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Abstract:  It is now well-known and well-documented that far too many projects fail totally or 

partially, both in engineering generally (Morris 1998) and software engineering (Neill and 

Laplante 2003). I think everybody has some opinions about this. I do too, and in this paper I 

offer some of my opinions, and I hope to lend some originality to the discussion. As an 

international consultant for decades, involved in a wide range of projects, and involved in saving 

many ‘almost failed’ projects, my basic premises in this paper are as follows: 

! We specify our requirements unclearly; 

! We do not focus enough on ensuring that the system design meets the requirements. 

INTRODUCTION 
The principles for project control can be summarized by a set of ten principles, as follows: 

P1: CRITICAL MEASURES: The critical few product objectives (performance 

requirements) of the project need to be stated measurably. 

P2: PAY FOR RESULTS: The project team must be rewarded to the degree they achieve the 

critical product objectives. 

P3: ARCHITECTURE FOR QUALITY: There must be a top-level architecture process that 

focuses on finding and specifying appropriate design strategies for enabling the critical 

product objectives (that is, the performance requirements’ levels) to be met on time. 

P4: CLEAR SPECIFICATIONS: Project specifications should not be polluted with dozens of 

defects per page; there needs to be specification quality control (SQC) with an exit condition 

set that there should be less than one remaining major defect per page. 

P5: DESIGN MUST MEET THE BUSINESS NEEDS: Design review must be based on a 

‘clean’ specification, and should be focused on whether the designs meet the business needs.  

P6: VALIDATE STRATEGIES EARLY: The high-risk strategies need to be validated early, 

or swapped with better ones. 

P7: RESOURCES FOR DESIGNS: Adequate resources need to be allocated to deliver the 

design strategies. 

P8: EARLY VALUE DELIVERY: The stakeholder value should be delivered early and 

continuously. Then, if you run out of resource unexpectedly, proven value should already 



 

 

have been delivered. 

P9: AVOID UNNECESSARY DESIGN CONSTRAINTS: The requirements should not 

include unnecessary constraints that might impact on the delivery of performance and 

consequent value. 

P10: VALUE BEFORE BUREAUCRACY: The project should be free to give priority to 

value delivery, and not be constrained by well-intended processes and standards. 

PRINCIPLES 
P1: CRITICAL MEASURES: The critical few product objectives (performance 
requirements) of the project need to be stated measurably. 

The major reason for project investment is always to reach certain levels of product performance. 

‘Performance’ as used here, defines how good the system function is. It includes: 

! Qualities - how well the system performs; 

! Resource Savings - how cost-effective the system is compared to alternatives such as 
competitors or older systems; 

! Workload Capacity - how much work the system can do. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The ‘product’ of a project will want to attain a number of critical 
performance requirements. Serious project control necessitates clear agreement 

about the set of performance levels. The project can then focus on delivering 
these levels, within the available resources 
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In practice, you need to be concerned with the 5 to 20 ’most-critical’ product performance 

requirements (For example, see Figure 1). These are the critical dimensions that determine if a 

project has been a success or failure, in terms of the product produced by that project. I choose to 

make a clear distinction between the project characteristics (like team spirit and budget overrun) 

and the project product characteristics, and to focus here on the product characteristics as the 

decisive success or failure concepts. I am not concerned with ‘the operation was a success, but 

the patient died’ view of systems engineering. 

I observe, in project after project, that I almost never see what I would call a well-written set 

of top-level requirements. The problems, which I perceive, include: 

! The critical product characteristics are often not clearly identified at all; 

! They are often identified only in terms of some proposed design (like ‘graceful file 
degradation’ to quote a recent one) to achieve requirements (rather than ‘file 

availability’, a requirement area); 

! They are often pitched at an inappropriately technical level (‘modularity’ rather than 
‘flexibility’); 

! When they are identified they are often specified in terms of ‘nice words’ (for 
example, ‘state-of-the-art security’) rather than a  quantified engineering specification 

(such as ‘99.98% reliability’); 

! Even when some quantification is given - it often lacks sufficient detail and variety to 
give engineering control. For instance including the short-term goals – not just the 

final goals, and including the different goals for the a variety stakeholders – not just 

the implied system user. I usually see no explicit statement of the rationale for the 

performance levels specified.   

