

Design Evaluation: Estimating Multiple Critical
Performance and Cost Impacts of Designs

Tom Gilb
Tom@Gilb.com

Copyright © 2005 by Tom Gilb. Published and used by INCOSE with permission.

Abstract: How should we evaluate someone’s design suggestion? Is gut feel and experience
enough for most cases? Is anything more substantial and systematic possible? This paper outlines
a process for design evaluation, which assesses the impacts of designs towards meeting
quantified requirements. The design evaluation process is viewed as consisting of a series of
design filters.

INTRODUCTION
This paper proposes that:

! Design evaluation is primarily a matter of understanding the ‘performance and cost’
impacts of the design(s) numerically, in relation to quantified performance and cost
requirements;

! Design evaluation needs to go through several maturity stages, but remains
fundamentally the same question: what does the design contribute to meeting our
requirements?

Prior to design evaluation, the requirements must be specified. All the performance and cost
requirements must be specified quantitatively. The requirements should be subject to
specification quality control (SQC). An entry condition into the design evaluation process should
be that the requirement specification has successfully exited quality control with an acceptable
level of remaining defects per logical page (for example, less than one remaining defect per 300
words).

The design evaluation process consists of several maturity stages, which can be viewed as
design filters. These maturity stages include:

! Value-based selection: Select the requirements with the highest stakeholder value;
! Constraint-based elimination: Delete designs that violate constraints;
! Performance-based selection: Pick the most effective remaining designs;
! Resource-based optimization: Select the effective designs that are most efficient –

effect/cost;
! Risk-based elimination: Evaluate designs based on performance and cost risks.

Each of these evaluation filters requires specification and estimation tools that are common
sense, but are not commonly taught or employed. These tools are based on the defined Planning
Language (‘Planguage’), developed by the author for practical industrial use through many years
(Gilb 2005a).

Let’s now go through the design evaluation process in greater detail. I’ll summarize the main
points as a set of principles.

CLEAR SPECIFICATION OF REQUIREMENTS
Principle 1: A design can only be evaluated with respect to specific clear requirements.

The foundation of design evaluation is a set of clear requirements. Any evaluation of any design
to try to ensure meeting vague requirements is going to be imprecise1. If you look around you,
both inside the systems engineering community and outside it, you will observe that people
commonly evaluate designs ‘in general terms’ (for example, “that design is the most user-
friendly…”), rather than with respect to specific immediate, and residual2 project or product
requirements.

One of several reasons for this generalizing about ‘good designs,’ is that we are very vague
with requirements specification. Our most critical requirements are typically unclear, and not
quantified. In my consulting and teaching practice I see this happening worldwide. When I
evaluate such requirements using SQC, there are invariably approximately 100 defects present
per page, unless special effort has been made to eliminate them (Gilb 2005b). To the degree that
is the case, we cannot readily expect anyone to perform a logical evaluation of the suitability of a
given design for a fuzzy requirement. Consider the following questions:

How good is a ‘Mac interface’ for getting ‘higher usability’? And how good is
‘MAC OS X’ compared to ‘Windows’ for ‘higher security’?

These are silly questions because the requirements are not clearly defined (Note also that the
other security designs that will co-exist are not listed and analyzed). Now, requirements are not
the primary subject of this paper3. So we need to be brief on them, so as to concentrate on design
itself. But here are some of the things I would insist are necessary pre-requisites for being able to
evaluate a design:

! All performance (including all qualities) and cost requirements are expressed
quantitatively (with defined scales of measure). Not just nice sounding words.

Scale: Minutes for defined [Tasks] done by defined [People].
! All performance requirements must include at least one target (A target is a level we aim

for) and at least one constraint (A constraint is a level we aim to avoid with our design).
Goal: 3 minutes.
Fail: 10 minutes.

! All performance requirements must include explicit and detailed information regarding
the short-term and the long-term timescales of expectation.

Goal [Release 1.0]: 3 minutes.
Fail [Release 1.0]: 10 minutes.

! All relevant constraints on solving the design problem are specified complete, officially,
explicitly, unambiguously, and clearly. This includes all notions of restrictions such as
legal, policy, and cultural constraints. It also includes any known design constraints (such
as from our own architecture specification). Constraints will consider all necessary
aspects of development, operations, and decommissioning resources.

