quick-fix operational changes in the existing
system, or adding a Web-based front end to the old
system, while work on the new system is underway
in the backroom. discussion p. 227

226

10 — Evo

Design Practices

Measure
impact of
delivered
solutions

Evo embraces Shewhart and Deming’s core principle
of improvement: PDSA. Plus, Drucker’s maxim that
you can’t manage what you can’t measure. The study
step requires measuring, each iteration, the effect of
the solution on the objectives.

This data is used to help drive evolutionary project
management (act in response to study), iteration by
iteration. Evo plan table p. 229

Practice Description

Practice Description

Define
design
specs

Design ideas are also recorded in Planguage, in the
Design Specification, and are incrementally
evolved, as with requirements specs. example p. 234

Impact
estima-
tion

A method to numerically analyze and compare the
effectiveness of design ideas to meet cost and perfor-
mance requirements—the qualities, workload capac-
ity, and resource savings. The results are expressed
in an Impact Estimation Table. example p. 235

Describe
how
design
ideas
meet reqs

The design specifications in Evo should explain why
and to what degree they fulfill the requirements.
This information is used in impact estimation, and
discourages “resume-driven design” in which over-
engineered or unfocused designs arise that are not
really pertinent to business goals and value. example
p. 234

227

Workproducts, Roles, and Practices

Test and
Verification
Practices

Configuration &
Change
Management

Evolutionary Project Management

adaptive planning
p. 253

As with Scrum, XP and UP, Evo’s project management philosophy
is adaptive rather than predictive planning. And, as with the other

Practice Description

Specify
tests and
measures
in the
reqs

The study step in Plan-Do-Study-Act step requires
measurements or meters, in Evo terms. Although
new meters can always be adopted, Evo recommends
that during performance analysis, the meters for that
performance attribute be defined, within the Perfor-
mance Requirement Specification. example p. 233

Specifica-
tion qual-
ity control
through
early
inspection

When goals or specifications are written, research
shows that defects and misunderstanding are likely.
Research also shows that early inspection is a power-
ful, cheap tool to reduce those defects.

Note that specification defects have a precise
meaning in Evo: failure to observe a formal, written,
required specification rule.

Gilb is an expert in the effective use of inspection—
which is not the same as informal review. The Evo
quality control practice includes sampling, and appli-
cation of the Defect Detection Process, and
Defect Prevention Process. details p. 230

Practice Description

Specifica-
tion rela-
tionships

The Planguage specification templates contain rela-
tionship sections to support requirements traceabil-
ity. example p. 234

228

10 — Evo

methods, there is still attention to the long-term vision, objectives,
and a robust architecture. Some controlling principles:

❑ Financial Control—An iteration should be between 2–5%
of the total initial financial budget before delivering some
measurable results. This excludes larger capital costs that
must be incurred in an iteration, such as buying a server, as
these are “backroom” expenses.

❑ Deadline Control—A delivery (or frontroom) iteration
should be between 2–5% of total project time, with a lower-
bound of one or two weeks. This leads to the official Evo rule
of thumb of one-week iterations for a one-year project. The
Evo consultant Niels Malotaux has found two-week delivery
iterations are more sustainable than one week.

❑ Value Control—Choose design ideas for the next iteration
that deliver the best stakeholder value for costs.

With these control guidelines, the next iteration is chosen in
response to the latest measurements and evolving understanding
of the requirements. A misstep that doesn’t deliver expected value
consumes no more than (say) 2% of resources.

Future iterations may be tentatively assigned to specific design
ideas, and ordered with respect to dependencies, but Evo encour-
ages only very light investment in this kind of predictive planning,
as it is central to Evo to adapt the plan at each step.

impact estimation
table p. 235

Unless there is a specific stakeholder request for the next itera-
tion, Evo recommends the use of impact estimation table analysis
to choose design ideas for the next step.

For tracking and adapting, Evo also recommends the use of an
impact table to record the results of delivered solutions, and to
indicate the steps of the Evo plan. See Table 10.1 for a simplified
example after the first iteration.

