
Accurate estimation is impossible for com-
plex technical projects, but keeping to
agreed budgets and deadlines is achievable
by using feedback and change. In other
words, rather than trying to improve the
initial project estimates, the budgets and
deadlines must be set based on the value
of delivery (not the cost), and then iterative
re-engineering of product and process must
be used to stay within acceptable resource
bounds. Or, at least iteration must be used
to get most of the expected value delivered,
within the acceptable budgets and deadlines.
This article explains the background to this
approach and discusses its use, providing
several examples.

Key words
estimation, evolutionary project
management, Planguage

SQP References
Impact of Defect Backlog on
Product Release and Quality
	 vol. 10, issue 3
	 Hema Srikanth and Stephen H. Kan

INTRODUCTION
Accurate estimation of time and costs for complex systems and
software projects is seemingly impossible to guarantee (Collins
and Bicknell 1998; Craig and Brooks 2006; Grimstad, Jørgensen,
and Moløkken-Østvold 2006). There are many unavoidable
reasons for this. Even when estimation seems to work, this might
just be a case of “stopping the effort” when the budget runs out.
That method, however, is likely to result in delivering systems
of unacceptably low quality. The main idea of this article is that
there is a constructive alternative to such an unsatisfactory
estimation process:

•	 Use process control (do a little, learn quickly, and change
quickly) to rapidly and continuously tune anything and
everything about the project, so prioritized resource
budgets (such as time to market, money, and human
resources) can be met.

•	 Consciously sacrifice “less-holy” things for “more-holy”
objectives.

People are better off stipulating reasonable resource con-
straints (deadlines and cost budgets) and then learning to live

P R O J E C T M A N A G E M E N T

Estimation:
A Paradigm
Shift Toward

Dynamic
Design-to-Cost

and Radical
Management

Tom Gilb

www.asq.org 25

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

Then, stipulate the value of reaching each major

(“Top 10”) requirement. Make an outsourcing contract,

and pay some percentage of that value only when that

requirement is successfully delivered. Only do business

with suppliers who consistently deliver value for money.

Don’t waste money on suppliers who make excuses,

instead of value. “No cure, no pay” (Gilb 2006) is one

way to motivate suppliers to provide value for money;

otherwise, their motivation is to just keep billing (Craig

and Brooks 2006).

For those who like short papers—that’s it! Use the

summary in Figure 1. However, some readers might like

more explanation, more detail, more references, and

some convincing arguments. If so, then read on.

within them. This is acceptable as long as one’s highest
performance and quality priorities are already satisfied,
when resources run out. The rest of the requirements
are, by definition, more marginal.

There are several reasons why it is difficult to estimate
project costs accurately; it is because of the inability to:

•	 Define requirements (particularly multiple
quality requirements) well enough, to estimate
their costs, with useful accuracy.

•	 Specify the designs (also known as strate-
gies or architecture) that are powerful enough
to satisfy one’s hopefully clear-and-complete
requirements, well enough to know the design
cost consequences.

•	 Collect, or have access to, experience data that
would allow one to estimate costs, for well-spec-
ified designs, even without clear requirements.

Even with experience data, it would probably not help
much, because the new project (typically, the critical
cost-driving variables) would be different (from past
experience) in some decisive way. In fact, time and cost
estimates are not really necessary. Overall long-term
estimates are an old custom, intended to prevent over-
runs and to give management some feeling that the job
will get done in time, at a reasonable cost. Estimates
do not, however, prevent overruns or assure value.
What management needs is delivery of some critical
system requirements in a predictable timeframe. They
also need to be sure the project will be profitable and
will not embarrass them with unexpected losses. This
article describes an alternative way to achieve these
management needs.

The Short Version: Constructive
Suggestions for People Who
Think They Want Estimates
Stipulate one or more useful deadlines from the manage-
ment’s point of view:

•	 Be specific about what has to be done by each
deadline.

•	 Ask if these deadlines seem reasonable for the
tasks prioritized.

•	 If necessary, make adjustments.

26 SQP VOL. 13, NO. 2/© 2011, ASQ

The Risk Principles
1.	 Drivers: If one has not specified all critical performance

and quality levels numerically, one cannot estimate
project resources for those vague requirements.

2.	 Experience: If one does not have experience data about
the resources needed for technical solutions, then one
cannot estimate the project resources.

3.	 Architecture: If one implements the project solutions
all at once, without learning their costs and interactions
incrementally, one cannot expect to be able to
understand the results of many interactions.

4.	 Staff: If a complex and large professional project staff
is an unknown set of people, or changes mid-project,
one cannot expect to estimate the costs for so many
human variables.

5.	 Sensitivity: If even the slightest change is made, after
an “accurate” estimation, to any of the requirements,
designs, or constraints, then the estimate might need
to be changed radically. And, one probably will not
have the information necessary to do it, nor the insight
needed to do it.

The Control Principles
6.	 Learn small: Carry out projects in small increments of

delivering requirements, so one can measure results and
costs against (short-term) estimates.

7.	 Learn root: If incremental costs for a given requirement
level (and its designs) deviate negatively from
estimates—analyze the root cause, and change anything
about the next increments that might get things back
on track.

8.	 Prioritize critical: Prioritize the most critical
requirements and constraints: There is no guarantee one
can achieve them all. Deliver “high value for resources-
used” first.

9.	 Risk fast: Implement the design ideas with the highest
value, with regard to cost and risk, early.

10.	Apply now: Learn early, learn often, learn well, and
apply the learning to the current project. ©

20
11

, A
SQ

Figure 1	 Summary of the principles of
resource control

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

solutions, then he or she cannot
estimate the project resources.
So what does it cost to develop software with 99.999
percent availability? (See Figure 2.) There are few
documented instances (for example, Lucent 1980), and
perhaps no instances are relevant to the current system.
This is only one cost driver variable among many. People
might even have a real problem of convincingly proving
that the system they developed is actually at that level,
and will remain at that level for, say, 40 years! Nobody
knows, and nobody can be certain.