1 This is not the same as demanding that the requirements are known upfront: requirements should not be ‘frozen’
and they should be allowed to evolve over time. The issue here is that the known or predicted requirements are
expressed clearly.

2 Residual requirements: Residual: Concept *359: The remaining distance to a target level from a benchmark or
current level (From Planguage Glossary in (Gilb 2005a)). The point being that design is a sequential process of
evaluating necessary designs, to add onto the current set of designs – and the only designs necessary at any point in
the process, are designs that will move us from the performance levels we estimate we have reached, with the
current set of designs, towards our required Goal levels of performance. A good analogy is the ‘next chess move’

3 See Gilb 2005e for further discussion on requirements.

<Name tag of the performance requirement or cost requirement>:

Ambition: <Give overall real ambition level in 5-20 words>.

Version: <Each requirement specification should have a version, at least a date, yymmdd>.

Owner: <The person or instance allowed to make official changes to this requirement>.

Type: <Performance|Cost Requirement>.

Stakeholder: { , , }. “Who can influence your profit, success or failure?”

Scale: <Defined units of measure, with [parameters] if you like>.

Meter [<qualify which version and level>]: <Specify how you will measure>.

====Benchmarks ============ the Past ===================================

Past [<time>, <place>, <event>]: <Actual or estimate of past level> <- <Source of past data>.

Record [<time>, <place>, <event>]: <Actual or estimate of record level>] <- <Source of record
data>.

Trend [<time>, <place>, <event>]: <Prediction of level> <- <Source of prediction>.

==== Targets ============= the Future Needs ===============================

Wish [<time>, <place>, <event>]: <- <Source of wish>.

For Performance Requirements Only – Use ‘Goal’

Goal [<time>, <place>, <event>]: <Target level> <- <Source of goal>.

Value [<stakeholder>]: <Refer to what this impacts or how much it creates of value>.

For Cost Requirements Only – Use ‘Budget’

Budget [<time>, <place>, <event>]: <Target level> <- <Source of budget>.

Stretch [<time>, <place>, <event>]: <Motivating target level> <- <Source of stretch>.

==== Constraints ==

Fail [<time>, <place>, <event>]: <- <Source of fail>. “Failure Point”

Survival [<time>, <place>, <event>]: <- <Source of survival>. “Survival Point”
Figure 1 shows a Planguage requirement template with hints. This gives some

idea of the basic parameters that should be used to describe a performance or
cost requirement quantitatively (Gilb 2005a)

There clear and complete requirements are a set of basic entry conditions to any design or

architecture process. Without it a design process is like a fighter plane with no known enemy,
like a passenger ship at sea with no destination port identified, or like a great invention with no
market.

Design evaluation is quite simply about deciding how well a design meets the total set of
requirements.

Principle 2: All designs have performance and cost attributes, but not necessarily the ones
you require.

Figure 2 shows a map of the requirements concepts including a variety of
constraint concepts. The *nnn are references to detailed definitions of these

concepts in the Planguage Concept Glossary (Gilb 2005a)

VALUE-BASED SELECTION
Principle 3: The real value of a design to a stakeholder depends partly on the technical
characteristics of the design, and partly on the planned, perceived and actual use of those
characteristics in practice, over time.

The value of a design depends on the stakeholder view taken. The producer of a product has one
view. The users of a product have another view. It is going to be the producer of a product who
will directly and primarily evaluate designs from their point of view. They ideally will try to
maximize their profitability or service delivery. The commercial producers will do this by
maximizing the value delivered to their customers, so that their customers will ‘return the favor’
by paying well, in terms of price and volume. It should be possible to evaluate a design market,
segment by market segment, for estimated sales or profit as a result of it. Ideally your marketing
people would make such an evaluation. The service providers (such as military, space,

Requirement *026

Function
Requirement
*074

Performance
Requirement
*100
(Objective)

Resource
Requirement
*431

Design
Constraint
*181

Condition
Constraint
*498

Function
Target
*420

Function
Constraint
*469

Performance
Target
*439 (goal)

Performance
Constraint
*438

Resource
Target
*436 (budget)

Resource
Constraint
*478

Quality Requirement
*453
Resource Saving Requirement
*429

Workload Capacity Requirement
*544

Vision
*422

Mission
 *097

Goal
*109

Budget
*480

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

government) will worry about value to their stakeholders for money spent
If the marketing people are not involved or helpful, the technologist is left to look at the

contribution of a given design to the performance requirement levels. Designs have value
primarily as long as they help us move to the Goal levels, and perhaps to the degree they help us
move to the Stretch levels (see Figure 1). Beyond those target levels, a design does not have any
formally agreed value, because it is not formally required.