229

Workproducts, Roles, and Practices

Table 10.1 simplified Evo
plan and results table

the capitalization in Evo
implies these are terms
defined in Planguage
elsewhere

backroom/frontroom
p. 218

Regarding evolutionary delivery: A common Evo project manage-
ment question is, “If I’m making a new plane (for example), how
can I deliver it for use by stakeholders in weekly increments?”
Although evolutionary delivery of software is often possible—such
as bi-weekly refinement to a Web site, or new updates which can
be downloaded—this of course will not apply to new products with
long development lead times. In this case, Evo’s approach is to
work on their development in the backroom. It could be months
before something from the backroom is available for delivery.
Meanwhile, Evo still requires that something of measurable value
be delivered to stakeholders each frontroom iteration (e.g., every
two weeks). For example, early documentation samples, improve-
ments to the existing system or operational environment, and so
forth.

The last point underlines Evo’s total systems approach: Do any-
thing that helps. It is not limited to new software or hardware con-
stuction. Gilb believes there is an expensive and risky tendency to
avoid looking at the existing system (when there is one) for the
desired improvements—sometimes due to technologists’ delight in
new technologies—and thus he promotes in Evo a preference for
considering the existing system as the base for improvement.

Target
Requirements

Iteration 1
(plan, actual)

Iteration 2 Cumulative
to date

Responsive Browsing 5%, 2%a

a. the percentage of the final target

10%, __ 2%

System Reliability 10%, 5% 20%, __ 5%

Capital Costs 0%, 0% 5%, __ 0%

Development Costs 2%, 2% 2%, __ 2%

230

10 — Evo

Specification Quality Control (SQC) Through Early Inspection

When specifications are created (iteratively), Evo recommends the
use of classic systems engineering process control through sam-
pling and inspection. Evo promotes defect removal in specs, done
with agility, through its Defect Detection Process and Defect Pre-
vention Process.

Evo’s SQC draws from IBM’s research and practice [e.g.,
MJHS90], and Gilb’s experience; he is co-author of Software
Inspection (which emphasizes specification inspection).

A key idea in SQC is that specifications are not informally
inspected for any kind of fault; rather, there is only a search for
defects—meaning a violation of a written rule from a rule set or
checklist that the “checker” is working against. Here’s a simplified
defect rule set4:

❑ Clear—They must be unambiguously clear to the intended
readers.

❑ Scale—Performance and cost requirements must specify a
scale of measure to define the concept.

Other key practices in SQC include:

❑ Two to five checkers for an inspection.

❑ Specification pages are sampled for inspection; the entire
document is not checked. If the sampled defect level is above
a threshold, the specification is not released for use.

❑ The checkers do not volunteer solution or correction advice to
the author. They only note issues. It is up to the author to
determine solutions or take the initiative to ask the checkers
for suggestions.

4. Adapted from [Gilb03].

231

Workproducts, Roles, and Practices

Defect prevention in Evo is a process improvement activity that
comes from collecting inspection data, reflecting on the results,
and experimenting with changes in source workproduct creation.

Planguage

examples: See
“Workproducts” on
p. 231.

Planguage is Evo’s compact specification language. Figure 10.4
shows common notation for one partial specification.

Figure 10.4 Planguage

Workproducts

Full description of Evo’s workproducts and how they can be
expressed in Planguage is beyond the scope of this introduc-
tion. Nevertheless, the following examples provide a sample of
Evo’s flavor. More detailed examples are given than for the

Tag: FLF: “full tag is Res.Search.FLF”
Gist: Find lowest fare for air travel.
Description: < ?? >
Rationale: <our competitors have it> <- marketing director
Data [end of this year]: USA Carriers, [end of next year]: Europe Carriers
Test: T1: <correctness test 1>
 T2: <correctness test 2>
Supra-function: { Res.Search, Res.Specials }

{ ... } a set
Res.Specials is a tag defined
elsewhere. Capitalization
indicates tags.