One of the problems is that by the time the experience
data are available, it is likely out of date with respect to
the technology to be deployed. But with no valid and
useful historical experience data, nobody can know.
What one can do is to avoid promising specific costs,
when no one really knows what they are, and what
they will become. Even if someone did know a sample
of costs for the required availability levels, it takes only
one other variable, such as “our new investment in the
requirements process,” to change the real costs by at
least a factor of 2 or 3. See Figure 3 for an example.

Most people do not have such data. Most don’t even
know about the many factors like this that can influence
costs and don’t have relevant historical data about the
cost factor relationships. Does this seem hopeless? Large
scale estimation is hopeless! Once one can appreciate
this, he or she can turn to solving the problem of control-
ling large-scale costs in a serious way.

3. Architecture: If one implements
the project solutions all at once,

WHY ONE CANNOT
EXPECT ESTIMATES TO
BE CORRECT, ACCURATE,
RELIABLE, OR TRUE
1. Drivers: If one has not specified all
critical performance and quality levels
numerically, one cannot estimate project
resources for those vague requirements.
Costs are a result of the designs deployed to meet certain
requirements. In particular, the cost-driving designs
relate directly to performance and quality requirements.
Costs are not quite so sensitive to functions or size.

It has long been understood, for example, COCOMO
(Boehm et al. 2000), that there are a large number
(dozens) of software cost drivers, such as availability. In
one case, the 5ESS project (Lucent 1980) had a major
objective of improving the availability of a previous
generation system. The 5ESS actually replaced the
1AESS, which was AT&T’s first electronic switching
system (David Long, Personal Communication 2010)
from 99.90 percent to 99.98 percent. In other words, that
meant a change of 0.08 percent in the level of one single
quality. However, that represents 80 percent of the way
to perfection. Perfection costs infinity. The project took
eight years, using 2,000 to 3,000 people. Assuming this
is correct and realistic—even roughly so—one would
need the fourth digit (xx.x0 to xx.x8 percent) to signal
that the project might cost 24,000 work-years (David
Long, Personal Communication 2010). COCOMO, for
example, does not try to operate at this level of precision.

One organization contracted for one year of effort
for 100 developers, at fixed price, and promised to
deliver airplane telephone switching software with 99.999
percent availability. They contractually promised 99.999
percent without ever having achieved such a result in the
entire history of the corporation, and without consulting
their technical director. The CEO acknowledged that
they had taken an unwarranted risk, big enough to put
their company out of business. This was, of course, an
organizational problem; management needed to make
sure they knew what they were contracting for.

2. Experience: If one does not
have experience data about the
resources needed for one’s technical

www.asq.org 27

Impossible
Costs

99% 99.9% 99.98% 100%

High
Costs

State-of-art
Border

Availability

Reasonable
Costs

De
ve

lo
pm

en
t

Co
st

s

©
20

11
, A

SQ

Figure 2	 The high cost of perfection
(Gilb 1988, 170)

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

the requirements or the costs. By implementing the criti-
cal variables, such as the design or development process
techniques, one at a time in small increments, then the
effects can be seen more clearly. People could take steps
to change unexpected and bad costs or qualities before
it is too late to change, and they could better argue the
need for the changes with management (see Figure 4).

One of the author’s clients, Confirmit, does this very
well. They measure the effect of a design on a target
quality requirement, say “intuitiveness,” and decide if
the design is meeting its expectations. They do this in
a weekly cycle. Their results are astounding cumulative
quantified quality leaps, for a varied set of quality mea-
sures, which help them achieve competitive advantage
(Johansen and Gilb 2005). (See Table 1.)

Single cause versus single effect is a fundamental
scientific analysis principle. One cause, one effect—
keep all else constant, in order to begin to understand
what is going on. Although the unsimplified reality is,
unfortunately, that multiple causes combine to give
multiple effects. It requires some discipline (Gilb 2010b)
to break things up into these small experiments, and
consequently manage to build predictably realistic
measurable integrated complex systems. But this step-
by-step approach is the price one must pay to get some
real control over costs and qualities.

4. Staff: If a complex and large
professional project staff is an unknown
set of people, or if staff changes mid-
project, one cannot expect to estimate
the costs for so many human variables.
Even with a track record for a defined and constant team, an
organization would still have significant problems using that

without learning their costs and
interactions incrementally, one cannot
expect to be able to understand
the results of many interactions.
Many people are well aware that waterfall or “big bang”
projects have a strong tendency to fail (MacCormack et
al. 2001). But why do they fail?

One of the many causes of failures is that waterfall
method projects are committed to doing too many things
at once. It is therefore difficult to see the effects of any
one design or one process, or of other single factors, on

28 SQP VOL. 13, NO. 2/© 2011, ASQ

200

180

160

140

120

100

80

60

40

20

0
10 15 20 25 305

Pe
rc

en
ta

ge
 o

f
Co

st
 O

ve
rr

un

Percentage of Cost Overrun

TETH
GOES I-M

MARS
MAG LAND 76

STS LAND 78
COBEERB 77

SEASAT
ERB 80

HEA

IUEULYSSESSMM
DE

PION/VEN

ISEE

GRO 82
VOYAGER

EUVE/EP

UARS

ACT

IRAS HST

TDRSS

CEN

GALL
GRO 78

OMV

©
20

11
, A

SQ

Figure 3	 NASA Software project overrun,
as a function of investment in
requirements. Source: Gruehl
(NASA) in (Hooks 1994)

Nov. 95

Technology Evaluation Input From User Feedback

The Development of Internet Explorer 3.0

Architecture EvolutionArchitecture DesignSpecs

Feature Design and Coding

Integration (”Daily Builds”)

Development
Starts

First System
Integration

Alpha
Release

Public
Beta 1

Public
Beta 2

Product
Release

Feature
Freeze

Dec. 95 Jan. 96 Feb. 96 Mar. 96 Apr. 96 May 96 Jun. 96 Jul. 96 Aug. 96 ©
20

11
, A

SQ

Figure 4	 An example of a learning and change process (MacCormack et al. 2001)

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

and unpredictable variations in people are yet another
reason why it is difficult to make project cost predictions.

