

A Conceptual Glossary for Systems Engineering:
Define the Concept, don’t quibble about the terms.

Seventeenth Annual International Symposium of the

International Council On Systems Engineering (INCOSE)
24 - 28 June 2007

Copyright © 2007 by Tom Gilb. Published and used by INCOSE with permission.

Abstract.
We seem to spend a lot of our time defining terms, arguing over terms, standardizing
terms, and misunderstanding terms. In connection with my development of a planning
language, and its basic textbook I had to make a decision regarding my glossary. One of
the formal design requirements I had set for myself was that the planning language, and
its textbooks were easy to translate into other international languages. It was primarily in
order to satisfy that requirement that I came up with the concept of a concept-centered
glossary, rather than the conventional term-focused glossary (like a conventional
dictionary).

The basic idea is that we focus on defining a concept, no matter how many
synonyms it might have, or how many different opinions there are about what the concept
should be called.

Introduction

In order to have a position of both ‘term’ neutrality and ‘human language’ neutrality, the
primary and universal reference to a Planguage concept is through an assigned number
(like *001). The textbook in which the glossary is placed will generally use a single
primary term to refer to the concept. The terms are sequenced in the Glossary according
to this primary term, as in a normal dictionary. And, all concept definitions, in books,
papers, or slides, that need to refer to the concept, will use that primary term consistently.

There are many interesting aspects to this class of glossary that will be brought
out in this paper, and we hope it will provide a model for similar work in organizing
knowledge about concepts, for educational and institutional purposes.

Example:
Here is a simple example of a concept definition:

Designer Concept *190 May 6, 2006
A designer is a person or group who specifies design ideas, in an effort to satisfy
specified requirements.

Notes:
1. This is a generic term. More specific terms include systems engineer, planner, or
systems architect.

Synonyms [Designer *190]:
• Systems Designer *190

Related Concepts [Designer *190]:
• Systems Architect *193

Type [Designer *190]: Role.

Notice the basic structure:
• the primary term (designer) leads, as in conventional glossaries
• the concept reference number is listed immediately (*190)
• a version date for the term is given (May 6, 2006)
• the primary definition is given
• notes are made to give more background about the term
• synonyms are listed, if any
• related concepts are listed, if any
• the concept is classified by type. (a ‘Role’)

This is not a complete list of all possible elements of a glossary entry, but it is
reasonably representative.

Pointing out that terms are defined concepts.
The initial idea of my handbook was that I could be very terse about any technical
subject, because all they key words I used were so thoroughly defined in the glossary. It
was a matter of ‘define once excellently’, ‘reuse the term many times’. The term meaning
was precise. The device used to make sure that the reader was aware that the term was
‘Capitalization’ of the term. For example: “The Design Requirements were not
Constraints”.

This is explicit enough, but publishing advisors convinced me that this device in
normal text (as opposed to technical specifications) was more disturbing than useful. So,
as with most texts, the reader is left to know that the term probably does have a
definition, and that they are obliged to interpret the text in that light.

On the deviation from convention in definitions.

I have long since understood that all people will never sincerely try to agree on the use of
a single term to refer to a concept. I am also equally resigned to the fact that all people
will never completely agree on a concept definition. In fact it is quite difficult to get any

two senior opinionated people to do so, as I know from this experience. But I can at least,
as a teacher, author and consultant, consistently use my chosen term, while having
respect for other peoples choices – and not imposing my term on them. I can at least
develop concept definitions that are the best I, and my circle of advisors, can agree on.

My initial bent is to stick to convention and standards wherever practical. And
even when the systems or software engineering culture has corrupted a conventional
term, I try to check ordinary dictionaries, and consider moving the concept back to its
normal roots. On many other occasions my concept definitions have been created by me
in order to fit in with the larger scheme of things (especially my tendency to insist on
multi-dimensional quantification); and many definitions I work out so that they are
‘deeply useful’ in the systems engineering processes.

For example, it was one of my clients (Los Alamos national labs) that pointed out the
necessity of defining a ‘Page’ of technical specification in terms of a defined number of
‘non-commentary’ words, in order to normalize the volume of specification.

