

Competitive Product Engineering:

10 Powerful Principles

for winning product leadership,

through advanced systems engineering

• Copyright © 2006 by Tom Gilb.
Iver Holtersvei 2, NO-1410 Kolbotn, Norway, Tom@Gilb.com,

• www.Gilb.com, +47 66801697
• Abstract:

o Some product developers are still trapped thinking
narrowly about their technology – they do not have enough
customer focus, and they do not get good enough feedback
from the customer and support team ‘real world’. These
principles will help refocus them.

Here is an overview of the principles I recommend:

• 1. Stakeholder Focus
o Formally identify all your product stakeholders: all ‘35’ of

them – any group who can influence success or failure.
Don’t over focus on users alone.

• 2. Stakeholder Value Focus
o Identify the value sets of the stakeholders, particularly

qualities. Quantify the valued quality levels, with a scale of
measure and a goal level.

• 3. Value Delivery First
o Plan to deliver highest possible value to some

stakeholders, as early as possible.
• 4. Learn Rapidly

o Get quantified measurements from early frequent
increments of your product, regarding real quality levels
and costs. Analyze this data in relation to expectations.

Learn from deviations as rapidly as possible, and change
plans to reflect realities.

• 5. Delivery Frequently
o Plan to deliver increments of performance, quality and

function on a frequent basis, for example weekly. This pace
will be a useful discipline, ensure management control, and
send positive messages to stakeholders.

• 6. Deliver Early
o Get something out to stakeholders at the very

beginning of your development project. This might involve
improving existing products, using some of the ideas for
new products. But it sends signals to the market, and
makes sure your team is well grounded in reality.

• 7. Hit the ground running
o Make sure that each product increment is industrial

standard quality. No second rate prototypes.
• 8. Quantify Valued Qualities

o All critical product qualities must be specified
quantitatively, otherwise you have lost control of them.

• 9. Control Value-to-cost ratios
o Make sure you keep your eye on the value-to-cost ratio

of each step. That will remind your staff that it is about
profitability, not technology.

• 10. Rapid Reprioritization
o When stakeholder feedback, or measures of delivered

value and cost dictate it, change your plans to maximize
your profit.

Detailed Discussion about the principles

• 1. Stakeholder Focus
o Formally identify all your product stakeholders: all ‘35’ of

them – any group who can influence success or failure.
Don’t over focus on users alone.

o Fig 1: Requirement stakeholder levels. A requirement is a
client stakeholder need, that a ‘server’ stakeholder i s
planning to satisfy.

o At the US operation of a multinational telecoms
manufacturer, we were analyzing 50 pages of
requirements for a more than $100 million product
investment. After a few days we recognized that almost all
the requirements were focussed on the end user
(wandering from work to street to home with a single
handset). At least 10 major stakeholders, such as their
factories, and product installers, we not specifically
identified. The needs of these critical stakeholders were not
systematically identified and well specified. The corporation
did not have stakeholder analysis processes in place. This
may have been due to their transition from a monopolistic
environment to a more competitive environment, as well
as transition from small scale systems to very large scale
systems.

o So, take a look at your formal practices, and the real
practice of your stakeholder analysis process if you do
have one formally. Are you really identifying to dozen or
more interesting stakeholders, and their requirements? If
not, then you can increase your real competitiveness by
making this a formal process.

o Stakeholder analysis is not a new practice for real systems
engineering cultures, but it may be poorly carried out by
some cultures because of their market and technical
history.

o Figure 2: A process for finding a more competitive set of
requirements through more thorough stakeholder analysis.
Notice that it is iterative, and probably eternal, as long as
things are changing.