5. Sensitivity: If even the slightest change
is made, after an “accurate” estimation,
to any of the requirements, designs, or
constraints, then the estimate might need
to be changed radically. And, one probably
will not have the information necessary to
do it, nor even the insight needed to do it.
Consider the previous example (Principle 1) where a 0.08
percent increase in availability for the software of the
AT&T 5ESS project cost eight years and took the efforts
of thousands of developers. The point being made then
was that system qualities are major cost drivers. But
there is an additional point that these cost drivers can
be very sensitive to apparently small numeric changes
in requirements, or to slight numeric changes in actually
delivered quality. For example, 0.08 percent more than
required might cost a bundle now, and 0.08 percent less
than required might cost a bundle later.

Costs can be sensitive to drivers other than perfor-
mance requirements and quality requirements. They can
also be sensitive to resource constraints, such as people,
time, money (for development and for maintenance),
legal constraints (national sensitivity to personal data,
for example), policy constraints (“do no evil”), and a
large number of factors. If these cost-driving factors
are not clearly specified, and are not really followed up
on in practice, then the real costs might vary widely,
compared to expectations, as a result. The real costs
might be surprisingly higher costs initially, or they
may come as a big surprise, due to unforeseen factors
later—the true long-term costs.

information to understand their productivity and consequent

time and money costs. But people normally cannot be sure

who will staff their projects, or even if planned staffing can

or will be carried out. And, they cannot expect that past

team performance is a correct guide to future performance.

This gets even worse with offshore and outsourced

projects. Honeywell discovered that top offshore staff

had been swapped with less-competent staff. They

realized this only by monitoring short-term numeric

feedback, and finding the root cause for worse perfor-

mance (Berntsen 2007) (see Figure 5). So, unknowns

www.asq.org 29

©
20

11
, A

SQ

Delivery 3,4 Statistics
120

100

80

60

40

20

0
11

What
happened?

Delivery
3 Delivery

4

12 13 14 15 16
Iteration Number

Planning Accuracy
Yield

17 18 19 20 21

Figure 5	 From Honeywell case (Berntsen
2007) where an offshore swap-out
of qualified developers was caught
by sensing short-term changes in
the quality of work done

Measures
•	 Planning Accuracy—percent of planned work that was

completed.
•	 Build Yield—percent of completed work that passed

verification testing.

Notice the definitions for the requirements and costs. The Planguage keyed icon “<->” means “from baseline to target value.”
Step 9 alone moved the Productivity value to 27 minutes, or 95 percent of the way to the target level (Johansen and Gilb 2005).

Design Idea: Step 9—Recording
Requirements Estimated Scale Impact Estimated Percent Impact Actual Scale Impact Actual Percent Impact
Objectives
Usability. Productivity
65 <–> 25 minutes

Past: 65 minutes.
Tolerable: 35 minutes.
Goal: 25 minutes.

65 – 20 = 45 minutes 50% 65 – 38 = 27 minutes 95%

Resources
Development Cost
0 <–> 110 days

4 days 3.64% 4 days 3.64%

©
20

11
, A

SQ

Table 1	 A simplified version of the impact estimation (IE) table [3,2] for Evo Step 9,
“Recoding” of the “Market Information Recoding” design

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

The unpleasant fact is that even the best of organi-
zations are embarrassingly bad at clear and complete
specification of requirements. They do not try very hard
to be complete, and they do not seem to know how to
be clear on the critical few top-level requirements, let
alone on details that might be significant enough to affect
costs significantly (Gilb 2005; Gilb 2008a) (see Figure 6).

To summarize so far, the risk principles, discussed previ-
ously, are one way of saying that any attempt to estimate
costs and timing, based on current requirements practices,
and even on vastly more clear and complete requirements
practices, are doomed to failure. Managers should always
regard any such estimates as highly suspicious.

In fact, if the staff providing the estimates are themselves
not explicitly aware of this fact, their competence is dubi-
ous. They ought to give fair warning, like this for example:

CAVEAT: The estimates cannot be trusted, even
regarding their order of magnitude. There are too many
unknown and unknowable factors that can significantly
affect the results.

The estimates could be used as a framework budget.
But one would have to evolve the system in small steps,
and learn from experience what the real costs, real
requirements, and real designs are. The only way to be
reasonably sure of the (money) costs and the (effort)
deadlines would be to apply redesign-to-cost adjustments
as the project progresses (Mills 1980).

If the staff did this, then they have given management
fair warning, and also a prescription for success. They
have also understood the control principles in the second
half of this article. The estimation reality then becomes:

•	 Management can decide, based on the projected
value of the system, how much they can spend
on the project (that is, their budget).

•	 They can decide, based on the market situation,
when they want the stakeholder value to be
delivered (that is, the deadlines).

•	 They can then design the project organization,
to deliver the value, when they want it, at a cost
they find affordable.

•	 If even the simplest and smallest (weeks or
months) attempts to deliver value within satisfac-
tory time and cost fails, then management has
an incompetent team, an ineffective process, or
an impossible project, and they should take that
as a warning to stop or change.

This is, of course, a big change to the way IT or
software projects are managed. The beauty of the control
principles are that they do not take a long time to prove
they work in practice.

When Estimates Might Work
There are times when making estimates might work well
enough for practical purposes, or might seem to work:

•	 If effort on the project ceases, when deadlines
and budgets are used up.

•	 If the qualities and performance of the system are
not yet at required levels, but people have no better
expectations, and they are prepared to improve
qualities over time to reach satisfactory levels.

•	 If staff/contractors are highly motivated to NOT
exceed budgets and deadlines.

Stopping project effort, when dubiously estimated
resources are used up, does not prove the estimates
were ever correct. It just proves that one can stop and

30 SQP VOL. 13, NO. 2/© 2011, ASQ

Primary Objectives for a Project
1.	 Central to the corporation’s business strategy is to

be the world’s premier integrated <domain> service
provider.

2.	 Will provide a much more efficient user experience.
3.	 Dramatically scale back the time frequently needed

after the last data are acquired to time align, depth
correct, splice, merge, recomputed, and/or do whatever
else is needed to generate the desired products.

4.	 Make the system much easier to understand and use
than has been the case for the previous system.

5.	 A primary goal is to provide a much more productive
systems development environment than was previously
the case.

6.	 Will provide a richer set of functionality for supporting
next-generation logging tools and applications.

7.	 Robustness is an essential system requirement.
8.	 Major improvements in data quality over current

practices.