If the critical success factors for the projects output are not well specified, then it does not 

matter how good any consequent process of design, quality control, or project management is. 

They cannot succeed in helping us meet our primary product requirements. See Figure 2 for an 

example of a quantitative specification of a performance requirement. This is the level of detail 

that I consider appropriate. 

Requirement Tag: Interoperability: 

Interoperability: defined as: The ability of two or more IS, or the subcomponents of such systems, to 

exchange information and services, and to make intelligent use of the information that has been 

exchanged < JSP. 

Vision: The system shall make business application data visible across the boundaries of component sub-

systems <- SRS 2.2.7. 



 

 

Source: SRS Product ID [S.01.18, 2.2.7]. 

Version: October 2, 2001 11:29. 

Owner: Mo Cooper. 

Ambition: Radically much better Interoperability than previous systems. 

Scale: Seconds from initiation of a defined [Communication] until fully successful intended intelligent 

[Use] is made of it, under defined field [Conditions] using defined [Mode]. 

Meter [Acceptance] <A realistic range of at least 100 different types of Communication and 100 Use and 

10 Conditions>  <- TG. 

 

=== Benchmarks =============== Past Levels ================================ 

Past [UNNICOM, 2001, Communication = Email From Formation to Unit, Use = Exercise Instructions, 

Conditions = Communication Links at Survival]: <infinite>  seconds <- M Cxx. 

Conditions: defined as: Field conditions, which might threaten successful use.                          

Record [DoD, 1980?, Communication = Email From Formation to Unit, Use =  Exercise Instructions, 

Conditions = Communication Links at Survival]: 5 seconds <- ??               

Trend [MoD UK, IT systems in General, 2005, Mode = {Man transporting paper copy on motorbike, or 

any other non-electronic mode}]: 1 hour?? <- TG.                         

=== Targets =================== Required Future Levels ============================= 

Goal [DoD, 2002, Communication = Email From Formation to Unit, Use = Exercise Instructions, 

Conditions = Communication Links at Survival]: 10 seconds?? <- ?? 

 

Figure 2. Specifying a performance requirement using Planguage. This 
example is a first draft from a real project 

P2: PAY FOR RESULTS: The project team must be rewarded to the degree they achieve 
the critical product objectives. 

What do we do for the project team when they fail to deliver the specified requirements, or when 

they use more time and money than budgeted? We reward them by continuing to pay them.  

Now, if being out of control on performance and costs was entirely beyond their powers, then 

‘payment for effort’ might be a reasonable way to do things. But I believe that we would be 

much better off if there were clear rewards for reaching targeted performance levels within 



 

 

budgeted resources. And lack of reward, for failing. 

 We would, of course, have to make it a ‘fair’ game. The project team would have to 

voluntarily agree that the performance goals were in fact realistic, in relation to the resources 

they have, or can get, to deliver them. We would also need to resist the temptation to dictate 

work processes or to specify designs, which in the view of the project team, would stop them 

from achieving the project goals. 

Of course if we still cannot specify the performance goals quantitatively, then no amount of 

motivation and freedom will get a project team to move in the right direction. They don’t even 

know what that direction is. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The design engineering process depends on the quality of the 
requirement specification. The standard for the requirement specification can be 

set partly by the specification rules, and partly by the defect density tolerance 
(that is, how seriously the rules are taken as measured by a quality control 

process). The standard processes and tags (for example, ‘Rules.GS’) refer to the 
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standards published in the CE manuscript (Gilb 2005) 

P3: ARCHITECTURE FOR QUALITY: There must be a top-level architecture process 
that focuses on finding and specifying appropriate design strategies for enabling the critical 
product objectives (that is, the performance requirements’ levels) to be met on time. 

If you do not have a clear quantified set of top-level critical requirements, then an architecture 

process is bound to fail. The architect cannot compare their design idea’s expected performance 

and cost attributes with the clear performance and cost requirements, they need to have for clear 

judgments about design ideas. 

Even if the requirements are perfectly quantified and clear, that is not sufficient. The 

architecture designs themselves must be specified in sufficient detail to enable an judgment that 

they will probably provide the necessary levels of performance and cost impacts (See Figure 3). 