• 2. Stakeholder Value Focus
o Identify the value sets of the stakeholders, particularly

qualities. Quantify the valued quality levels, with a scale of
measure and a goal level.

o Figure 3: Each stakeholder has multiple related values
(example ‘save staff costs’) that need to be analyzed and
prioritized, and finally a corresponding set of product
quality levels must be determined for the product to best
satisfy some of those values (like ‘short product learning
time’).

o We need to analyze, specify and confirm what the various
stakeholders really want. Not in terms of the product
qualities, and not in terms of the technology itself. But. In
terms of what stakeholders ‘really want’. This is not always
easy because you will experience that the stakeholders will
tell you what they think you can deliver or will deliver.
They may not realize what you might really deliver if only
you knew what they ‘really’ wanted.

o If you make all the values that the stakeholders really
want, then you will necessarily map some needs that you
cannot or will not attempt to satisfy in a given product or

product line. But at least you have a chance to consider it.
And if you do this thoroughly then you are likely to set
requirements for a more competitive product than you
otherwise would have required.

o There is a question of who should do this stakeholder value
analysis. In theory it is your ‘marketing’ function. But my
experience in computers, banking, and telecoms has
taught me that the typical ‘marketing’ (or business
analysis) function is poorly trained and managed to do
such an analysis properly. They are more likely to be
‘knee-jerk reacting’ to direct customer input and
competitive pressures. So if you want to be really
competitive you will ‘outsource’ this analysis job to the
systems engineering function, if that will make sure it gets
done properly.

• 3. Value Delivery First
o Plan to deliver highest possible value to some

stakeholders, as early as possible.
o This seems tougher than it is. We are so locked in

conventional waterfall/grand design thinking about
development, that we are not trained and cultured to ask
the right questions (How can we deliver value early?). We
are unlikely to see good answers even if they exist. One
roadblock is that we fail to define the primary product
objectives in terms of variable values (performance and
quality levels). We move too quickly to product
architecture and design, before we have established the
real stakeholder values quantitatively.

o But let us assume you have pinned down the critical
qualities for stakeholder value satisfaction. Most engineers
seem to make the mistake of going directly for meeting the
final levels of performance by specifying an architecture
and building the system/product.

o There is a real possibility, always – in my experience, of
delivering some of that performance increase, to some of
the market, with some of the product partly developed. We
just have to decide that 5% (of the final quality

improvement level) improvement, next month, is
worthwhile, and figure out how to do it.

o For example in the case of an advanced radar system,
where the major ideas were delivery to a ship in 3 years,
and having two radar antennas; we found that it was quite
interesting to increase to the final level of ‘accuracy of
perception’ (the major performance characteristic of the
product) by building the target profile data up gradually,
giving about 2% increase in perception capability at each
cycle of improvement (one enemy plane at a time, most
dangerous first) . We also found we could just as well
deliver to existing ships, while we waited for launch of the
new one.

o Obviously the competitor who manages to deliver
stakeholder value early, while their competitors are busy
with late big bang projects, have a competitive advantage.

• 4. Learn Rapidly
o Get quantified measurements from early frequent

increments of your product, regarding real quality levels
and costs. Analyze this data in relation to expectations.
Learn from deviations as rapidly as possible, and change
plans to reflect realities.

o One major cause of large scale systems engineering failure
[MORRIS] is that we do not imbed in our product
development processes, good enough mechanisms for
learning that our project is on a bad path. We learn, too
late. Our systems are so complex that we have to take a
very humble, traditional engineering, point of view and get
early and frequent numeric feedback about ‘everything’.

o ‘Everything’ feedback includes feedback on costs, quality
levels, development processes, staff quality, architecture,
motivation, and management.

o In reasonably small products we have succeeded in
seeking, and getting, feedback, about emerging product
qualities in stakeholder environments from the fist week
and every week [FIRM]. Even in large DoD projects [CE,
9.8 Persinscom, US Army] we have been able to get ‘next
week’ feedback (much to the DoD Amazement), by making

small modifications to large existing systems, that had high
effect. But in more likely cases regular feedback
increments of a month [Example LAMPS system, Harlan
Mills, IBM FSD] to a quarter [example Jet propulsion Labs,
Control Rooms, Spuck] are possible.

o
o Figure 4: each increment can be exploited to get data,

learn and exploit the knowledge in immediate future steps.
o By getting knowledge about new technologies,

development methods and markets at the earliest possible
moment, you obviously have a competitive edge over
those who not.

• 5. Delivery Frequently
o Plan to deliver increments of performance, quality and

function on a frequent basis, for example weekly. This pace
will be a useful discipline, ensure management control, and
send positive messages to stakeholders.

o Most evolutionary development methods choose a constant
delivery cycle duration [Larman] a week, two weeks and a
month are regularly mentioned.

o Figure 5: The regular cycle at [FIRM] which is essential
identical to Hewlett Packard’s cycle (below [May]).

o

o There are several competitive advantages of a frequent
cycle. Here are a few.