The complete lack of measurable precision in these primary
project objectives is, in the author’s view, the primary reason
for the time delay and costs. Most managers allow such
things to happen on most projects, according to the author’s
decades-long world-wide experience. They lose control of
costs immediately when primary critical project objectives
are unclear. Notice that all objectives refer to qualities (of
an existing system). ©

20
11

, A
SQ

Figure 6	 Real case study example
(Gilb 2008a) of the primary
objectives for a project that
took 10 years before delivery
of any of these objectives, and
cost more than $160,000,000

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

deliver something without being recognized as a clear
failure. Usually one can do that (deliver something useful)
with no effort or cost whatsoever, by using a previous
or old system. So, any effort spent improving the older
system will often be appreciated—especially if some
improvements have been made visible early.

THE CONTROL PRINCIPLES
The previous discussion has tried to establish that there
is no reasonable way to get useful (credible) estimates for
nontrivial software projects. If the real final project (or
product delivery and service costs) costs destroy profit
margins, or destroy the planned return on investment
or management reputation, they are not useful (Collins
and Bicknell 1998; Craig and Brooks 2006).

However, assuming one is still interested in what
to do about the estimation problem, the following five
control principles (principles 6 to 10 below) offer some
practical solutions. They can be simplified into a four-
step process as follows:

1)	 Do something of value in a short time.

2)	 Measure values and costs.

3)	 Adjust what to do next, if necessary.

4)	 Repeat until there is no longer value for money.

See also (Denning 2010) for further discussion on this.
Advantages with this method:

1)	 Too great an amount of time or money cannot
be wasted before one realizes that he or she
has false ideas.

2)	 Value is delivered early, and it keeps people happy.

3)	 The organization is forced to think about the
whole system, including people (not just the
code).

4)	 The organization is destined to see the true
costs of delivering value—not just the code costs.

5)	 One can learn a general method that he or
she can apply for the rest of his or her career.

Disadvantages with this method:

1)	 One cannot hide his or her ignorance any longer.

2)	 One might have to do something not taught at
school, or not taught in textbooks.

3)	 There will always be people who criticize
anything different or new.

4)	 One cannot continue to hide any lack of ability to
produce results inside a multiyear delayed project.

The Control Principles (6 to 10
of the 10 Estimation Principles).
6. Learn small: Carry out projects in small
increments of delivering requirements,
so one can measure results and costs
against (short-term) estimates.
All software projects can be broken into early, small
increments—not merely increments of building, but
more importantly, increments of delivering value to
one’s stakeholders (Gilb 2010b) (see Figure 7).

www.asq.org 31

Investigate Design Implement Test

Investigate Design Plan

Implement TestDesignPlan

Implement TestDesignPlan

Customers: Use N–1 Plan N+1

Cycle 1 Cycle 2 Cycle 3 Cycle N Test

Waterfall Development Life Cycle

Incremental Development Life Cycle

Investigate Design Plan Cycle 1 Cycle 2 Cycle 3 Cycle N Test

Incremental Development Life Cycle ©
20

11
, A

SQ

Figure 7	 Concepts of small delivery cycles with stakeholder feedback, from HP, a client
who uses the Evolutionary Project Management (Evo) method (Cotton 1996)

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

used this 1.1.1.1.1.1 method in practice, identifying
and getting approval for the small high-value delivery
steps (Gilb 2002). No exceptions. It is not a principle
limited to software, though most experience of its use
is in that area.

7. Learn root: If incremental costs
for a given requirement level (and its
proposed designs) deviate negatively
from estimates—analyze the deviation’s
root cause, and change anything
about the coming increments that
might get things back on track.
The set of designs needed to deliver a demanding
quality level can usually be implemented one design
at a time. One should also make an estimate of the
expected impacts for the highest-contribution-to-
requirement-levels design options and implement them,
with the highest estimated impact first. One should
also estimate the expected development cost for each
design increment, and choose the one that gives the
best impact on quality, in relation to its estimated
costs (the best ROI).

On deployment, one must try to measure both the
actual impact, to make sure it is roughly as estimated,
and note the actual costs. Keep track of the real
costs, and note the real initial development cost of
getting to the required quality levels. It is essential to
learn as much as possible, as early as possible, from
implementation and deployment; there are likely to
be some surprises about the actual costs. One process
for learning is to seek the root cause (Goldratt 2008)
of the deviation from one’s estimates. If one can find
the root cause, and therefore try something to avoid it,
he or she can reduce costs and improve quality levels
(and move toward estimates). A simple strategy for root
cause thinking that works well in practice is asking

“Why?” The Japanese “Five Whys” method (Wikipedia
2010) (see Figure 8) hints at the need for continuing
to ask this question of the resulting answer until one
hits an answer that is able to be dealt with effectively.

Managers are very frequently at the wrong level of
“Why?” in understanding a problem; root cause analysis
can help. One instance of this was reported by David
Long (Personal Communication 2010) referring to a
very large software project, AT&T Switching 5ESS. He
wrote: “But, from what I saw, the greatest improvements
came from a small amount of work that was done as

Almost all projects can, if they really want to, start
delivering some value to some stakeholders, next week
and every week thereafter. But most project managers
don’t even try, and don’t even try to learn how.

Leaving aside “how to decompose” for a moment
(Gilb 2008b; Gilb 2010a; 2010b), if one can deliver
early stakeholder value, then he or she gets control over

“value for money.”

•	 Select the highest available deliverable value,
each step.

•	 Deliver it to the most critical stakeholder.

•	 Prove that the designs actually work.

•	 Get some sense of the time needed and monetary
costs.

These steps should usually be about one week at
a time. Assuming one can deliver reasonable value
for effort spent, week after week, surprising things
then happen:

•	 People cease to care about the conventional
deadlines.

•	 People cease to ask for estimates of the monetary
budget.

•	 People are strongly encouraged to keep on
going, until the value to be delivered is less
than the costs.

•	 The project ends up delivering far more real value
than other projects do, well before the end of the
project (without this approach a conventional
project deadline would have been set, and would
also have been overrun).