Tag: OPP Integration.  

Type: Design Idea [Architectural]. 

============ Basic Information ============================================== 

Version: 

Status: 

Quality Level: 

Owner: 

Expert: 

Authority: 

Source: System Specification [Volume 1 Version 1.1, SIG, February 4. – Precise reference <to  

be supplied by Andy>]. 

Gist: The X-999 would integrate both ‘Push Server’ and ‘Push Client’ roles of the Object 

Push Profile (OPP). 

Description: Defined X-999 software acts in accordance with the <specification> defined 

for both the Push Server and Push Client roles of the Object Push Profile (OPP). 

Only when official certification is actually and correctly granted; has the {developer or supplier or 

 any real integrator, whoever it really is doing the integration} completed their task correctly. 

This includes correct proven interface to any other related modules specified in the specification. 

Stakeholders: Phonebook, Scheduler, Testers, <Product Architect>, Product Planner, 

 Software Engineers, User Interface Designer, Project Team Leader, Company engineers, 

Developers from other Company product departments, which we interface with, the supplier of the 

 TTT, CC. “Other than Owner and Expert. The people we are writing this particular requirement for” 

============= Design Relationships =========================================== 

Reuse of Other Design: 



 

 

Reuse of this Design: 

Design Constraints: 

Sub-Designs: 

============== Impacts Relationships ========================================= 

Impacts [Intended]: Interoperability. 

Impacts [Side Effects]: 

Impacts [Costs]: 

Impacts [Other Designs]: 

Interoperability: Defined As: Certified that this device can exchange information with any other 

 device produced by this project. 

============= Impact Estimation/Feedback ====================================== 

Impact Percentage [Interoperability, Estimate]: <100% of Interoperability objective with 

other devices that support OPP on time is estimated to be the result>. 

============== Priority and Risk Management =================================== 

Value: 

Figure 4. An example of a real draft design specification that attempts to both 
have necessary detail, and to make some assertions and estimates about the 

effects of the design on requirements. Much more could be specified later. 

 

P4: CLEAR SPECIFICATIONS: Project specifications should not be polluted with the 
usual dozens of defects per page; there needs to be specification quality control (SQC) with 
an exit condition set that there should be less than one remaining major defect per page. 

I regularly find that any requirement specification given to me by a new customer, even if it is 

approved and being used, has between 80 and 180 ‘major’ defects. This is normally a ‘shock’ for 

the people involved. How can there be so many? We measure them by asking colleagues of the 

specification author, and often the author too, to check a sample ‘logical’ page (that is, 300 non-

commentary words) of a requirements specification, and count any violations of these simple 

rules: 

• Clear enough to test; 

• Unambiguous to the intended readership; 

• No unintentional design in the requirements. 

I then ask participants to evaluate if each rule violation (defect) is serious enough to 

potentially cause delays, costs, and product defects. They are asked to classify any that are 

serious, as ‘major’ defects. The range of majors found per sample page, in about 15 minutes of 



 

 

checking, is usually from 3 to 23 per person. I find that small groups of 3 to 4 people typically 

find about double the most defects found by a single individual. For example, if the greatest 

number of defects found by one person is 15, then a small group would have about 30 unique 

majors to report. But these 30 are only one third of what is actually in the spec right now. The 

checking process is about 30% effective. Consequently there are something like 90 major defects 

present in the page, of which the small group can find only a third in about 15 minutes. 

Most people immediately agree that this is far too many. It is. And it is unnecessary! How 

polluted a requirements specification would you think is acceptable? If you are professional you 

will finally set a limit of no more than one remaining major defect per page before you release 

the specification for use in design or test planning. 

 

Total Defects 
M+m 

Majors 
M 

Design (part of Total and M+m) 
Design 

41 24 D=1 

33 15 D=5 

44 30 D=10 

24 3 D=5 

Table 1: An example from a 30 minute checking of real project requirements at 
a Jet Engine Company by 4 managers. The sample page was called ‘Non-

Functional requirements. By extrapolation the team found about 60 of a total in 
the page of about 180 major defects. The ‘M+m’ is majors and minors. The ‘D’ 

numbers are the number of designs in the requirements 

My experience (since 1988 working with aircraft drawings in California) is that if you set 

such exit conditions (max. 1 major/page) and take them seriously, then individuals will learn to 

reduce their personal injection of major defects by about 50% for each SQC cycle they go 

through. Within about 7 cycles, the individual engineer will be able to specify such a clean 

specification that it will exit first time. Some people can achieve this with fewer cycles. 