So we need to find the designs that satisfy the prioritized agreed target levels, at the lowest
costs and risks available. I have developed an Impact Estimation (IE) method to help us see the
contribution of design ideas to the requirement levels, the degree of risk involved and the
corresponding development costs (See later, Table 1). So we can make a rational decision and
present it to others.

CONSTRAINT-BASED ELIMINATION
Principle 4: It doesn’t matter how good or how cheap a design is, if constraints forbid it.

We are assuming that there is a flow of one or more design ideas to be evaluated. The question of
how we identify these design ideas is a separate topic. Before we go deeper into the design, we
need to assess if any design idea is disqualified by any requirement.

We need to pass the design through the set of design filters known as constraints. The
questions to be asked include:

! Does the design violate any specified design constraint?
! Does the design violate any condition constraint?
! Does the design violate any performance constraint or cost constraint?
! Does the design in combination with other design elements, adopted or projected,

threaten to violate any constraint?
Because if a design violates, or threatens to violate, any defined constraint, a design needs to

be set aside in favor of designs that do not. Later we could, if necessary, discuss relaxing a
constraint, or risking or tolerating a constraint violation, in order to make use of an otherwise
superior design, so we need to be careful about permanently discarding designs that initially
violate some constraint. They might turn out to be the best design of all. So, ‘set aside’,
preferably with annotation about the constraint violation.

Design X: <Detailed description>.

Status: Set Aside <- Tom, November 13, 2004.

Rationale: Threatens to violate cost constraints as it alone takes 90% of the budget.
I seriously suggest that all rejected designs be formally kept in the systems engineering

documentation, with their status and rationale for rejection.

Principle 5: Designs should not be rejected permanently. The reasons for rejection should
be clearly documented, the design specification kept; and the rejection possibly re-
evaluated later.

PERFORMANCE-BASED SELECTION
For the set of proposed designs that survive constraint evaluation, the next step is to evaluate
which ones have the best set of impacts on our required performance target levels.
Principle 6: The major capability of a design is its ability to contribute to required residual

performance levels.

We fail to evaluate designs in all critical dimensions. I find that systems and software engineers,
in too many cases, do not even do a systematic evaluation of a design along a single performance
dimension (such as ‘Reliability’). But, even if they did do that, there is another evaluation
problem to confront. Designs have potential impacts on many of our most critical performance
requirement dimensions. Real systems seem to have about 20 to 40 performance dimensions that
people are willing to set quantified requirements for, and to evaluate. One dimension is not
enough. We need to look at:

! Other major secondary contributions to critical requirements;
! Possible negative side effects on the critical requirements.

We usually do not have good enough facts about the design impacts. Anything less than a
thorough examination of the potential impacts of a design in all critical performance requirement

Table 1: A symbolic example of evaluating two different ‘designs’ for ‘which
fruit to buy’). This is a simple Impact Estimation table application. The %

estimated impact of a design is on a scale where 100% means the design brings
us to the Goal level on time. 0% means there is no impact compared to some

defined benchmark level, such as the previous system state.

dimensions, is irresponsible design engineering. The major initial outcome of any systematic
quantitative evaluation in these many dimensions is, initially, ‘shocking’. It turns out that even
our most expert designers do not even claim to have any factual knowledge about most of the
performance impacts of a design specification, in all our specified requirement dimensions! This
may seem hopeless: ‘Knowing that we do not know’. But in a sense it is the beginning of