•	 Management shifts focus from, the budget and
the costs, to return on investment (ROI).

Consider the 1.1.1.1.1.1 method or the Unity Method
(Gilb 2010b):

Plan, in one week
To deliver at least 1 percent
Of at least one requirement
To at least one real stakeholder
Using at least one design idea
On at least one function of the system.
It is amazing the practical power of this simple

idea of unity. If one really tries, and management
persists with encouragement and support, it almost
always works. In one “outside-the-box” example, 25
aircraft projects at Boeing (then McDonnell Douglas)

32 SQP VOL. 13, NO. 2/© 2011, ASQ

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

the result of specific root cause analysis performed on
specific outages.”

One can conclude that there is potentially consider-
able cost reduction leverage to be had from root cause
analysis. The main leverage is in solving the critical
few problems that are frequent and damaging. However,
how can one factor such processes into an initial cost
calculation? One cannot. It must be done incrementally,
and then maybe one can reduce costs, by redesign, to
the level some cost-optimist has estimated.

8. Prioritize critical: One will have to
prioritize the most critical requirements
and constraints: There is no guarantee
one can achieve them all. Deliver “high-
value for resources-used” first.
A time or cost estimate, once it becomes a deadline or a
budget, is a “limited resource.” One of the smartest ways
to deal with limited resources is intelligent prioritization
(Gilb and Maier 2005). Instead of implementing all of the
designs in a big-bang manner, and hoping to meet all the
requirements and resource (time and cost) estimates, try
delivering the project value a little bit at a time, and see
how each of the designs actually works, and what they
actually cost. “A little bit at a time” should be interpreted
as delivering evolutionary steps of approximately 2
percent of the overall project timescales (say weekly,

fortnightly, or monthly cycles), and hopefully about 2
percent of the project financial budget.

Planguage’s impact estimation (IE) method (Gilb
1988; Gilb 2005) is helpful in identifying the designs
that give the estimated best stakeholder value for their
costs. People should implement designs incrementally
so they can get acceptable feedback on costs and value
delivery (in terms of meeting requirements). With a bit
of luck, stakeholders then receive interesting value very
early, and what works and what doesn’t is learned in
practice. If a deadline is hit, or if the budget runs out,
then at least there is still a complete live real system
with delivered high value. In such situations, the whole
concept of the project-level estimates, the deadlines, and
the budgets is not so important any more.

In the Cleanroom Method, developed by IBM’s Harlan
Mills (1980) they reported:

“Software engineering began to emerge in FSD”
(IBM Federal Systems Division, from 1996 a part
of Lockheed Martin Marietta) “some 10 years
ago [about 1970] in a continuing evolution that
is still underway:

Ten years ago general management expected the
worst from software projects—cost overruns, late
deliveries, unreliable and incomplete software.

Today [in other words, in 1980], manage-
ment has learned to expect on-time, within
budget, deliveries of high-quality software. A
Navy helicopter ship system, called LAMPS,
provides a recent example. LAMPS software
was a four-year project of over 200 person-
years of effort, developing over three million,
and integrating over seven million words of
program and data for eight different proces-
sors distributed between a helicopter and a
ship in 45 incremental deliveries. Every one of
those deliveries was on time and under budget.

A more extended example can be found in the
NASA space program.

Where in the past 10 years [from 1070 to 1980],
FSD has managed some 7,000 person-years
of software development, developing and
integrating over 100 million bytes of program
and data for ground and space processors in
over a dozen projects.

There were few late or overrun deliveries in that
decade, and none at all in the past four years.”

www.asq.org 33

©
20

11
, A

SQ

Figure 8	 Simple example of applying the
5 Whys (Velaction 2010)

Sales targets are done on a monthly
basis, letting a big de
cit form.

Action: Make weekly sales goals instead of monthy
targets to prevent getting so far behind.

Why?

Why?

Why?

Why?

Why?

Customers have learned that if they
wait, they well get incentives.

Sales are usually behind the
goal late in the month.

The company offers more incentives
to customers late in the month.

The last week of the month
is the buisest for sales.

Customers wait too
long on the phone at
the end of the month.

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

34 SQP VOL. 13, NO. 2/© 2011, ASQ

the process of intelligent dynamic prioritization in detail
in (Mills 1980).

A thorough explanation of systems development
processes that can help achieve intelligent prioritization is
found in (Gilb 2005) (see also Figure 9). Nothing less will
suffice for large and complex systems (that is, for projects
involving hundreds of staff, years of effort, and sometimes
$100 million or more in cost). For smaller systems (small
teams over a few months), several organizations have
made good simple practical adaptations (Upadhyayula
2001; Johansen and Gilb 2005) of the essential “Evo”
development process ideas (Evo itself predating later agile
methods) (Denning 2010, 129; Gilb 2010c).

The agile community has adopted small iterative
cycles (Gilb 2010c), but they have failed to adopt the
notion of measurement of value and quality, which is
essential for larger projects and some smaller ones.
Without explicit quality requirement and design impact
metrics, the value prioritization is ambiguous and too
subjective (Gilb 2010c; Gilb and Brodie 2010).

Harlan Mills told the author that they had to solve
the persistent problem of cost overruns, in relation
to the contracted estimates, because the government
was getting smarter and using fixed-price contracts (as
opposed to cost plus). If the project ran over, IBM lost
its own profit. If IBM did not find a better way, it could
just as well leave the business. Notice the “45 deliveries”
Mills cites. That means 2 percent delivery cycles. IBM
was using intelligent feedback and learning. It actually
had very sophisticated estimation technology based on
a thorough collection of experiences (Walston and Felix
1977). But this did not give IBM the accuracy it needed
to avoid losing money. Say it had a 40 percent profit
margin, and it could be wrong by 40 percent to 200
percent (the NASA range, see Figure 3). IBM would still
lose money on most contracts. So, it had to compensate
for its estimation inaccuracy by incremental feedback
and necessary change, to come in “on time and under
budget every time.” Mills’ colleague, Quinnan, describes

©
20

11
, A

SQ

Figure 9	 Priority management as an iterative process (Gilb and Maier 2005)