Another example. When describing technical specification defects, the concepts of major
and minor have been used since at least the early 1970’s. But they were not usefully and
clearly defined in the software culture that used them. Much confusion ensued in
classification and estimation as a result. It took me years to move towards my current
definitions of ‘major specification defect’. Apparently small, but I argue, powerful
distinctions are made now when using the concept definition of ‘rule violation’ that could
‘possibly (cause)’ (consequences downstream).

Major Defect Concept *091 November 20, 200x
A Major defect is a specification defect (a rule violation), which if not fixed at an
early stage of specification, then it’s consequences will possibly grow
substantially, in cost-to-fix and/or damage potential. A Major defect has on
average approximately an order of magnitude more downstream cost potential
than it’s cost to remove immediately.

I have tried to provide the best set of systems engineering concept definitions my
team and I could come up with, after years of hard work. But I also recognize that the
process of evolving the concept glossary is an eternal one. Others will finally pass
judgment on our choices, hopefully by quoting and reusing them!

Translations and Partial Translations
Most of my work is for large multinationals in a wide variety of countries. Most of this
work is done in English. But most people speak to each other in their native language, if
they get a chance, even in these environments. And only the multi-nationals use English
in their specifications. So there is a need, for several reasons and at several levels for
translation of the planning language into other native languages. It is worth pointing out
the even in the English language culture, there are preferences for different terms to
describe the same concept (synonyms).

The simplest way to get a ‘translation’ is to simply pick a term and equate it to a concept.
For example:

Need Concept *599 March 17, 200x
A ‘need’ is something desired by a defined stakeholder. The implication is that
satisfying that need would have some value for some stakeholder.

A need might not be agreed as a formal requirement, and it might not be
prioritized such that it is actually acted upon (designed and implemented).

It is a term often used as a stakeholder view of a problem before requirements
specification is carried out.

Synonym [Need, *599]:
• Behov *599 [Norwegian, Bokmål]

Related Concepts [Need *599]:
• Problem Definition *598
• Requirement *026
• Design *047

Type [Need *599]: Problem Definition Concept.
======== End of Example ==============================

The term ‘Behov’ (a relative of the English behooves!) can now be used orally or in writing
amongst Norwegians, with the formal (still in English) definition of the concept now valid for the
concept. I have already done a trial run on this for a set of Norwegian terms. For 640 concepts
you need to pick 640 non-english terms and define the concept they refer to. Presto you have
access to the hard work in the concept glossary without needing to actually translate the whole
glossary (about 300 pages of very fine-tuned definitions) into the native language. If you need to
remind a reader about this you can use selected devices such as capitalization (“Kundenes
Behov oversettes til Krav”) or reference to the numeric tag (“Kundenes behov (*599) oversettes til
krav (*026)”.) . i.e. ‘The customer’s needs are translated into requirements’.

This partial term-only translation solution may be useful for teaching purposes and rapid adoption
of the Planning Language. My initial design was primarily intended to ensure efficient translation
of the full Language handbook and associated writings (such as technical papers).

Conversion to dialects: national, and corporate.
The concept glossary, as is true of the entire Planning Language, is intended to be tailored
to local use of technical or commercial English. It is neither wise nor necessary to impose
my preferred terms on anybody else. So groups have a long tradition of using certain
terms, and it will be more comfortable for them to continue doing so, while possibly
getting the advantage of more precise operational concept definitions, and the advantage
of getting the entire set of concept definitions as a compliment. So all you have to do is to
change the primary term to one you prefer. You can note the Planning Language normal
term as a synonym if you like.

For example:

Author Concept *004 February 5, 200x
An author is the person, who writes or updates a document or specification of
any kind.

Note:
This is a generic term, which depending on the specific document type, is usually
replaced by specific roles, such as {engineer, architect, manager, technician, analyst,
designer, coder, test planner, specification writer}.

Synonyms [Author *004]:
• Writer *004
• Specification Writer *004 [Normal Planguage Term]
Note ‘Author’ is the XYZ Corporation preferred term.

Related Concepts [Author *004]:
• Owner *102

Type [Author *004]: Role.
=========== end of example *004===============

Relationship to technical specifications, such as requirements and design

The glossary concepts and terms are used very directly and heavily in the planning
language. They are the basic set of defined concepts to which a particular project or
Author can add other defined concepts.

For example if I specify a type of specification:

Type: Complex Quality Requirement.

Then all four words are found as terms, and defined as corresponding concepts in the
Planguage Glossary, and have very specific technical meanings. Their individual
Capitalization signals this explicitly and is required in the specification.