Strategy Comparison: Apples and Oranges
Alternative Strategies

Performance to Cost Ratio

Sum of Performance

Sum of Costs

Apples Oranges

Eater Acceptance
From 50% to 80% of People

Pesticide Measurement
Reduce from 5% to1%

Relative Cost
Local currency

Vitamin C
Increase from 50mg to 100mg per day

Carbohydrates
Increase from 100mg to 200mg per day

Shelf-Life
Increase from 1 week to 1 month

70% 85%

50% 100%

70% 200%

50% 80%

20% 5%

260% 470%

0.50 3.00

3.000.50

1.571.575.25.2

 !EvidenceÓ
for these numbers
should, of course,

be available
on a separate sheet

(but not shown here)

Objectives

Resources

wisdom, and there is a systematic approach to dealing with this ignorance – that is the subject of
this paper. But we would do well to recognize this ignorance initially, clearly, and publicly, in
our design engineering processes. Recognize the initial level of knowledge about a design, and
then act cautiously as we progress the design towards serious commitment.

What is the alternative to a systematic initial design impact evaluation process? We do not
have to ‘act like engineers’ and evaluate designs in a systematic and quantitative way. We can
just ‘decide to implement them and see what happens’. The problem there is that it may be too
late to use better designs, and it would perhaps have paid off to do more engineering evaluation
earlier.

There are interesting options between the extremes of ‘full ignorance/high risk’, and
‘expecting perfect research data for all impacts of all design candidates’. For example
evolutionary methods (Gilb 2005a, Larman 2003, Gilb 2005c, Johansen and Gilb 2005) may
allow us to remove some of our ignorance about a design, at relatively low risk (By designing
and implementing small Evo steps, we can ensure the maximum potential project loss 2% for a
design that is a total failure). The fact that we rarely have the facts we need, in order to evaluate
designs properly, is not a good reason to avoid trying to evaluate them quantitatively, before
final commitment to using them. The lack of facts is a warning signal about risks. It can lead
directly to more realistic expectations. It can also lead to risk mitigation tactics in contracting,
alternative conservative design specifications, or lead to doing experimental steps to get needed
data before scaling up – all traditional good engineering tactics.

Principle 7: A design will be best understood in terms of its multiple quantified impacts on
your residual requirements.

How far should we go in evaluating a design? It is not enough, in my opinion to let your in-house
expert loose, to make estimates of a design’s impact on performance levels. They should be
asked (in your systems engineering standards!) to document the basis for the estimates, and the
basis for the uncertainty of their estimates. An example of doing this is given in Table 2 using
the Impact Estimation method.

Notice that for each estimate we ask for the uncertainty boundaries (worst case/best case).
We ask for evidence –the facts backing the estimate. We ask for the source of the evidence – a
person or document for example. A reviewer of such estimates might be a skeptic, and want to
check the evidence first hand. We can even rate the quality of the basis for the estimate using the
‘credibility index’ (say 0 for no credibility at all, and 1.0 for 100% credibility). Notice we can
use the credibility-rating number to modify, by multiplication, the initial estimate, in the
direction of a more pessimistic estimate. Better to be safe.

Principle 8: Designs must be evaluated with respect to uncertainty, and the level of risk you
want to take.

I also like to get a simple estimate of the cost of the design, at least to become conscious of
cost extremes.

Table 2: A simplified example of using an impact estimation table to collect
data about a single performance attribute. In this case, the performance attribute
is ‘Learning’, which has a target level of 10 minutes. There are four design idea
candidates (For example, ‘On-line Support’ is the tag of one design idea). We

need to repeat this process for all other critical performance requirements. This is
difficult because of lack of facts about most designs, in most dimensions. But the

difficulty usefully makes us formally aware of design risks, and consequent
project risks – which we can decide to mitigate by investigation, contracting,

design or re-design

RESOURCE-BASED OPTIMIZATION
Of course, you do not understand a design idea, if you do not understand its costs. I mean the
entire range of cost types (for example, effort, time, and money). I mean for the entire system
lifespan.

Why do projects consistently run over time and budget, and you never seem to have enough
people to do the job? (Gilb 2005d). One reason is that people fail to evaluate the costs of their
designs. We do not practice ‘design to cost’.