Determine
Stakeholders
(Authorities)

Identify and Specify
Design Ideas

Evaluate Design Ideas
(Impact Estimation)

Priority
Determination

Outline
Evo Plan

SQC of the
Evo Plan

Entry

Strategic Management Cycle

Exit

Determine
Priority Policy

Speci�cation
Quality Control (SQC)
of the Requirements

Review With
Management

Review With
Management

Specify Requirements
• Functions
• Performance
• Budgets
• Design Constraints
• Condition Constraints

Requirement
Speci�cation

Design
Process

Monthly Requirements and Design Ideas, Update
Evo Plan, Initiate “Backroom” (Development and

Production) Cycles, Decide Next Evo Step Delivery
Specify Outline Evo Step Delivery Plan (Plan)

Adopt or
Abandon
the Evo

Step (Act)

Review Evo Step Feedback and
Study All Changes (Stakeholder
Needs, Technology, Economic

and Political) (Study).

Initiate Delivery
Cycle (Do)

Delivery Cycle

Report on Evo
Step Act)

Obtain and
Analyze Evo Step
Feedback (Study)

Plan Evo Step
Delivery (Plan)

Carry out
Evo Step

Delivery (Do)

Evolutionary Project Management

The left-hand of the diagram shows the strategic management cycle and the delivery cycle within Evolutionary Project
Management (Evo) (the development cycle and production cycle are not shown). Within the strategic management cycle,
the system requirements and design ideas can be updated to reflect feedback, and any changes that have occurred. Within
the delivery cycle, actual delivery of the Evo step occurs. The right-hand of the diagram shows the main sub-processes of
requirement specification and the design process (Gilb 2005). Note impact estimation and priority determination are within
the design process.

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

www.asq.org 35

IE documents the error margins and uncertainty, to
better understand risk. To illustrate how IE achieves this,
here is a real example. The main requirement is called

“Learning,” and the numerically specified requirement
was to reduce the learning time from 60 minutes to 10
minutes (see Figure 11).

•	 Scale impact: The first set of estimates are a
best guess as to the result if each design was
implemented individually and incrementally.

“Online Help” is estimated to get the organization
to the required 10 minutes.

•	 Scale uncertainty: The scale impacts are just
estimates, so the organization must assess
the likely best-case and worst-case range of
estimates. This is one means of expressing that
there is a risk that the real result will NOT be the
initial estimate. In this case, the ± five minutes
for “Online Help” means the organization thinks
the worst they could get is a result of 15 minutes
(10 + 5) and the best is five minutes (10 - 5).

•	 Percentage impact: A way of expressing
these same estimates in direct relation to the

“Learning” requirement level (where 10 minutes
= 100 percent of the objective). This is not
important here. The percentage impact is used
as a common currency to make comparisons
requirements that we might well be looking at
simultaneously to make a risk decision. But not
in this simplified example.

Now based on the scale impact and the scale uncer-
tainty, which one of the four designs is the “smartest”
one to try out first? From the author’s perspective, the
design “Online Help” looks good, and “Picture Handbook”

9. Risk Fast: Implement the design
ideas with the “highest value with
regard to cost and risk” early.
One can use the IE method (Gilb 2005) to identify the
designs with highest value with regard to cost and risk,
and then try them out first.

Looking at the design ideas in Figure 10 (from real
case at Ericsson), defined only at the “Gist” (summary)
level (there was in the real example more detail to the
definition, but this level is OK for the purposes here),
which of these designs is high risk? There is no docu-
mentation here as to what experience would lead one
to expect of costs or results, so there is no perceivable
difference. Unfortunately, too many design specifica-
tions are at this level—no information about interesting
quality and cost differences, no estimates for costs, no
estimates for expected impacts on requirements, and
no estimates of the certainty of the estimates.

©
20

11
, A

SQ

Figure 10	 Brief description of a simple
real example of some design
ideas to improve learning time
(Gilb 2005, 267)

Design Ideas

Online Support: Gist: Provide an optional alternative user
interface, with the users’ task information for defined
task(s) embedded into in.

Online Help: Gist: Integrate the users’ task information for
defined task(s) into the user interface as a “Help” facility.

Picture Handbook: Gist: Produce a radically changed
handbook that uses pictures and concrete examples to
instruct, without the need for any other text.

Access Index: Gist: Make detailed keyword indexes, using
experience from at least 10 real users learning to carry out the
defined task(s). What do they want to look things up under?

©
20

11
, A

SQ

Figure 11	 An impact estimation table showing the impact of the design ideas in Figure 10
on the Learning objective (Gilb 2005, 267)

Online Support Online Help Picture Handbook
Online Help

+ Access Index
Learning 60 minutes <–> 10 minutes
Scale Impact 5 min. 10 min. 30 min. 8 min.
Scale Uncertainty ±3 min. ±5 min. ±10 min. ±5 min.
Percentage Impact 110% 100% 60% 104%
Percentage Uncertainty ±6% (3 of 50 minutes) ±10% ±20% ±10%
Evidence Project Ajax: 7 minutes Other Systems Guess Other Systems + Guess

Source Ajax Report, p. 6 World Report, p.17 John B
World Report,
p. 17 + John B

Credibility 0.7 0.8 0.2 0.6
Development Cost 120K 25K 10K 26K
Performance to Cost Ratio 110/120 = 0.92 100/25 = 4.0 60/10 = 6.0 104/26 = 4.0
Credibility-adjusted
Performance to Cost Ratio
(to 1 decimal place)

0.92 × 0.7 = 0.6 4.0 × 0.8 = 3.2 6.0 × 0.2 = 1.2 4.0 × 0.6 = 2.4

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

36 SQP VOL. 13, NO. 2/© 2011, ASQ

implementation options that promise, based on good
evidence, to deliver best requirement value for costs, then
costs will be under better control. However, this cannot
be done all at once. One must use feedback and also learn
to estimate better, and one must provide better evidence
and better sources. In other words, an organization must
learn to control costs during the project.