Parent.Child structure.
"Res" is defined.
"Specials" is defined.

<...> fuzzy term
that may
require more
definition

[...] qualifier,
such as if,
when, where.

<- origin of
data

"..." comment

A: B: ...
a sub-
parameter.
Can be
referenced as
FLF.Test.T1

Parameter
name.
Can use
standard Evo
names, and
new ones

232

10 — Evo

Scrum, XP, and UP chapters, as Evo examples are less well-
known and less widely available.

Planguage specifications are incrementally developed over the
iterations, and only to the extent that doing so adds value.

Function Requirement Specification

Individual functions are recorded in an Evo Function Specifica-
tion, using Planguage. These could be a high-level top-ten list of
functions, or detailed and decomposed functions. The following
example illustrates standard parameters (e.g., “Gist”) from the
Evo Planguage template. Some statements are purposefully unde-
fined, both for brevity and to emphasize the normal process of par-
tial and evolving specifications in Evo. All capitalized tag elements
(e.g., Call Center) refer to other specifications previously defined,
probably hyperlinked and clickable. Observe that opinions or
“facts” in a specification are sourced to a party; Evo expects claims
to have some substantiation, or at least explicit acknowledgment
that they are wild guesses.

Planguage
p. 231

Tag: FLF:
Type: Function Specification
======= Basic Information =================
“version, status, owner, stakeholders are elided”
Gist: Find lowest fare for air travel.
Description: <input: dates, airports, carriers. output: flights
sorted by cost>

Relationships: Evo
supports requirements
traceability in this
section.

============= Relationships ===============
Supra-functions: Res.Search
Sub-functions: none
Is Impacted By: { Call Center, Web Front End }
Linked To: Supports: Res.Booking

Measurement: Goals in
Evo should be testable
and measurable.

============= Measurement ===============
Test: T1: <correctness test 1>
============= Priority and Risk Management ==

233

Workproducts, Roles, and Practices

Rationale: <Our competitors have it> <- Marketing Director
Assumptions:
A1 [before end of next year]: Competitor X doesn’t upgrade
A2: < ?? >
Dependencies: Res.DB
Risks: R2, R6
Priority: Must be in first public release <- Marketing Director
============= Specific Budgets =============
Financial Budget: < ?? >

Performance Requirement Specification

Individual performance requirements (quality, workload capacity,
resource saving) are recorded in the Planguage form shown in this
example.

Tag: Responsive Browsing:

Type: Workload Capacity Requirement: Response:
Budget: < ?? >
============= Basic Information ========
“version, status, owner, stakeholders are elided”
Ambition: <Many> Res.Users with <acceptable> response time.

Measurement:
Illustrating the
quantifiable emphasis
in Evo.

============= Measurement ===========
Scale: Average HTTP response time in seconds
Meter: Automated HTTP server monitor
============= Targets ===============
Goal
[First Release]: response under 3 seconds for up to 1,000 requests
per second <- Marketing,
[Second Release]: response under 2 seconds for up to 1,000
requests per second <- Marketing
============= Constraints ===============
Fail [First Release]: response over 6 seconds <- Marketing
============= Benchmarks ===============

234

10 — Evo

Past [Old System, last year]: response under 5 seconds for up to
1,000 requests per second <- ABC Research Report
Record [CompetitorY, this year]: response under 1 second for up
to 3,000 requests per second <- ABC Research Report

Relationships:
Illustrates the
performance
requirement relates to
other performance
requirements (or
perhaps, directly to
functions).

============= Relationships ===============
Is Impacted By: Res.DB.Response <- DBA
Impacts: Usability
============= Priority and Risk Management ==
Value <this level will retain 95% of first-time users> <-Marketing
“assumptions, dependencies, etc.”

Design Specification

Design ideas are expressed in the Planguage template form dem-
onstrated in this next example.