 The entire development process is tested and tuned
at each cycle – for example integration testing. Badly
organized and managed developments are exposed
early before they can do competitive harm.

 The opportunity to deliver high value early is more
likely. This attracts customers and defeats
competitors.

 It is almost impossible to have severely delayed
projects [Larman]. Market or customer confidence is
built on results early and steadily

• 6. Deliver Early
o Get something out to stakeholders at the very beginning

of your development project. This might involve improving
existing products, or using some of the new ideas for new
products. But it sends signals to the market, and makes
sure your team is well grounded in reality.

o Getting something early to stakeholders (I did not say final
customers) has the following advantages amongst others:

 Some stakeholders, like sales and training, can
better prepare for their roles when the product is
released to the main customers.

 Some markets can be used to field trial, and early
market test the product

 Current customers who might be tempted by
competitors will remain interested and patient about
the new product development if they can see real
improvements to their old product, or at least
credible demonstrations of the new product.

• 7. Hit the ground running
o Make sure that each product increment is industrial

standard quality. No second rate prototypes.
o It would be easy to misunderstand that early increments

were ‘quick and dirty’ prototypes. This need not be the
case, and it should not be.

o Harlan Mills [Mills], IBM Federal Systems Division, was
always very clear about achieving final quality levels at

early incremental deliveries. Microsoft was clear about
having ‘shippable quality’ for early milestones [Cusumano]
which are evolutionary steps (of 6-8 weeks) before a
release.

o The competitive advantage of high quality early is, among
other things:

 You prove the basic architecture will allow you to
achieve necessary high levels

 Your early increments can be demonstrated in the
field and will have tolerable quality for real users,
and early adopters.

 The true costs of development and of hardware
components, to achieve the necessary industrial
quality levels, is likely to be correctly understood.

 You are less likely to get project delays while trying
to get necessary quality levels.

 If market or contractual deadlines must be met, you
are more likely to be ready to do so without cheating
on quality.

• 8. Quantify Valued Qualities
o All critical product qualities must be specified

quantitatively, otherwise you have lost control of them.
o I regularly find on both systems engineering projects

(aircraft for example) and software engineering projects
that many of the acknowledged most-critical product
qualities are not specified quantitatively. Example
‘intuitiveness” and ‘adaptability’ [CE, ch 5 for examples].

o "In physical science the first essential step in the direction
of learning any subject is to find principles of numerical
reckoning and practicable methods for measuring some
quality connected with it.

o I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it;

o but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and
unsatisfactory kind; it may be the beginning of knowledge,

but you have scarcely in your thoughts advanced to the
state of Science, whatever the matter may be.”

o Lord Kelvin, 1893, Lecture to the Institution of Civil Engineers, 3 May

1883 From http://zapatopi.net/kelvin/quotes.html

o In my practice we make it a point to define useful
quantifications for all critical product qualities. We have
found that they all can be quantified. This means we can
define competitive levels of the critical qualities, and make
sure they are in fact provably delivered – or not.

o People are not trained to do this. They are even convinced
that certain concepts are ‘qualitative’ (and cannot be
quantified).

o Those who take the trouble to quantify critical product
qualities, where others do not bother will get a competitive
advantage.

o One computer equipment manufacturer client of mine, with
23,000 employees made it serious corporate policy to
quantify all qualities, on my advice, from the top down.
They went into profit for the next 14 years, unlike any
competitor. I like to think there was a connection.

• 9. Control Value-to-cost ratios
o Make sure you keep your eye on the value-to-cost ratio

of each step. That will remind your staff that it is about
profitability, not technology.

o Figure 6: the use of an Impact Estimation Table [CE] to
analyze the value to cost ratio of a number of alternative
product development strategies for road building software.

o One lack of practice that is almost as unhealthy as not
quantifying critical qualities, is to fail to look at the costs of
individual technologies.

o Of course someone somehow came up with a cost estimate
for the whole project, and got themselves a budget. That’s
not it. We need to estimate costs at a more-detailed level.
We need to use these cost estimates to make decisions
about the value-to-cost ratio of our options. An impact
estimation table (Fig.6) is a basic tool for helping us see
these relationships.

o If you use this method of evaluating technological
alternatives, you are more likely to be able to prioritize the
high value to cost alternatives.

o This will aid your competitiveness by leading you towards
more value for cost.

