
August 2013

issue 15
Distributed Team Management



Page 24 Agile Record – www.agilerecord.com

Agile Contracting for Results
The Next Level of Agile Project Management

by Tom & Kai Gilb

Agile development presents an opportunity for better agile proj-
ect management that not many seem to appreciate or practice 
yet. The fact that we agilistas all seem to agree to 1) deliver 
iteratively, 2) increment the product, and 3) learn and change 
evolutionarily means that there is an opportunity we did not 
have in the days of waterfall.

This opportunity is available when the work is outsourced. Con-
sequently, it is not considered in general agile models which 
focus on the development process, with the apparent assump-
tion that work is done in-house. Please consider that the ideas 
here could also be applied to reward and motivate in-house 
teams, without a legal contract framework.

We can write the contract so that work is paid for as useful, 

proven results are delivered.

Why should we pay a supplier just because time has been spent 
on a project? Why not pay only for real delivery of useful results?

Of course, unethical suppliers, by definition, would be happy to 
take your money, even if they fail to deliver useful results. And 
that seems to be common practice. Project failure is common 
[1]. But we have only ourselves to blame if we allow this misuse 
of resources and confidence to happen. We believe that if you 
are contracting out your development work, then you are ethi-
cally responsible for getting good results.

Massive payments for failed projects and for non-delivery of 
necessary results should NEVER happen! Nevertheless, it is 
too common. Our contracting model is broken, yet any one of 
us can fix it immediately.

We think the best way to ensure good results is to motivate the 
supplier/developer by paying them well for results, and paying 
little or nothing for lack of results. We think that a contract 
should be discontinued, at any time, when planned results are 
not forthcoming. Continuation of a contract should be based 
on a reliable series of planned results.

Ideally the results are something more than “code without too 
many bugs” or “user stories.” The results should primarily be 
high-priority business and organizational improvements: based 
on the top few critical reasons for the project [2]; based on 

measurable improvements in cost, speed, and qualities such 
as usability, security, maintainability, reliability, and many oth-
ers, as prioritized.

But most developers and product owners are not trained or 
motivated to do this. They have neither the vision (“no cure, 
no pay” [3]) nor the technical ability to carry it out. In fact, they 
lack results leadership by their managers.

The Necessary Ingredients

 ó Ability to define results so they are testable and usually 
measurable [4]

We are not talking about the mere technical software product 
of the development effort. We are talking about the results – 
improvements for people (like ease of learning a new applica-
tion) that result from use of the product.

This raises the question of whether to contract for the techni-
cal characteristics of the technical product itself (usability, 
for example), or its knock-on effects in the organization (time 
savings, fewer errors, etc.) when deployed.

In practice, the technical supplier (e.g. software developer) 
can really only be responsible for the technical product, not 
how well it works with your own customers and employees. 
You as a technical product customer need to translate those 
technical characteristics (like usability) into organizational 
results (like training savings).

But we should ideally be able to contract out even that higher 
organizational level of results for payment, too. This is a 
systems engineering level, not a software engineering level.

 ó The ability to think of the real total system – the people, 
their motivations, the data, the hardware and software

Current agile thinking is far too code-centric. Someone needs 
to worry about designing, planning, and managing the total 
package needed to deliver useful and long-term results. We 
need a level of systems engineering to manage the program-
ming. We need a result owner level of management.

Column



Page 25 Agile Record – www.agilerecord.com

A New Open Agile Contractual Framework 
Initiative

There is an effort by some of our professional friends, with our 
active participation, to help with the legal framework for this [5].

They have published a free contract template to provide a legal 
framework for results contracting.

It has two major components:

1. a contract framework, taking care of the long-term overall 
legal statements; and

2. a contract sub-component – the result specification 
cycle – that defines the customer-level results of techni-
cal implementation, for one or more consecutive delivery 
cycles.