Sometimes doing high
risk first is useful
There is a related principle, which may seem contradic-
tory, that given several designs to be implemented—one
should not do the potentially high-performance to cost
design early, but the high risk design instead. This
assumes that there is high value at low cost estimated,
but that the ± uncertainty is very wide, for example,
80 percent ±70 percent for a quality or a cost budget.
In that case there is an argument that one should find
out whether the design is as promising as he or she
optimistically would like it to be, or not. There is a high
value in knowing the reality. In this case, the stakeholder
is the system architect, and the value is the value to
the architect of validating the true impact and costs
of their architecture, in good time, and being able to
retreat, should it be falsely overoptimistic.

10. Apply now: Learn early, learn
often, learn well, and apply the
learning to the current project.
The 10th control principle is implied by, and discussed
in connection with, the other principles. To get control
over costs and budgets, one must get to the truth of the
cost of meeting project requirements. One must humbly
recognize that no one else is certain of the costs.

Start learning the true costs of the designs for meeting
project requirements as early as possible. One should
start learning for real, the second week of any project.
Meetings and opinions just can’t beat reality. The pace
of learning cycles should be weekly until all require-
ments are delivered, or until resources run out. Longer
two-weekly or even monthly cycles are also practical.

SUMMARY
The world of software is complex enough in itself—some
say software projects are the most complex projects
humans undertake. However, software is always part of
a larger system of machines, people, laws, markets, and
politics. So understanding the real costs accurately for

looks like a loser. If “Online Help” succeeds, one would
not need the other design ideas. So the IE table provides
a warning that the “Picture Handbook” design has
a high risk of NOT providing the desired result. The
organization is primarily interested in the risk that it
will cost them more than they have estimated, or cost
more than what they can tolerate, to get the result. So
they have to also consider some additional information.
How good is the estimate of the impact? Who made it,
and on what basis? It is rare to find designers for software
systems documenting the “why” and “who” of estimates,
let alone the estimate of impact on a numeric quality
requirement, like “Learning.”

Evidence/Source
The evidence (on what basis, the why) and the source
(person or document for the evidence, the who) are
document as best as possible. Further, based on that
evidence and source information, a credibility score is
assigned (0.0 worthless to 1.0 perfect) (Gilb 2005). In
this case, “Online Help” comes out best (0.8) so one can
stick with the belief that it will provide the best result.
But, that does not settle the question of the costs and
their uncertainty.

Development cost
One can make an estimate of the development cost (and/
or any costs aspects of interest, such as development
duration). “Online Help” is estimated to cost 25,000
monetary units.

Credibility-adjusted
performance to cost ratio
When one modifies the costs with the credibility factor—
a rough measure of how well one can trust the design
impacts and costs based on history (evidence and source),
it becomes even more convincing that one should stick
with “Online Help” as the design to try first (3.2 being
the largest value for money, credibility adjusted). Or
perhaps one could make a ± estimate for the costs, and
consider how wide the range of cost estimates is (that is,
how risky), and what the worst case equates to (estimate
plus the highest cost border).

This might seem like a lot of bureaucracy, but it
is a lot cheaper than just diving in and implementing
unevaluated designs, and then failing, as software people
so often do. It is, in fact, a reasonable fact-based reason-
ing or logical process that one should try to do. If one
consistently chooses the safest bets, that is, the iterative

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

www.asq.org 37

Boehm, B., C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R.
Madachy, D. J. Reifer, and B. Steece. 2000. Software cost estimation
with Cocomo II. Englewood Cliffs, NJ: Prentice Hall. Available at: http://
sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html.

Collins, T., with D. Bicknell. 1998. CRASH: Learning from the world’s
worst computer disasters. London: Simon and Schuster Ltd.

Craig, D., and R. Brooks. 2006. Plundering the Public Sector: How New
Labour are letting consultants run off with £70 billion of our money.
London: Constable & Robinson Ltd.

Cotton, T. 1996. Evolutionary fusion: A customer-orientated incremental
life cycle for fusion. Hewlett-Packard Journal 4:25-38. Available at:
http://www.hpl.hp.com/hpjournal/96aug/aug96a3.htm.

David Long 2010. Email discussion with the author about Lucent switch-
ing system history.

See also Reference Lucent 1980.

Denning, S. 2010. The leaders guide to radical management, reinventing
the workplace for the 21st century. San Francisco: Jossey-Bass/Wiley.

Gilb, T. 1988. Principles of software engineering management. Boston:
Addison-Wesley.

Gilb, T. 2002. DAC case studies: Management objectives, QC and a little
about 25 Evo projects for aircraft engineering. Available at: http://www.
gilb.com/tiki-download_file.php?fileId=254 [Accessed 27.Dec.2010].

Gilb, T. 2005. Competitive engineering: A handbook for systems engi-
neering, requirements engineering, and software engineering, using
planguage. Oxford: Elsevier Butterworth-Heinemann. Available at:
http://www.gilb.com/tiki-download_file.php?fileId=77 and http://www.
gilb.com/tiki-download_file.php?fi.

Gilb, T. 2006. No cure no pay. Available at: http://www.gilb.com/tiki-
download_file.php?fileId=38.

Gilb, T. 2008a. Top level critical project objectives: How to quantify and
control key objectives at all levels of the project. Available at: http://
www.gilb.com/tiki-download_file.php?fileId=180.

Gilb, T. 2008b. Decomposition of projects: How to design small incre-
mental steps. In Proceedings of INCOSE 2008. Available at: http://www.
gilb.com/tiki-download_file.php?fileId=41.

Gilb, T. 2010a. Value planning slides for Scrum product owners. Available
at: http://www.gilb.com/tiki-download_file.php?fileId=353.

Gilb, T. 2010b. The 111111 or Unity Method for Decomposition, Presented
at the 2010 Smidig (Agile) Conference, Oslo. Available at: http://www.
gilb.com/tiki-download_file.php?fileId=350.

Gilb, T. 2010c. Value-Driven Development Principles and Values – Agility
is the Tool, Not the Master. Agile Record, July 2010, 3. Also available at:
http://www.gilb.com/tiki-download_file.php?fileId=431.

Gilb, T., and L. Brodie. 2010. Principles and values – Agility is the tool,
not the master, Part 2: Values for Value. Agile Record (October). Also
available at: http://www.gilb.com/tiki-download_file.php?fileId=448.