At least, if you have two or more promising design idea alternatives, you should consider

On-line
Support

On-line
Help

Picture
Handbook

On-line Help +
Access Index

Learning
Past: 60minutes <-> Goal: 10minutes

Scale Impact 5 min. 10 min. 30 min. 8 min.
Scale Uncertainty ±3min. ±5 min. ±10min. ±5 min.
Percentage Impact 110% 100% 60% 104%
Percentage Uncertainty ±6%

(3 of 50
minutes)

±10% ±20%? ±10%

Evidence Project
Ajax:

7 minutes

Other
Systems

Guess Other Systems
 + Guess

Source Ajax
Report,

p.6

World
Report,

p.17

John B World Report,
p.17 +
John B

Credibility 0.7 0.8 0.2 0.6
Development Cost 120K 25K 10K 26K

Performance to Cost Ratio 110/120 =
0.92

100/25 =
4.0

60/10 =
6.0

104/26 =
4.0

Credibility-adjusted
Performance to Cost Ratio
(to 1 decimal place)

0.92*0.7
= 0.6

4.0*0.8
= 3.2

6.0*0.2
= 1.2

4.0*0.6
= 2.4

Notes:
Time Period is two years.

Longer
timescale to

develop

using the one with the least impact on your resource budgets.

Principle 9: Design ideas must also be evaluated with respect to the design costs’ relation to
our finite resources. Don’t design what you can’t afford.

But, I don’t see people doing this in practice. I just see them running out of resources and instead
of understanding that it might come from poor design practices, they blame other causes (such as
too few resources).

RISK-BASED ELIMINATION
So, at this point, if you have followed the advice above, you might feel you have picked a

winner set of design ideas with high performance impacts at low costs. But this is probably all
based on estimates. Maybe those estimates are based on thin ice, such as rumor? Maybe
experience data says the spread of possible actual design impacts on requirement levels is quite
wide (like 10 minutes ± 9.9 minutes)? Maybe the ‘technology behind the design’ is not that new,
but it has never been tried in your ‘space vehicle’, only in ‘bicycles’? Enter the idea of ‘risk
evaluation’. What is the risk that your design idea, however hot it looks on paper, will not really
work, or worse will ruin your entire project?

So, we need to ask the risk questions about each design idea. My favorite set of risk
questions is my ‘Twelve Tough Questions’, given in Figure 3.

We have been asking some of these twelve analytical questions earlier in the design
evaluation process above. But some are new. Who is responsible for making it work? Who is
responsible if it does not work? Is their money where their mouth is?

I believe, in sharp contrast with the papers and textbooks that I have seen on risk
management, that the risk analysis process is something that needs to be intimately pervasive in
every single specification, in every detail of it. It must be part of what all systems engineers do
every minute of their working life. Live it and breath it. Every systems engineering specification
has an element of risk – or it would not be termed ‘engineering’ (Koen 2003).

We need, not to minimize risk, nor to reduce it to zero, but to be constantly aware of risks.
We need to be constantly looking, waiting to pounce on risk if it shows signs of giving us trouble
(Gilb 2003).

Principle 10: The evaluation of a design idea is a continuous process over a series of
estimation and validation events. A lot of questions need asking, by a lot of people, and we
need many good answers to evaluate a design.

Our systems engineering work should be totally robust so that no matter what happens we have a
backup. We have a reasonable way out. We need to be so sensitive to the impacts of our designs
that we know when we are threatened. We know early, because we worry early. We try things
out early. We keep on measuring early as we make changes and add new designs cumulatively
into the system.

We need above all not to trust a probability model of risk analysis. We need to take da
Vinci’s advice and try things out. See Figure 4. Much of his advice can be seen in the
Evolutionary project management model, with its 2% increments, required for measurement, use
of feedback, analysis of the feedback, and concept of changing the plan as necessary. We need to
use evolutionary step planning to consciously sequence the riskiest elements for early integration
and field trialing. Then if there is something wrong, we have lots of time to fix it.

Twelve Tough Questions
1. NUMBERS

Why isn’t the improvement quantified?

2. RISK

What’s the risk or uncertainty and why?

3. DOUBT

Are you sure? If not, why not?

4. SOURCE

Where did you get that information from? How can I check it out?

5. IMPACT

How does your idea affect my goals?

6. ALL CRITICAL FACTORS

Did we forget anything critical?

7. EVIDENCE

How do you know it works that way?

8. ENOUGH

Have we got a complete solution?