Contract Framework
Warranties

IP
Constraints ($, Time, Regulatory)

Result Spec Cycle 3Result Spec Cycle 1

$

Figure 1. The contract framework applies to all result specification cycles. 
The result specification cycles are not initially specified in the contract. 
They are specified as experience and need dictates. Cycles can be termi-
nated when needs are fulfilled or when the supplier does not perform 
successfully. Payment, in part or whole, is based on delivery of specified 
customer results, not on delivery of technology itself.

The flexible results contracting idea is simple – the relationship 
between the customer and the supplier can exist only for as long 
as the defined results keep on coming through the pipeline. If 
results are not happening, the customer is free to stop further 
activity. You are no longer bound by contract to a supplier who 
produces bad or costly work. And they know that, so they will 
be more motivated, at all times, to keep the customer happy. 
This of course can also be viewed as a benefit for the supplier 
organization too! They are motivated to be better suppliers.

Learn

Result
Speci�cations

in Contract

Implement
Options

Results
Achieved

Systems
in Operation

Figure 2: The result contract structure is one of learning from actual 
results achieved, in operation, in order to decide more intelligently on the 
next set of contractual result specifications in detail. The requirements are 
not in the contract framework. Requirements are developed gradually, 
based on feedback from the receiving organization and on feedback from 
the customer’s changing environment. Options are the designs, strategies, 
or architectures necessary to deliver the requirements for that result cycle.

Traditional Contract Model Result Contract Model (Agile)

Requirements are contractual 
and specified up-front in the 
main contract.

Requirements are specified at the start of 
each result cycle.

Changes are managed by 
means of the change control 
mechanism.

Requirements are more resistant to change 
than traditional output requirements. Target 
outcomes are only specified at the start of 
each result cycle, are operational for shorter 
periods of time, and therefore are exposed to 
less change.

Analysis, design, development, 
and testing occur sequentially. 
Big Bang or Waterfall.

Each cycle must deliver value, so design and 
development occur concurrently. A systems 
view must be taken, providing real results in 
real life.

An all or nothing solution. The solution evolves as a serious of result 
deliveries.

Constituent modules of software 
are worked on independently 
until integration takes place.

There is continuously working and stable 
software and hardware system.

Testing is used as a contractual 
tool at the end of the develop-
ment process.

Testing occurs throughout the development 
process, providing feedback for improve-
ments.

Success is measured by refer-
ence to conformance with the 
change-controlled contract.

Successs is measuered, cycle by cycle, by 
requirements delivered, driving value to the 
customer.

Figure 3: Comparing waterfall contracting to agile result contracting.

Agile Architecture: Proving and Changing Design 
Gradually to Meet Real Needs

Flexible results contracting will require us to manage software 
projects at a higher level of concern. Instead of paying suppliers 
for the implementation of our design (i. e. the technical solutions 
we hope will meet our business or organizational requirements), 
we will contract and pay for a higher level of requirement, such as 
degrees of usability, security, maintainability, and performance. 
We can free up the supplier (perhaps after trial and error to 
see what really delivers our needs) to ultimately select, on our 
behalf, the most cost-effective architecture to meet our techni-
cal requirements.

Be careful what you ask for! They may deliver the bad archi-
tecture you demand, which does not provide what you hoped 
to get from it!

We should not put ourselves in the position of fixing technical 
designs prematurely in a contract. We often falsely call these 
designs requirements, when they are not our organizational 
technical requirements (like better security) at all. There is usu-
ally no real proof at that early (initial contract) stage that the 
specified designs or architecture will deliver what we really want.

This must be proven incrementally. We must build our systems 
on a succession of proven designs that really deliver the techni-
cal characteristics of quality, performance, and cost we really 
want. To do that, we need to test our design assumptions in 
real systems in practice, and we need to delegate technical 
design decisions to capable architects and designers, hope-
fully a competent part of the supplier service. And we need to 
do so on the shop floor of reality, not in the ivory tower of the 



Page 26 Agile Record – www.agilerecord.com

enterprise architect. It is a common bad practice to make all key 
design decisions too early, unproven, and too much at once [6].

Summary

We need to acknowledge the complex systems and the complex 
environment we all work in by taking another step in the agile 
direction: agile contracting for results.