The conclusion is that because we do not carry out even simple inexpensive sampling 

measures of specification pollution, and we do not set a limit to the pollution, we live in a world 

of engineering that is normally highly polluted. We pay for this by project delays, and poor 

product quality. 

P5: DESIGN MUST MEET BUSINESS NEEDS: Design Review must be based on a ‘clean’ 
specification, and should be focused on whether the designs meet the business needs. 

Before we can review a design specification regarding relevance, we must review it for 



 

 

‘compliance to rules of specification’, that assures us about the intelligibility of the specification. 

 

 

 

 

 

 

 

Figure 5. Four stages of checking a design specification 

For example, there is no point in reviewing a design specification (such as ’Reusable Modules’), 

when  

! The specification is unnecessarily ambiguous; 

! There is no assertion of which requirements the design is supporting; 

! There is no assertion or estimation as to how well the design is supporting those 
requirements; 

! There are no resource estimates (costs) for the design. 
To put it more directly: Check that a design specification is well written first, only then do 

you have a basis for checking to see if it is a good design. I believe it is unreasonable to judge a 

design idea itself on the basis of a poorly written specification. Only well-specified designs 

should be evaluated by senior responsible people. Badly specified designs – defined as those not 

following our own design specification rules – need to be returned to the designer for rework. 

See Figure 6 for an example of real design rules designed to force us to specify designs in 

sufficient detail. When these rules are followed, then, I believe we have the basis for deciding 

whether a design is appropriate in relation to its requirements. 

Rules: Design Specification 

Tag: Rules.DS.  Version: October 7, 2004.  Owner: TG.  Status: Draft. 

Note: Design specifications are either for optional design ideas (possible solutions) or required 

design constraints (that is, actual requirements AND consequently, pre-selected solutions). 

Base: The rules for generic specification, Rules.GS apply. If the design idea is a design 

constraint (a requirement), the rules for requirement specification, Rules.RS also apply. 

R1: Design Separation: Only design ideas that are intentionally ‘constraints’ (Type: Design 
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Constraint) are specified in the requirements. Any other design ideas are specified separately 

(Type: Design Idea). Note all the design ideas specified as requirements should be explicitly 

identified as ‘Design Constraints.’ 

R2: Detail: A design specification should be specified in enough detail so that we know 

precisely what is expected, and do not, and cannot, inadvertently assume or include design 

elements, which are not actually intended. It should be 'foolproof'. For complex designs, the 

detailed definition of its sub-designs can satisfy this need for clarity, the high level design 

description does not need to hold all the detail. 

R3: Explode: Any design idea, whose impact on attributes can be better controlled by detailing 

it, should be broken down into a list of the tag names of its elementary and/or complex sub-

design ideas. Use the parameter ‘Definition’ for Sub-Designs. If you know it can be 

decomposed; but don't want to decompose it just now, at least explicitly indicate the potential of 

such a breakdown. Use a Comment or Note parameter. 

R4: Dependencies: Any known dependencies for successful implementation of a design idea 

need to be specified explicitly. Nothing should be assumed to be ‘obvious’. Use the parameter, 

Dependency (or Depends On), or other suitable notation such as [qualifiers]. 

R5: Impacts: For each design idea, specify at least one main performance attribute impacted by 

it. Use an impact arrow ‘->’ or the Impacts parameter. Comment: At early stages of design 

specification, you are just establishing that the design idea has some relevance to meeting your 

requirements. Later, an IE table can be used to establish the performance to cost ratio and/or the 

value to cost ratio of each design idea. 

Example: 

Design Idea 1 -> Availability. 

Design Tag 2: Design Idea. 

Impacts: Performance X. 

R6: Side Effects: Document in the design specification any side effects of the design idea (on 

defined requirements or other specified potential design ideas) that you expect or fear. Do this 

using explicit parameters, such as Risks, Impacts [Side Effect] and Assumptions. 