• 10. Rapid Reprioritization

o When stakeholder feedback, or measures of delivered
value and cost dictate it, change your plans to maximize
your profit.

o

o
o Figure 7: An Impact Estimation table used to estimate

expected benefit to cost ratios as a basis for selecting a
particular strategy on an incremental step.

o We can evaluate real values and real costs against initial
estimates, on a step by step basis. The feedback about
reality can help us tune our estimations to be more
realistic and to choose smarter options. This can improve
the competitiveness of our development process.

Summing Up:

• Make critical product factors measurable
• Measure progress towards your goals often
• Learn rapidly from deviation
• Change fast, towards what works.

References

 CE: Gilb, Tom, COMPETITIVE ENGINEERING: A Handbook for Systems Engineering,

Requirements Engineering, and Software Engineering, Using Planguage. Elsevier 2005.

FIRM: From Waterfall to Evolutionary Development (Evo)

Or, How we rapidly created faster, more user-friendly, and more productive

software products for a competitive multi-national market

Trond Johansen, Head of Project Management, FIRM A/S,

Trond.Johansen@firmglobal.com

Published in INCOSE 05 Proceedings. INCOSE.org. and EuroSPI, Trondheim 2004.

Also published in Torgeir Dingsøyr (Ed.): Software Process Improvement, 11th European Conference, EuroSPI

2004, Trondheim, Norway, November 10-12, 2004, Proceedings. Lecture Notes in Computer Science 3281

Springer 2004, ISBN 3-540-23725-9. http://www.confirmit.com/news/release_20041129_confirmit_9.0_mr.asp

Cusumano: Cusumano, Michael A. and Richard W. Selby. 1995. Microsoft Secrets: How the World’s

Most Powerful Software Company Creates Technology, Shapes

Markets, and Manages People. The Free Press (A Division of Simon and

Schuster). ISBN 0-02-874048-3. 512 pages.

 May: May, Elaine L. and Barbara A. Zimmer. August 1996. The Evolutionary

Development Model for Software. Hewlett-Packard Journal. Volume 47,

Number 4, Pages 39–45. Available as pdf Adobe Acrobat file at

http://www.hpl.hp.com/hpjournal/96aug/aug96a4.pdf

Larman: Larman, Craig and Victor Basili. June 2003. Iterative and Incremental

Development: A Brief History. IEEE Computer. Pages 2–11. See www.craiglarman.com for a copy

of this paper.

Mills: Mills, H. D. 1980. The Management of Software Engineering. Part 1:

Principles of Software Engineering. IBM Systems Journal. Volume 19,

Number 4. Reprinted 1999 in IBM Systems Journal. Volume 38, Numbers

2 and 3. A copy is downloadable from http://www.research.ibm.com/

journal/sj/194/ibmsj1904C.pdf/.

Morris: Morris, Peter W. G. 1994. The Management of Projects. London: Thomas

Telford. ISBN 0 7277 1693 X. 358 pages. The American Society of Civil Engineers. The website

http://www.indeco.co.uk/ has additional recent papers by Professor Morris.

Author Bio
Tom has been an independent consultant, teacher and author, since
1960. He mainly works with multinational clients; helping improve their
organizations, and their systems engineering methods.
Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering Using
Planguage’ (Summer 2005).
Other books are ‘Software Inspection’ (with Dorothy Graham, 1993), and
‘Principles of Software Engineering Management’ (1988). His ‘Software
Metrics’ book (1976, OoP) has been cited as the initial foundation of what
is now CMMI Level 4.

Tom’s key interests include business metrics, evolutionary delivery, and
further development of his planning language, ‘Planguage’. He is a
member of INCOSE and is an active member of the Norwegian chapter
NORSEC. He participates in the INCOSE Requirements Working Group,
and the Risk Management Group.

Email: Tom@Gilb.com
URL: http://www.Gilb.com

Version Nov 9 2005