9. PROFITABILITY FIRST

Are we going to do the profitable things first?

10. COMMITMENT

Who’s responsible?

11. PROOF

How can we be sure the plan is working?

12. NO CURE

 Is it no cure, no pay?

Figure 3. A more detailed treatment of these questions is in a paper at

http://www.gilb.com

Evolutionary project management (Evo) (Larman 2003, Larman and Basili 2003, Gilb 2005a,

Gilb 2005c) is one of the greatest devices for risk management and for design evaluation with
respect to risk, but Evo never, as far as I can see, made it into a paper or book on risk
management, other than my own (Gilb 2003)! Evo allows you to evaluate one design at a time,
and to evaluate them cumulatively, one at a time (Johansen and Gilb 2005).

In fact too many project management people have no clue what Evo really is. However, the
US DoD finally understood it and adopted it (in 1995 with Mil Std 498 and on), calling it

‘Evolutionary Acquisition’.

Principle 11: The best practical evaluation of design risks is by practical small step
integration of the design, with measurement, feedback and analysis of its real performance
and costs. Evolutionary evaluation helps us make better decisions about designs than any
review committee will ever be able to make.

Curiosità:

Insatiably curious, unrelenting quest for continuous learning

Dimostrazione:

Commitment to test knowledge through experience, willingness to learn from mistakes.

Learning for ones self, through practical experience

Sensazione:

Continual refinement of senses. As means to enliven experience.

Sfumato:

Willingness to embrace ambiguity, paradox, uncertainty

Arte/Scienza:

Balance science/art, logic & imagination, whole brain thinking

Corporalità:

Cultivation of grace, ambidexterity, fitness, poise

Connessione:

Recognition & appreciation for interconnectedness of all things and phenomena.

Systems thinking

Figure 4. Da Vinci’s Principles from How to Think Like Leonardo da Vinci by
Michael Gelb. They describe the evolutionary principles for handling risk.

SUMMARY
Design evaluation needs a series of processes to determine the best-known design for a specific
project. The foundation is a complete, clear and quantified set of requirements, against which to
judge the design ideas. The second is a detailed design specification including justifications,
assumptions, sources, and expected impacts. The third is the ability to see the expected effects of
a set of design ideas, and their total impact on requirements. This initially can be achieved using
an Impact Estimation (IE) table. However ultimately a design needs to be proven in practice by
evolutionary implementation of the design ideas, while measuring their real cumulative impacts.

Figure 5. The step-by-step evolution of designs delivering impact to
performance requirements

Figure 6. Relevance Control filters start after the QC filters of Rules and Exit
make sure we have good presentation. The Relevance Control filters deal with

questions of substance: how good is the plan in practice? The QC filters deal with
the question, how well is the plan presented? The downstream plan

improvements can come from any source, any reason, at any time, or any stage
downstream (See also Gilb 2005a for details of SQC)

Evo
Plan:

Designs
And
Evo

Steps

Far Upstream
Feedback

Value-
Based

Requirement
Selection

Constraint-
Based

Elimination

Performance-
Based

Selection

Resource
Optimization Risk Conditional

Decisions
Trial

Near Upstream Feedback

++
+

+
+

Downstream
Plan Improvement

Filtered Out
Plan - "No GoÕ

All
System

Functions

0% 100%
Goal

Fail

Fail

Reliability

Usability

Impact
of

Step 1

Impact
of

Step 1

Impact
of

Step 2

Impact
of

Step 2

Impact
of

Step 3

List of Principles
1: A design can only be evaluated with respect to specific clear requirements.

2: All designs have performance and cost attributes, but not necessarily the ones you require.

3: The real value of a design to a stakeholder depends partly on the technical characteristics of
the design, and partly on the planned, perceived and actual use of those characteristics in
practice, over time.

4: It doesn’t matter how good or how cheap a design is, if constraints forbid it.

5: Designs should not be rejected permanently. The reasons for rejection should be clearly
documented, the design specification kept; and the rejection possibly re-evaluated later.

6: The major capability of a design is its ability to contribute to required residual performance
levels.

7: A design will be best understood in terms of its multiple quantified impacts on your residual
requirements.

8: Designs must be evaluated with respect to uncertainty, and the level of risk you want to take.