The method user can add anything they want to add to make up their own local
Planguage Glossary. An Author can in addition define their own terms at will, locally in a
specification. For example:

Task Effectiveness:
Scale: Time to Complete Local Tasks.
Complete: defined as: real time minutes continuous duration of task from task doer
initiation until successful completion is verified.

Local Tasks: defined as: tasks that must be performed on site of product location.
Goal [High Schools, Computers, Task = Replacement] <5 minutes.

The terms {Scale, defined as, Goal, Task} are predefined in the Glossary. ‘Complete’ and
‘Local Tasks’ are defined locally in this specification. They could also be defined globally
for a project or larger set of specifications. ‘High Schools’, ‘Computers’, and
‘Replacement’ are somewhere defined (or need to be), outside of this specification, but
not in the larger concept glossary.

Thoughts on the power of concept focused education
I believe that a large consistent well-defined set of systems engineering concepts such as
these form a proper partial basis for professional training and higher education programs.
Indeed I regularly use them weekly in my professional training courses in requirements
and other subjects. I will shortly be preparing a M.Sc. program for software engineering,
and it is my intent to use these concepts as a fundamental basis. Concepts are the building
blocks of understanding a discipline. It is my experience that most everybody is confused
about the meaning of very basic concepts such as ‘requirement’ and ‘design’. They may
not initially acknowledge that they are confused. But if you analyze their practices with
them, as I have to regularly, they will themselves admit that a large portion of what they
called ‘Requirements’ are really technical design, for meeting undefined requirements.

A simple (real) example: ‘Password’ is in the non-functional requirement section, but
there is no specification for the degree or types of security required, so it is even logically
impossible to decide if ‘password’ is a good design, or should be required as a design.

So, when I find real engineers confused about the meaning of the simplest concepts, it is
also clear that they are not enlightened about more-detailed ones such as ‘Design
Constraint’ (*181) or ‘Scalar Requirement’ (*198 + *026).

I must also conclude from observation that their higher education has not done much for
their conceptual understanding

Graphic reference: keyed icons and graphical icons.
 Decades ago I became acquainted with Charles Bliss, by correspondence, and his unique
work on Blissymbolics, or Semantography. (http://www.symbols.net/blissre.htm)The
concept of a highly general ‘pictorial language’ for technical things became a clear
concept to me then.

As a teacher, when I explain things, or make slides for my courses, I know I have to try to
help students visualize new ideas. As a result of these influences a set of pictorial
representations of the concepts began to grow. So in addition to many other devices for
accessing a concept, we have purely graphical possibility.

For example, the symbol -|-|- (directly from Bliss) is the graphic for ‘Scale of Measure’
or *132. All these options, and any synonyms can be used to reference the conceptual
definition. All serve as ‘names’ to find and use the conceptual definition. The symbols are

http://www.symbols.net/blissre.htm

either graphical icons or keyed icons. Keyed icons car easily be created on a keyboard,
and in-flight or integrated with text.

The important thing about the icons in this context is that they represent a language
independent notation for systems engineers, like music notes or electrical schematic
symbols.

In theory the entire planning language can be defined and explained in these symbols.
The reality is that I have not focused on this aspect and pushed it very far. I am putting
that work off, which the basic concepts are more mature, published and stabilized. They
should be the subject of a separate paper. The most significant single aspect of these
symbols compared to all other known symbolic diagramming languages is that they are
especially good at representing, and integrating multidimensional performance and cost
aspects of a system. Other symbolic methods, for example UML (Universal Modeling
Language) do not try to do this at all, and therefore they are incapable of representing the
most critical aspects of any system (performance and cost variation).

Here is an example of keyed icons in the concept glossary:

Survival Range: Concept *585 March 3, 200x
A Survival Range is the numeric range of a scalar attribute that indicates

survival of the system, with respect to that attribute alone.

Keyed icon [Survival Range, *585] ---[======]------->O------[=====]---->
Note: the ‘[‘ being a lower limit and the ‘]’ being an upper limit.
 The ‘[=====]’ is the Survival Range.

Related Concepts:
• Catastrophe Range [*603 ••••] the range just outside the Survival Range

Type [Survival Range, *585]

============ end of example *585===========================
Note on the example: the ‘O’ represents system function. The input arrow (--->O) represents a cost
dimension, like human effort, the output arrow (O--->) represents a single performance dimension (like
Usability) for that function.

