

Why Aren’t Software Systems Trustworthy?

By Tom@Gilb.com

Trustworthy Defined: ”worthy of trust or belief.” (web dictionary)

Software System defined: We may wish to focus on the issue of
software, for various reasons, but it is too narrow to just look at the
software alone. The software is one component in a system comprising
other fallible system elements such as individuals, organizations,
stakeholders, hardware, communications, laws, economics, data,
databases, cultural mores, and motivations. So it would be dangerous to
seriously discuss ‘software trustworthiness’ alone. Microsoft sometime
uses the concept ‘trustworthy computing’ [1] to make this point.

Even if the pure ‘software’ were perfectly trustworthy, any one of the
other non-software elements would be a sufficient ‘weak link’; and could
alone, or in combination with other system elements, cause the system to
be perceived as untrustworthy by a stakeholder or user. The system user
or stakeholder would not necessarily be able to distinguish, nor would they
care, about whether the software element caused their system to be
untrustworthy. Consequently we are forced to consider the entire system
as a whole.

We cannot usefully look at the software element alone. So for the
purposes of this paper the ‘software system’ means ‘the software and all
other system elements that can influence trustworthiness as perceived by
a user or stakeholder’. We will simply refer to the system, meaning the set
of elements (or components) including software, that can determine the
objective and subjective trustworthiness of a system for a defined
stakeholder’s point of view.

System Trustworthiness: defined:
A defined system is ‘trustworthy’ from the point of view of a defined
stakeholder or user. The same system states may be evaluated as
‘untrustworthy’ from some points of view, and ‘trustworthy’ by others.

Trustworthiness is a relative point of view, not a system state independent
of such points of view. The ‘Trustworthiness View’ is subjective. That is,
any given observer is at liberty to define a set of system states they
consider trustworthy or untrustworthy. We cannot prevent them from having
those perceptions.

We can identify their perceptions, make formal agreements about
their perceptions, and attempt to engineer and operate a system to be
trustworthy in accordance with those stakeholders we care to serve. We
can also choose to ignore, or give lower priority to, the perceptions of
stakeholders that we do not care to serve, to prioritize, or who are
uneconomic; or who have requirements outside of the state of the art.

Belief and Fact.
We need to distinguish between trustworthiness as a matter of belief, and as a
matter of fact. Stakeholders may feel that a system is trustworthy due to
information or experience, when in fact it is not trustworthy according to their
standards. They just don’t know that, yet. We can distinguish between
‘Trustworthiness Perception’, and ‘Objective Trustworthiness’.

The ‘state’ of system trustworthiness:
As Microsoft [1] is clear about, there is no one single system attribute that alone
determines ‘trustworthiness’. If there are S stakeholders that we choose to
consider the opinions of, and N states that any one of them might require
‘present’ (or absent) in order to consider the system trustworthy, then we as
system engineers must consider (in requirements, design, testing and
operational evaluation) all N states in order to evaluate whether all our S
stakeholders will consider the one system ‘trustworthy’. S could easily be a
number in the range of 35 to 350 stakeholder classes (then we have individual
variation with a class like ‘User’). N, the number of trustworthiness states we
must manage, can easily be dozens to more than thousands for a single
stakeholder, and thousands to more than millions for the entire stakeholder
community for a large system.

It is the task of the systems engineer to determine the trustworthiness needs of
all potential serious stakeholders. Then from the stakeholder needs, the
engineers must determine which of those needs the system can and will actually
attempt to satisfy at a given time, under given conditions. These can be specified
as the system requirements (for ‘trustworthiness’). A suitable comprehensive
language for such specification is defined in Competitive Engineering [2].

The usual narrowness of conventional software engineering for defining
requirements (e. g. ‘functions’ and ‘use cases’) is completely inadequate for
describing many of the central trustworthiness characteristics, such as qualities
(like security and reliability), costs, constraints and many other aspects (covered
in detail in [2]). It is unconditionally necessary to take a ‘systems engineering’,
NOT a software engineering, perspective in even defining the problem of
software trustworthiness. Anything less will immediately fail to deliver any
reasonable stakeholder notion of trustworthiness.

This is one of the core problems of the software trustworthiness – the failure to
treat it as a systems engineering problem, and failure to define the major
trustworthiness attributes of systems, such as the multitude of qualities (e.g.
security, availability, portability, usability, maintainability, connectivity and many
more), quantitatively.