Tag: Server Cluster:
Type: Design Idea
============ Basic Information ==============
“version, status, owner, stakeholders are elided”
Gist: Cluster of 10 application servers with an IP sprayer.
Description: < ?? >
============= Design Relationships ===========
Design Constraints: { Use Moon Spark 5000s, Use Java Technol-
ogies, Use Open Source }
Sub-Designs: < replication, fail over >

Impacts: design ideas
must be connected to
functions and/or
performance
requirements

============== Impacts Relationships ==========

Impacts [Functions]: { Res.Search, Res.Transaction, Res.Browse }

Impacts [Intended]: { [Good] Responsive Browsing, [Good] System
Reliability, <more> }

Impacts [Cost]: { Operations Budget, [if not open source] Develop-
ment Budget }

Impacts [Other Designs]: { Deployment Model, Data Model }

Value: < meeting responsiveness and reliability goals will main-
tain customer retention at 95% <- Marketing Director >

235

Workproducts, Roles, and Practices

Impact Estimation: a
design idea should
contribute to
performance objectives.
Its impact on each is
analyzed.

Note that claims are
sourced, and
uncertainty and
credibility estimated.

== Impact Estimation of Design on Selected Requirements ==

Tag: Responsive Browsing

Type: Performance Requirement Cross Reference

Scale: Average HTTP response time in seconds

Scale Impact: under 3 seconds for up to 1,000 requests per sec-
ond

Scale Uncertainty: ± 1 second <- Jill Jones

Percentage Impact: [if Use Moon Spark 5000s] 100%5

Percentage Uncertainty: ± 33%

Evidence: CompetitorX has this configuration and response

Source: Jill Jones (Chief Architect)

Credibility: 0.5 as Jill worked for CompetitorX on similar project

Tag: System Reliability

“repeat analysis using the above set of parameters”

============== Priority and Risk Management ====

“assumptions, dependencies, risks, priority, issues are elided”

Impact Estimation Table

This tool is used in Evo to analyze the impact of alternative (or
complementary) design ideas on performance requirements. Bar-
ring “obvious” priorities for the next iteration as indicated by
stakeholders, this table is used to rationally choose the set of
design ideas to implement next, based on the best benefit-to-cost
ratio. Note that the horizontal and vertical summing of impact
percentages do not always accurately predict a result; they may or
may not provide a sense of aggregate impact. For example, can one
sum the Responsive Browsing impact of both a server cluster and
high-performance hardware? Perhaps…

5. From some baseline (such as “Past”) in the requirement.

236

10 — Evo

Table 10.2 simplified
impact estimation table

Design Ideas ->
Requirements

Server Cluster High-performance
hardware

Sum of
Impacta

Responsive Browsing Baseline: 5 sec. Goal: 3 sec.

Scale and % impactb 3 ± 1 sec. 100% ± 50 4 ± 1 sec. 50% ± 50 150% ± 100

Evidence and Credibility CompetitorX has this
configuration and
response <- Jill Jones

0.2

Moon Microsystems has
customers achieving this
<- Moon Sys Eng.

0.1

System Reliability Baseline: 3000 hours MTBF. Goal: 3500

Scale and % impact 3200 ± 200. 40% ± 40 3100 ± 200. 20% ± 40 60% ± 80

Evidence and Credibility CompetitorX has this
config and “suspected”
reliability <- Jill Jones

0.2

Moon Microsystems has
customers achieving this
<- Moon Sys Eng.

0.1

Sum of Impactc 140% 70%

Capital/Dev Cost Baseline: $0 USD. Budget: $200K

Amount and % $20K ± 10K. 10% ± 5 $100K ± 10K. 50% ± 5 60% ± 10

Evidence and Credibility Bob’s friend guesses
this cost on another
project <- Bob Bones

0.1

Moon firm quote <- Moon
Sales Rep.