Examples: 

Design Idea 5: Have a <circus> -> Cost A.  

Risk [Design Idea 5]: This might cost us more than justified. 



 

 

Design Idea 6: Hold the conference in Acapulco.  

Risk: Students might not be able to afford attendance at such a place? 

Design Idea 7: Use Widget Model 2.3.  

Assumption: Cost of purchasing quantities of 100 or more is 40% less due to discount. 

Impacts [Side Effects]: {Reliability, Usability}. 

Do not assume others will know, suspect or bother to deal with risks, side effects and 

assumptions. Do it yourself. Understanding potential side effects is a sign of your system 

engineering competence and maturity. Don’t be shy!  

R7: Background Information: Capture the Background information for any estimated or actual 

impact of a design idea on a performance/cost attribute. The evidence supporting the impact, the 

level of uncertainty (the error margins), the level of credibility of any information and, the 

source(s) for all this information should be given as far as possible. For example, state a previous 

project’s experience of using the design idea. Use Evidence, Uncertainty, Credibility, and Source 

parameters. Note the source icon (<-) usually represents the Source parameter. Comment: This 

helps ‘ground’ opinions on how the design ideas contribute to meeting the requirements. It is 

also preparation for filling out an IE table. 

Example: 

Design Tag 2 -> Performance X <- Source Y. 

R8: IE Table: The set of design ideas specified to meet a set of requirements should be validated 

at an early stage by using an Impact Estimation (IE) table. 

Does the selected set of design ideas produce a good enough set of expected attributes, with 

respect to all requirements and any other proposed design ideas? Use an IE table as a working 

tool when specifying design ideas and also, when performing quality control or design reviews 

on design idea specifications.  

R9: Constraints: No single design specification, or set of design specifications cumulatively, 

can violate any specified constraint. If there is any risk that this might occur the system engineer 

will give a suitable warning signal. Use the Risk or Issues parameters, for example. 

R10: Rejected Designs: A design idea may be declared ‘rejected’ for any number of reasons. It 

should be retained in the design documentation or database, with information showing that it was 

rejected, and also, why it was rejected and by whom.  

Example: 



 

 

Design Idea D: Design Idea. 

Status: Rejected. 

Rationale [Status]: Exceeds Operational Costs. 

Authority: Mary Fine. Date [Status]: April 20, This Year. 

Figure 6. Specification rules for design, which lay a proper basis for judging 
the power and cost of the design in relation to the requirements. See also Chapter 

7 in (Gilb 2005) 

 

P6: VALIDATE STRATEGIES EARLY: The high-risk strategies need to be validated 
early, or swapped with better ones. 

It should be possible to identify your high-risk strategies (Note, ‘strategies’ are also known as 

designs, solutions and architectures). They are the ones that you are not sure of the impact levels 

on performance and cost. They are the ones that can potentially ruin your project, if they turn out 

to be worse than you are expecting. If you try to estimate all impacts of a given strategy on an 

Impact Estimation table, and get estimates such as 50%±40% (100% = Goal level attained), then 

you have exposed a high-risk design. If the credibility estimate (a defined Impact Estimation 

method) on a scale of 0.0 to 1.0 is low, like under 0.5, then you also have a high-risk strategy. If 

no one will guarantee the result in a binding contract, then you also have a high-risk strategy. 

Engineers have always had a number of techniques for validating risky strategies early. 

Trials, pilots, experiments, and prototypes are common tactics. One approach I particularly favor 

is scheduling the delivery of the risky strategy in an early evolutionary delivery step, to measure 

what happens – and thus get rid of some of the risk. Early evolutionary delivery steps usually 

integrate a new strategy with a real system, and with real users, and are therefore more 

trustworthy, than, for example, an expert review panel, which is relatively theoretical. 

Policies for Risk Management 

Explicit Risk Specification: All managers/planners/engineers/testers/quality assurance people 

shall specify any uncertainty, and any special conditions, which can imaginably lead to a risk of 

deviation from defined target levels of system performance. This must be done at the earliest 

opportunity in writing, and integrated into the main plan. 