Most software engineers have no training or ability to quantify qualities at
present. Their vocabulary and culture are massively inadequate for dealing with
the problem. A systems engineering culture is a necessary minimum. This is
partly because a systems engineering culture can deal with the critical qualities
and costs associated with trustworthiness. Partly because the discipline for
software trustworthiness must always deal with the non-software elements of the
system that the software is a part of.

The Core problem: (based on definitions above!)

1. Software culture does not have adequate intellectual tools for dealing with the
necessary ‘system’ (software plus all other related components) problem.

Recommended Solutions:
1. Require that software-dominant systems be engineered, and operated, using a
sufficiently rich systems engineering discipline.
 - it is ‘sufficiently rich’ when the defined stakeholders needs we have
chosen to satisfy, are in fact satisfied for the life of the system.

2.

Suggested principles for Trustworthy Software:

1. Trustworthy Software is dependent on all non-software elements of the
software host system. (people, organizations, hardware, data, laws).

2. Trustworthy Software is based on the subjective perception of a potentially
large number of different stakeholders.

3. Trustworthy Software is determined by a potentially large number of system
states (conditions, levels) being met.

4. Trustworthy Software is realistically a matter of what we can afford, what is
technically possible, what is politically necessary, and what pays off.

5. Trustworthy Software cannot be built using current software engineering
disciplines – because it is not about programming, and programs – it is about
complex systems.

6. Trustworthy Software requires the management of all trust-critical performance
characteristics, including all variable trust-critical qualities. This requires
quantification of the problem and measurement of the solutions – engineering.

7. Trustworthy Software will come about gradually by the conscious and
intelligent responsible stakeholders demanding well-defined ‘trustworthiness’
results, and refusing to accept or pay for less than agreed.

It will not happen with the help of computer scientists, or software
engineers – any more than it will happen using nuclear physicists or mechanical
engineers. The disciplines are too narrow to even define the real problem, let
alone solve it. At best they might ultimately learn to make more trustworthy
software components – but not unless they adopt a systems engineering
approach to their work.

8. Trustworthy Software is a management problem, and management
responsibility.

The technical means are already there. Management has not chosen to
use them. Management has probably not been well advised by their technical
advisors – who may be software people, not systems engineers – and therefore
culturally incapable of giving comprehensive enough advice.

9. Trustworthy Software is to some degree an economic matter. We can increase
the state of the present art, and that will primarily allow us to deliver more
trustworthiness for our limited resources.

10. Trustworthy Software is also a matter of clear notions of minimum acceptable
system conditions (at any cost) that might be determined by law, regulation,
contracting, or other devices. This is primarily a management responsibility, not a
technical problem.

Conclusion:

Trustworthy Software is a technical opportunity awaiting serious management
action to exploit known technical methods.

--- end of Jan 7 2006 draft by Tom@gilb.com ----

References

1. Microsoft, http://research.microsoft.com/ur/us/twc/default.aspx

“Trustworthy Computing

No issue is currently of greater importance to Microsoft and our industry than trustworthy
computing. Amid increasingly frequent and sophisticated network attacks, users expect their
systems to remain resilient and available. They expect data to remain intact and confidential
at all times. As they increasingly use computers to manage information important to their
everyday lives they expect and demand control over access to and use of their personal
information. Ultimately, it is essential that computers perform as expected and that users
enjoy a consistently trouble-free computing experience.

These are large goals, not only for Microsoft but also for the industry as a whole. It would be
very reassuring to all if there were a single step or strategy that could achieve these goals.
But in reality, trustworthy computing is complex. Changes in the way software is designed,
built, and tested are critical. We must better understand the types of failures and threats to
which any particular piece of software is vulnerable. We must better anticipate the habits and
inclinations of different types of users and make the right assumptions about their desire and
ability to adjust or maintain the configuration of their systems. And we must effectively train
designers and developers of software to focus on trustworthiness and to have the essential
knowledge to build consistently trustworthy software.

Computer security and cryptography have been subjects of valuable academic research for
some time. But this is only a part of the larger set of issues that define trustworthy computing,
and even computer security often receives only very limited treatment in computing
curriculum. Academic research has made valuable contributions to Microsoft through Microsoft
Research's Trustworthy Computing Advisory Board. Now, there is an urgent need to raise
awareness of the full range of trustworthy computing issues in academia and begin to develop
the kind of innovative approach and materials that can place trustworthiness at the center of
the computing curriculum.”

2. Gilb, Tom, Competitive Engineering, A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering
Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann.

Version January 7 2006 (1st Draft)

.