1.0

Benefit-to-Cost Ratioc 14 (140% / 10%) 1.4 (70% / 50%)

Impact Credibility Adjust
Cost Credibility Adjust

0.84 (14 * .3 *.2)d

0.08 (0.84 * .1)
0.01 (1.4 * .1* .1)
0.01 (0.01 * 1.0)

a. Sum of impacts on a requirement may or may not be cumulative.
b. The % impacts are with respect to the baseline.
c. The sum of impacts of one design idea may or may not be cumulative. The total may

or may not work as an estimate for comparison.
d. Multiplying probabilities is a heuristic to reduce total to a reasonable magnitude.

237

Values

There is a lighter alternative (for prioritization) to these tables
that Evo also offers: the use of simple benefit-cost estimates: Each
design idea is given a 0-9 ranking for both benefit and cost. Ideally,
this is in a group “delphi” ranking session. The best benefit-to-cost
ratio ideas are implemented next.

Other Practices and Values

Evo has many detailed practices, tips, and guidelines. A sample of
points:

❑ Open-ended architecture—To support evolving or chang-
ing designs, and evolutionary delivery, Evo encourages open-
ended architectures that encourage easier extension. That is,
at predictable variation points, some kind of protection is
introduced, such as an interface, data-driven declarations,
and so forth.

❑ Safety factor—The estimated impact of a design should
deliver an estimated impact with a defined safety factor,
default factor 2 (200% over the target level from the base-
line).

❑ Client-driven planning—If you are uncertain which step
to do next, ask your dominant stakeholder.

❑ Whatever adds value—Rather than a “we are building it”
paradigm, focus on “what can I do for my stakeholders next
week?” The techniques (such as Planguage and Impact Esti-
mation) are only support to keep this focus, and should not
get in the way.

VALUES

Evo’s key values include:

❑ Learn rapidly by realistic measurement.

238

10 — Evo

❑ Deliver real value to stakeholders early, frequently, at every
step.

❑ Be humble about complex systems: simplify and attack prob-
lems one small step at a time

❑ Delegate power to the ultimate user, by focusing on end
results and not methods and well-intended bureaucracy.

❑ Admire, applaud and reward a team based on the flow of
measurable results: stakeholder value versus costs.

COMMON MISTAKES AND MISUNDERSTANDINGS

or, How to Fail with Evo

Error: Adoption mistakes—Lack of management support. Lack
of training in concepts and methods. Lack of clear quantified man-
agement objectives as the basis for evolving towards Evo methods.
Lack of clarity about the management objectives of using the
method — and how to measure these improvements in practice.
Lack of a good successful pilot project to prove it works in your
environment. Lack of dramatic motivation to change from older
methods.

Error: Lack of focus on results—Self-explanatory.

Error: Giving up or not believing short iterations are possi-
ble—Giving up too easily when managers or engineers claim they
cannot find small early steps (they need training, motivation and
help). Giving up too early and falling back on old habits.

Error: Lack of management encouragement—When a team
starts delivering something of value every short iteration, that’s
often a revolutionary event. Management needs to praise and
encourage this result, rather than take it for granted.

239

Sample Projects

Error: Failing to use value/cost priority—Not choosing solu-
tions based on highest value-to-cost.

Error: Customers not involved—Evo is customer and results-
driven; they need to participate in providing feedback on the
results of evolutionary deliveries, and in steering the next itera-
tion.

Error: No measurements—It is a mistake to avoid regular mea-
surement of the impact of delivered solutions. Frequent numeric
measurement is a significant shift for many managers, but central
to Evo.

Error: Iterations too long—Evo frontroom iterations should be
2–5% of total project time, with a lower bound of one or two weeks.

Error: Each iteration does not end in a delivery—Evo is
about evolutionary delivery on a “weekly” basis to real stakehold-
ers for useful results, even when backroom development may take
months.

Error: Predictive planning—It is a misunderstanding to cre-
ate, at the start of the project, a believable plan laying out exactly
how many iterations there will be for a long project, their lengths,
and what will occur in each. This is contrasted with Evo or adap-
tive planning. The Evo team and customer plans the next itera-
tion, and then planning adapts iteration by iteration, based on
measurement and feedback.