Gilb, T., and M. W. Maier. 2005. Managing priorities: A key to systematic
decision-making. In Proceedings of INCOSE 2005. Available at: http://
www.gilb.com/tiki-download_file.php?fileId=60.

Goldratt, E. M. 2008. The choice. Great Barrington, MA: North River
Press.

Grimstad, S., M. Jørgensen, and K. Moløkken-Østvold. 2006. Software
effort estimation terminology: The tower of Babel. Available at: http://
simula.no/research/se/publications/Grimstad.2006.1/simula_pdf_file.

Hooks, I. 1994. Guide for managing & writing requirements. Boerne, TX:
Compliance Automation Inc.

developing initial solutions, to deliver competitive levels
of performance and quality, is near impossible up front.
Cost estimation requires far more than understanding
code, user stories, function points, and use cases. People
will make estimates, and with some luck might get the
order of magnitude right. But management would be
foolish to believe these estimates are sufficiently reliable
to bet their own career on them.

Long-Term and Total Costs
Understanding initial development costs is tricky enough,
but understanding long-term operational and mainte-
nance costs—which usually dwarf initial development
costs—is even more difficult, as it is dealing with a more
unmeasurable and unpredictable future. Something more
than the suggested principles apply to this problem. One
is, for example, talking about how to engineer long-term
cost-drivers into the system, initially and gradually
(Grimstad, Jørgensen, and Moløkken-Østvold 2006).
So management’s strategic planning needs to take into
account these principles:

•	 Management needs to base their planning on the
cost they are prepared to pay to deliver specified
value (as specified in quantified requirements).
This is keeping an eye on the financial value, or
profitability (or maximum profitable cost (MPC)).

•	 Management needs to also decide the time value
of delivering specific system value levels (such
as 99.99 percent availability within 12 months)
(or high value delivery timing (HVDT)).

•	 Management then needs to make sure their
projects are done one step at a time (2 percent
steps of the MPC and/or the HVDT). Management
needs to make sure projects are organized to
deliver the highest possible value as early as
possible, and that projects learn what is real
very quickly.

Acknowledgement

The author would like to thank Lindsey Brodie, University of Middlesex,
London, UK, for her help in editing this article.

References

Berntsen, J. 2007. A case study in globally distributed lean software
development. ICSPI 2007 Conference. Available at http://www.gilb.com/
tiki-download_file.php?fileId=432.

http://www.gilb.com/tiki-download_file.php?fileId=432
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Chris Abts
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=A. Winsor Brown
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Sunita Chulani
http://www.amazon.com/s/ref=ntt_athr_dp_sr_5?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Bradford K. Clark
http://www.amazon.com/s/ref=ntt_athr_dp_sr_6?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Ellis Horowitz
http://www.amazon.com/s/ref=ntt_athr_dp_sr_7?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Ray Madachy
http://www.amazon.com/s/ref=ntt_athr_dp_sr_8?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Donald J. Reifer
http://www.amazon.com/s/ref=ntt_athr_dp_sr_9?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Bert Steece
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html
http://www.hpl.hp.com/hpjournal/96aug/aug96a3.htm
http://www.hpl.hp.com/hpjournal/96aug/aug96a3.htm
http://www.gilb.com/tiki-download_file.php?fileId=254
http://www.gilb.com/tiki-download_file.php?fileId=254
http://www.gilb.com/tiki-download_file.php?fileId=77
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=432
http://www.gilb.com/tiki-download_file.php?fileId=432

Estimation: A Paradigm Shift Toward Dynamic Design-to-Cost and Radical Management

38 SQP VOL. 13, NO. 2/© 2011, ASQ

Walston, C. E., and C. P. Felix. 1977. A method of programming measure-
ment and estimation. IBM Systems Journal 1:54-73. Available at: http://
ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288519.

Wikipedia. 2010. 5 Whys. Available at: http://en.wikipedia.org/wiki/5_Whys.

Biography

Tom Gilb has been an independent consultant, teacher, and
author since 1960. He mainly works with multinational clients
helping improve their organizations, and their systems engineer-
ing methods. Gilb’s latest book is Competitive Engineering: A
Handbook For Systems Engineering, Requirements Engineering,
and Software Engineering Using Planguage (2005). His other
books include Software Inspection co-authored with Dorothy
Graham (1993), and Principles of Software Engineering
Management (1988). His Software Metrics book (1976, Out of
Print) has been cited as the initial foundation of what is now
CMMI Level 4. Gilb’s key interests include business metrics,
evolutionary delivery, and further development of his planning
language, Planguage. He can be reached at tom@gilb.com or at
http://www.gilb.com.

Johansen, T., and T. Gilb. 2005. From waterfall to evolutionary develop-
ment (Evo): How we rapidly created faster, more user-friendly, and more
productive software products for a competitive multi-national market.
Available at: http://www.gilb.com/tiki-download_file.php?fileId=32.

Jørgensen, M. 2005. Practical guidelines for expert-judgment-based soft-
ware effort estimation. IEEE Software (May/June). See also 2008 slides,
Software Development Effort Estimation: Why it fails and how to improve
it. Available at: http://simula.no/research/se/publications/Simula.SE.375.

Lucent. 1980. Lucent AT&T 5ESS case study. See http://www.mdavidlong.
com/resume_m_david_long.pdf.

“5ESS system reliability of 99.9999%”

MacCormack, A., M. Iansiti, and R. Verganti. 2001. Product-development
practices that work: How Internet companies build software. MIT Sloan
Management Review 42, issue 2 (Winter).

Mills, H. 1980. The management of software engineering: part 1:
principles of software engineering. IBM Systems Journal 19, issue 4
(Dec.):414-420.

Upadhyayula, S. 2001. Rapid and flexible product development: an
analysis of software projects at Hewlett Packard and Agilent. Masters
thesis, Massachusetts Institute of Technology. Available at: http://www.
gilb.com/tiki-download_file.php?fileId=65.

Velaction. 2010. Lean term: 5 Whys. Available at: http://www.velaction.
com/5-whys/.

http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26
http://www.gilb.com/tiki-download_file.php?fileId=26