Numeric Expectation Specification: The expected levels of all quality and cost attributes of the 

system shall be specified in a numeric way, using defined scales of measure, and at least an 

outline of one or more appropriate ‘meters’ (that is, a proposed test or measuring instrument for 



 

 

determining where we are on a scale).  

Conditions Specified: The requirements levels shall be qualified with regard to when, where and 

under which conditions the targets apply, so there is no risk of us inadvertently applying them 

inappropriately. 

Complete Requirement Specification: A complete set of all critical performance and cost 

aspects shall be specified, avoiding the risk of failing to consider a single critical attribute. 

Complete Design Specification and Impact Estimation: A complete set of designs or 

strategies for meeting the complete set of performance and cost targets will be specified. They 

will be validated against all specified performance and cost targets (using Impact Estimation 

Tables). They will meet a reasonable level of safety margin. They will then be evolutionarily 

validated in practice before major investment is made. The Evo steps will be made at a rate of 

maximum 2% of total project budget, and 2% of total project timescales, per increment (Evo 

step) of designs or strategies. 

Specification Quality Control, Numerically Exited: All requirements, design, impact 

estimation and evolutionary project plans, as well as all other related critical documents, such as 

contracts, management plans, contract modifications, marketing plans, shall be ‘quality 

controlled’ using the Inspection method (Gilb 1993). A normal process exit level shall be that 

‘no more than 0.2 maximum probable major defects per page can be calculated to remain, as a 

function of those found and fixed before release, when checking is done properly’ (that is, at 

optimum checking rates of 1 logical page or less per hour). 

Evolutionary Proof of Concept Priorities: The Evolutionary Project Management method will 

be used to sense and control risk in mid-project. Dominant features will include: 

• 2% (of budget and time-to-deadline) steps; 

• High value-to-cost steps, with regard to risk, prioritized asap; 

• High risk strategies tested ‘offline to customer delivery’, in the ‘backroom’ of  

the development process, or at cost-to-vendor, or with ‘research funds’ as opposed to 

 using the official project budget. 

Figure 7. Policy Ideas for Risk Management 

 

P7: RESOURCES FOR DESIGNS: Adequate resources need to be allocated to deliver the 
design strategies. 



 

 

It is not sufficient that your design strategies will meet your performance targets. We have to 

have the resources needed to implement them. And the resources used must not result in an 

unprofitable situation, even if we can get them. The resources we must consider are both for 

development and operation, even decommissioning. The resources are of many types, and 

include money, human effort and calendar time. 

I observe that it is unusual for me to see design specifications with detailed cost calculations 

at the level of individual designs. We do not even seriously try to consider individual design idea 

costs (at best we estimate a total cost); so it is not surprising that we constantly exceed the 

resource constraints that apply to our projects. 

P8: EARLY VALUE DELIVERY: The stakeholder value should be delivered early and 
continuously. Then, if you run out of resource unexpectedly, proven value should already 
have been delivered. 

Projects may fail because they run out of time or money and have delivered nothing. They can 

then only offer hope of something, at the cost of additional money and time – and note that this 

addition is typically estimated by the people who have already demonstrated they do not know 

what they are promising. 

 

Designs-> 

                

Contract Supplier Motive Architect Parts 

Used 
Sum  
%Impacts 

Requirements 
     Performance 

     Quality 1 0% 100% 50% 30% -20% 160% 

     Quality 2 100% 50% 0% 20% 50% 220% 

     Costs 

     Investment    
     Cost 

5% 10% 1% 10% 110% 136% 

     Operational  
     Cost 

5% 50% 20% 1% 10% 86% 

     Staff  
     Resource 

10% 20% 10% 5% 0% 45% 

Performance to 

Cost Ratio 
 

100/20 
 

150/80 
 

50/31 
 

50/16 
 

30/120 
 

Table 2: An Impact Estimation table structure simplified example that helps us 
consider cost elements, while looking at the performance impacts. Consequently 



 

 

we can see the performance to cost ratio. The % estimates refer to % of meeting a 
performance level target, or to % of a budgeted cost 

The smart management solution to this common problem is to demand that projects are done 

evolutionarily. That means there will be consciously-planned early (first month) and frequent 

(perhaps weekly, or 2% of budget) attempts to deliver measurable value to real stakeholders. 