SAMPLE PROJECTS

Gilb’s view is that any project applying IID and evolutionary deliv-
ery is an example of Evo. This of course covers thousands of
projects. For an early example, the mid-1970s LAMPS project

240

10 — Evo

described on p. 83 is considered an Evo project in Gilb’s classifica-
tion.

PROCESS MIXTURES

None of the other IID methods covered emphasize weekly evolu-
tionary delivery, and related Evo project management measure-
ment.

Evo + Scrum

Most Scrum practices are compatible with Evo. The Scrum meet-
ing, common project room, and demos to external stakeholders at
the end of each iteration enhance Evo’s feedback goals. The Scrum
backlog and progress tracking approaches are also applicable
additions. Scrum does not discuss specific specification methods,
and thus Evo’s Planguage is still applicable.

Evo’s measurement emphasis is compatible; indeed, Jeff Suther-
land, one of the Scrum creators, takes a strong interest in mea-
surement when applying Scrum.

Scrum’s unchanging 30-day iteration length is not consistent with
Evo—Evo iterations are usually shorter.

Evo + UP

The UP is especially for software development, and usually for
projects involving multiple iterations before production delivery.
Consequently, the UP could be applied to Evo backroom develop-
ment work. However, Evo’s evolutionary delivery and project man-
agement styles are not exactly in the same spirit as the UP,
although both share an interest in early identification and mitiga-
tion of risks.

241

Process Mixtures

The UP has its own set of workproducts and approach to require-
ments capture: the Use-Case model (and thus, use cases), and
Supplementary Specification for description of functions, features,
and non-functional requirements. Evo Planguage elements, such
as the Performance Requirement Specification, may be used
within the UP Supplementary Specification.

Evo’s measurement emphasis is compatible or acceptable with the
UP.

The upper bound of UP’s 2–6 week iteration length is not consis-
tent with Evo—too long.

Evo + XP

XP values and spirit regarding specifications are not exactly com-
patible with Evo. XP’s value of avoiding written or precise require-
ments, and preferring oral communication between developers
and requirement donors is different than Evo’s emphasis that
when a specification is required, it be written with clarity and
measurable qualities. However, Evo allows a scaling down of preci-
sion on small projects; the important Evo point is value to the cli-
ent, and precision is an optional means to that end.

On the other hand, many XP development practices may be consis-
tently applied with Evo, such as test-driven development, pair pro-
gramming, and so forth.

XP’s emphasis on early results and customer-driven adaptive
planning is also consistent with Evo. The XP practice of stand-up
meeting, common project room, and whole team together supports
Evo’s feedback goals.

XP’s 1–3 week iteration length is consistent with Evo.

242

10 — Evo

ADOPTION STRATEGIES

As always, coaching by an experienced method expert on the first
project is recommended. Evo is results oriented, so not much is
sacred in its adoption—other than frequent evolutionary delivery
and project management.

Clear, precise, and measurable (though evolutionary) require-
ments are not that common or enthusiastically developed. One
approach to motivate their adoption is to focus early on evolution-
ary delivery, which of course demands understanding the design
ideas, requirements, alternatives, and priorities. Thus, after a few
iterations, the participants themselves will better appreciate the
value in adopting something like Planguage and greater require-
ments precision, in order to guide choosing their next step and
evaluating the results of the prior one.

Gilb recommends the use of pilot projects to demonstrate the value
and viability of Evo.

FACT VERSUS FANTASY

Impact estimation tables are not consistently used by Evo adopt-
ers. This may be due to their requiring more analysis and com-
plexity than the priority problem often warrants. As mentioned, a
less detailed 0–9 scale for benefit and costs ratios is an Evo alter-
native.

One-week evolutionary delivery iterations are difficult to sustain;
two weeks is easier.