9: Design ideas must also be evaluated with respect to the design costs’ relation to our finite
resources. Don’t design what you can’t afford.

10: The evaluation of a design idea is a continuous process over a series of estimation and
validation events. A lot of questions need asking, by a lot of people, and we need many good
answers to evaluate a design.

11: The best practical evaluation of design risks is by practical small step integration of the
design, with measurement, feedback and analysis of its real performance and costs. Evolutionary
evaluation helps us make better decisions about designs than any review committee will ever be
able to make.

Figure 7 shows the list of principles presented in this paper

REFERENCES
Gilb, Tom, Competitive Engineering: A Handbook For Systems Engineering, Requirements

Engineering, and Software Engineering Using Planguage, Elsevier Butterworth-Heinemann,
Due June 2005a. ISBN 0750665076.
See also http://books.elsevier.com/companions

Gilb, Tom, “Agile Specification Quality Control: Shifting emphasis from cleanup to sampling
defects.” Proceedings of INCOSE Conference, Rochester NY USA, July 2005. Earlier
version published as “Agile Specification Quality Control.” Cutter IT Journal, Vol. 18 No. 1,
page 35-39, January 2005b. See http://www.cutter.com [Last Accessed: April 2005].

Gilb, Tom, “Fundamental Principles of Evolutionary Project Management.” Proceedings of
INCOSE Conference, Rochester NY USA, July 2005c.

Gilb, Tom, “Project Failure Prevention: 10 Principles of Project Control.” Proceedings of
INCOSE Conference, Rochester NY USA, July 2005d.

Gilb, Tom, “Real Requirements: How to find out what the requirements really are.” Proceedings
of INCOSE Conference, Rochester NY USA, July 2005e.

Gilb, Tom, “Rule-Based Design Reviews.” Software Quality Professional, Vol. 7, No. 1, 2004.
pp. 4-13. See website for American Society for Quality: http://www.asq.org -
member access only for recent papers.

Gilb, Tom, “Managing Your Project Risks in Requirements, Design and Development: Using the
Planning Language.” Proceedings of INCOSE Conference, Washington DC, 2003.

Gilb, Tom and Maier, Mark, “Managing Priorities: A Key to Systematic Decision Making.”
Proceedings of INCOSE Conference, Rochester NY USA, July 2005.

Goth, Greg, “New Air Traffic Control Software Takes an Incremental Approach.” IEEE
Software, July/August 2000, pp. 108-111.

Johansen, Trond and Gilb, Tom, “From Waterfall to Evolutionary Development (Evo) or How
We Rapidly Created Faster, More User-Friendly, and More Productive Software Products for
a Competitive Multi-national Market.” July 2005. Proceedings of INCOSE Conference,
Rochester NY USA, July 2005.

Koen, Billy Vaughn, Discussion of The Method: Conducting the engineer’s approach to problem
solving. Oxford University Press, January 2003. ISBN 0-195-15599-8. See also
http://www.me.utexas.edu/~koen/ [Last Accessed: April 2005].

Larman, Craig and Basili, Victor R., “Iterative and Incremental Development: A Brief History.”
IEEE Computer Society, June 2003, pp 2-11.

Larman, Craig, Agile and Iterative Development: A Manager’s Guide, Addison Wesley, 2003.
See Chapter 10 on Evo.

BIOGRAPHY
Tom Gilb is the author of ‘Competitive Engineering: A Handbook for Systems & Software
Engineering Management using Planguage’ (due June 2005), ‘Principles of Software
Engineering Management’ (1988) and ‘Software Inspection’ (1993). His book ‘Software
Metrics’ (1976) coined the term and, was used as the basis for the Software Engineering Institute
Capability Maturity Model Level Four (SEI CMM Level 4). His most recent interests are
development of true software engineering and systems engineering methods.

Tom Gilb was born in Pasadena CA in 1940. He moved to England in 1956, and then two
years later he joined IBM in Norway. Since 1960, he has been an independent consultant and
author. He is a member of INCOSE.

URL: www.Gilb.com
Author Contact: Tom@Gilb.com

The paper was edited by Lindsey Brodie, lindseybrodie@btopenworld.com

Version May 9 2005