Most people have never been subject to this discipline, and they have not learned the theory 

of how to do it in practice. But there are decades of practical proof in the software and systems 

engineering world that this works. (Larman and Basili 2003, Larman 2003). 

P9: AVOID UNNECESSARY DESIGN CONSTRAINTS: The requirements should not 
include unnecessary constraints that might impact the delivery of performance and 
consequent value. 

It is all too common for projects to focus on a particular technical solution or architecture, and 

not to focus on the actual end results they expect to get from the technical ‘design’. They end up 

locking themselves into the technical solution – and rarely get the results they expected. 

Remember the high failure rate of projects? 

The primary notion in planning any project, and in contracting suppliers to deliver all or part 

of it, is to focus entirely on the top few critical results. The critical results have to be quantified 

within the requirements and made the subject of contract conditions (such as, ‘No cure, No pay’). 
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Figure 8. Conceptual view of delivery of stakeholder benefits early and 
cumulatively. From Kai Gilb’s book Manuscript (Gilb, K. 2005) 

 

Technology Policy 

! Use the technology which best satisfies your requirements. 

! If you are responsible for results, you have total discretion about the means. 

! Those who dictate constraints are responsible for the constraint effects. 

! Make sure the risk of technology you choose is understood, controlled and profitable. 

! Satisfy stakeholder priorities in profitable sequence, within available resources. 

Figure 9. A technology policy the author suggested to one of his clients, a 
major electronics telecom organization 

 

P10: VALUE BEFORE BUREAUCRACY: The project should be free to give priority to 
value delivery, and not be constrained by well-intended processes and standards. 

There was a time when software and IT were ‘Wild West’. Anybody who could program, did 

things as they knew best. Sometimes, we are not far in many places from that model today. 

However in other places, the need to get higher consistent standards of professionalism, has 

swung the pendulum too far the other way. Processes and standards like the Software 

Engineering Institute Capability Maturity Model Integration (CMMI 2002) are thorough and 

well intended. But almost no such recommended frameworks and processes encourage or permit 

focus on the main results of a project. Consequently there is a great, inevitable, danger that this 

results focus will be lost in practice. Everywhere I look, I see that result – no results focus – 

worldwide – with or without the distraction of CMMI and the like. This includes the Agile 

Methods (Larman 2003). My recommendation to attempt to refocus is outlined in Figure 10. 

A Simple Evolutionary Project Management Method 

Project Process Description 

1. Gather from all the key stakeholders the top few (5 to 20) most critical performance (including 

qualities and savings) goals that the project needs to deliver. Give each goal a reference name (a tag). 

2. For each goal, define a scale of measure and a ‘final’ goal level. For example: Reliability: Scale: Mean 

Time Between Failure, Goal: >1 month. 

3. Define approximately 4 budgets for your most limited resources (for example, time, people, money, 

and equipment). 



 

 

4. Write up these plans for the goals and budgets (Try to ensure this is kept to only one page). 

5. Negotiate with the key stakeholders to formally agree the goals and budgets. 

6. Plan to deliver some benefit (that is, progress towards the goals) in weekly (or shorter) increments (Evo 

steps). 

7. Implement the project in Evo steps. Report to project sponsors after each Evo step (weekly, or shorter) 

with your best available estimates or measures, for each performance goal and each resource budget.  

- On a single page, summarize the progress to date towards achieving the goals and the costs incurred. 

- Based on numeric feedback, and stakeholder feedback; change whatever needs to be changed to reach 

goals. 

8 When all goals are reached: “Claim success and move on” [Gerstner, 2002]. Free the remaining 

resources for more profitable ventures 

Project Policy for Simple/Agile Evo Projects 

1. The project manager, and the project, will be judged exclusively on the relationship of progress 

towards achieving the goals versus the amounts of the budgets used. The project team will do anything 

legal and ethical to deliver the goal levels within the budgets. 

2. The team will be paid and rewarded for ‘benefits delivered’ in relation to cost. 

3. The team will find their own work process, and their own design. 

4. As experience dictates, the team will be free to suggest to the project sponsors (stakeholders) 

adjustments to ‘more realistic levels’ of the goals and budgets. For more detail, see (Gilb 2003, Gilb 

2004). 

Figure 10.  
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