Customers need to focus on the business and organizational 
results they really need in their technical systems and motivate 
suppliers to deliver these levels by paying for good results only. 
All solutions, strategies, designs, architecture, and means to 
deliver what we as customers really value must be proven gradu-
ally. We must learn what works for technology and suppliers rap-
idly, continuously, incrementally, and assess the consequences 
quickly. That’s agility!

We are not yet, as a culture, truly agile in contracting or in sys-
tems architecture. But we can be, if responsible leaders take 
the lead in doing so.

Is that the you we are talking to?

References

[1] Highly recommended in-depth analysis of good and bad 
agile practices, even if you are NOT in the public sector: 
Wernham, Brian. Agile Project Management for Govern-

ment. Maitland and Strong.

[2] Gilb, Tom. “The Top 10 Critical Requirements are the 
Most Agile Way to Run Agile Projects”. Agile Record, Au-
gust 2012, 11: pp. 17–21. http://www.gilb.com/dl554

[3] Gilb, Tom. “No Cure No Pay.” 
http://www.gilb.com/tiki-download_file.php?fileId=38

[4] Gilb, Tom. “Chapter 5: Scales of Measure.” Competitive 

Engineering. 
http://www.gilb.com/tiki-download_file.php?fileId=26

[5] This initiative is a draft idea and would welcome coopera-
tion and feedback from people who would like to try it out 
in practice! www.flexiblecontracts.com

[6] Gilb, Tom. “Real Architecture Engineering.” Lecture slides 
from ACCU Bristol, April 2013. 
http://www.gilb.com/dl574 ■

Tom Gilb and Kai Gilb

Tom Gilb and Kai Gilb have, together with many 

professional friends and clients, personally de-

veloped the agile methods they teach. The meth-

ods have been developed over five decades of 

practice all over the world in both small companies 

and projects, as well as in the largest companies 

and projects. Their website www.gilb.com/downloads offers free 

papers, slides, and cases about agile and other subjects.

There are many organisations, and individuals, who use some or 

all of their methods. IBM and HP were two early corporate-wide 

adopters (1980, 1988). Recently (2012) over 15,000 engineers 

at Intel have voluntarily adopted the Planguage requirements 

specification methods; in addition to practicing to a lesser extent 

Evo, Spec QC and other Gilb methods. Many other multinationals 

are in various phases of adopting and practicing the Gilb methods. 

Many smaller companies also use the methods.

Tom Gilb

Tom is the author of nine published books, and hundreds of pa-

pers on agile and related subjects. His latest book ‘Competitive 

Engineering’ (CE) is a detailed handbook on the standards for the 

‘Evo’ (Evolutionary) Agile Method, and also for Agile Spec QC. The 

CE book also, uniquely in the agile community, defines an Agile 

Planning Language, called ‘Planguage’ for Quality Value Delivery 

Management. His 1988 book, Principles of Software Engineering 

Management (now in 20th Printing) is the publicly acknowledged 

source of inspiration from leaders in the agile community (Beck, 

Highsmith, and many more), regarding iterative and incremental 

development methods. Research (Larman, Southampton Univer-

sity) has determined that Tom was the earliest published source 

campaigning for agile methods (Evo) for IT and Software. His first 

20-sprint agile (Evo) incremental value delivery project was done 

in 1960, in Oslo. Tom has guest lectured at universities all over 

UK, Europe, China, India, USA, Korea – and has been a keynote 

speaker at dozens of technical conferences internationally.

Kai Gilb

Kai Gilb has partnered with Tom in developing these ideas, holding 

courses and practicing them with clients since 1992. He coa-

ches managers and product owners, writes papers, develops the 

courses, and is writing his own book, ‘Evo – Evolutionary Project 

Management & Product Development.’ Tom & Kai work well as a 

team; they approach the art of teaching their common methods 

somewhat differently. Consequently the students benefit from 

two different styles.

> about the authors

http://www.gilb.com/dl554
http://www.gilb.com/tiki-download_file.php?fileId=38
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.flexiblecontracts.com/
http://www.gilb.com/dl574
http://www.gilb.com/downloads