Gilb reports that a significant number of Evo adopters find quanti-
fication of their most critical objectives difficult without some
coaching.

243

Strengths versus “Other”

Evo’s PDSA emphasis requires not only estimation and planning,
but measuring. Yet, this last step is often dropped under the pres-
sure of work, which of course makes Evo planning less useful.

STRENGTHS VERSUS “OTHER”

Strengths

❑ Early, visible results; frequent delivery to stakeholders.

❑ Measuring the impact of solutions and guiding improvement
by measurement data, rather than only by informal guess.

❑ Customer participation and steering.

❑ Worker engagement and satisfaction from seeing their solu-
tions quickly implemented.

❑ Planguage is a simple and compact approach to requirements
specification.

❑ Evolutionary and incremental requirements and develop-
ment, and adaptive behavior.

❑ Emphasizes quality through proven inspection methods and
through continual process improvement based on measure-
ment and data.

❑ Practices from other methods (e.g., Scrum or XP) easily
included.

Other6

❑ Management and requirements overhead of estimating
impacts and measuring results.

6. Could be viewed as a weakness, strength, or deliberate desirable
exclusion depending on point of view.

244

10 — Evo

❑ As with Scrum, minimal guidance within software-specific
disciplines, as Evo is a general project management and sys-
tems engineering method.

HISTORY

Gilb started some Evo practices in the early 1960s, while consult-
ing (and living) primarily in Europe. In 1976, he wrote about itera-
tive development, evolutionary delivery, and evolutionary project
management in his book, Software Metrics. This was rather
unique in a period dominated by waterfall lifecycle promotion. In
the late 1970s, he authored a series of column articles in Computer
Weekly UK that reiterated and further explored these practices;
these articles are arguably the earliest popular press on the sub-
ject of IID and adaptive, evolutionary development.

In April 1981, Gilb published “Evolutionary Development” in ACM
Software Engineering Notes, and in July 1985 published “Evolu-
tionary Delivery versus the ‘Waterfall Model’” ACM Sigsoft Soft-
ware Requirements Engineering Notes. These are some of the
earliest ACM or IEEE publications related to the subject of IID
and adaptive, evolutionary development.

In the 1980s he was also exposed to the work of Deming, and real-
ized that Deming’s values and Shewhart’s PDSA model captured
the intent of Evo.

As mentioned in the introduction, in 1988 Gilb published Princi-
ples of Software Engineering Management, a milestone early book
describing an adaptive, iterative, and evolutionary process, well
ahead of its time.

Since then, his early work and Evo have influenced many other
methods: XP, Scrum, and the UP all owe debts to Gilb’s work. The
popular book Rapid Development [McConnell96]—which examines

245

What’s Next?

many key best practices in software development—cites Gilb’s
work in 14 sections.

WHAT’S NEXT?

The next chapter examines some method practices in more detail,
and introduces other common tips. The final chapter is a FAQ.

RECOMMENDED READINGS

❑ Gilb’s 1988 Principles of Software Engineering Management
is an important step in studying Evo. His 2003 Competitive
Engineering presents updated refinements, and the details of
Planguage; it is the current basis for studying Evo.

❑ Software Projects: Evolutionary versus Big-bang Delivery,
Felix Redmill, John Wiley & Sons, 1997. Redmill learned Evo
from Gilb in the 1980s and managed projects with it. This
book describes his experience and lessons learned.

❑ Free online articles and draft books by Gilb—on Evo sub-
jects—are available at his Web site: www.gilb.com.

❑ Useful elaboration and refinements for Evo are also available
for download from Niels Malotaux at www.malotaux.nl.

Supporting or related texts that are recommended include:

❑ Software Inspection, by Tom Gilb and Dorothy Graham.

❑ Out of the Crisis, by W. Edwards Deming.

❑ The Deming Management Method, by W. Edwards Deming
and Mary Walton.

❑ Quality Is Free: The Art of Making Quality Certain, by Philip
Crosby.

246

10 — Evo