Thoughts on standards
As you can observe, our Anglo-fixated culture, defines English words. For example:

Architectural Description [IEEE] Concept *618 July 18, 200x
Architectural description is “a collection of products to document an
architecture.”

(This definition is identical with IEEE Draft Standard 1471, December 1999)

This concept is generic and can apply to any specific architecture type.

Maybe international, including INCOSE, standards should apply the principle of defining
concepts. And then indicate the synonyms in both English and other languages that map
to that conceptual definition?

The power of non-trivial definitions
Here is a set of characteristics regarding ‘non-trivial definitions’; this has been our guide
when working on the concept glossary.
• gives insights that are not obvious to most people
• they are clear enough to support quantification, measurement, testing
• they are consistent with all other definitions in a related set
• they clearly show known synonyms
• they are powerful enough to correct bad practices (such as calling designs
‘requirements’)
• the focus is on a useful technical concept, not a term alone.
• rich notes are given about each concept
• examples are given where applicable

 The problem of consistency in hundreds of conceptual definitions
Making a concept definition, or even a few in a book or a paper is common and useful
practice. But in the definition of the Planning Language we are currently up at about 650
concepts. On the one hand, the more concepts that are well defined, the better you can
build a great definition by re-using defined concepts.

But, the more terms that cumulate in a related set, the greater the problems in
making clean conceptual definitions and in choosing appropriate primary terms seems to
pop up.

For example at a very early stage of development, I used the term ‘Plan’ for the
major planned level of a performance characteristic. No harm there. But as time went by
and we developed other scalar target and scalar constraint concepts; the term ‘Plan’
became unnecessarily general. All the newer scalar target concepts (Ideal, Stretch, Wish,
Goal) were more-refined notions of a ‘Plan’, and in addition we were busy integrating
requirements disciplines with Evolutionary Project Management concepts – and there
were plenty of ‘plan’-like notions in those areas too. In addition, as the number of related
concepts grows, the need for terms to describe sets of them grow – and that often causes
conflict in a limited set of appropriate terms. In short the conceptual growth cause me to
refine my selection of terms on the one hand, and to sharpen the conceptual distinction on
the other.

Sometimes making distinctions between objectives, requirements, targets and
goals seemed difficult, since many ordinary people do not systematically distinguish
between them. Yet at the end of the exercise, I felt that very useful conceptual distinctions
had been made. For example, an Objective *100, is a synonym for a Performance
Requirement. A complex Objective (like Availability) can be defined by a set of scales of
measures. Each elementary objective, having a single scale of measure (like Mean Time
Between Failure) could still have any number of target levels of performance, and any
other number of constraint levels for performance. The simple innocent ‘Plan’ level, had
exploded into a potentially large number of plans of different nature. The set of all of
these sub-requirements is the expression of one larger objective. The conceptual power of

being able to do this at all, is still currently mind boggling in a world where so many have
not quantified their performance requirement at all (‘Graceful Degradation’ was one such
requirement I worked with last week).

Some projects are not in need of more sophistication in concepts than is common. But the
demands put on the real systems engineer demand the most articulate set of concepts and
specification tools we can make available.

References
Gilb05: Gilb, Tom, Competitive Engineering, A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering
Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier
Butterworth-Heinemann.
The published book has about 168 Concepts in the Concept Glossary. A
total of 650 defined concepts are available from the full Concept
Glossary (www.gilb.com). Some concepts have been submitted to the
INCOSE Glossary. The web glossary is kept up to date with
improvements and changes to the published concepts.

Author Bio
Tom has been an independent consultant, teacher and author, since
1960. He mainly works with multinational clients; helping improve
their organizations, and their systems engineering methods.
Tom’s latest book is ‘Competitive Engineering: A Handbook
For Systems Engineering, Requirements Engineering, and Software
Engineering Using Planguage’ (Summer 2005).
Other books are ‘Software Inspection’ (with Dorothy Graham, 1993),
and ‘Principles of Software Engineering Management’ (1988). His
‘Software Metrics’ book (1976, OoP) has been cited as the initial
foundation of what is now CMMI Level 4.
Tom’s key interests include business metrics, evolutionary delivery,
and further development of his planning language, ‘Planguage’. He is
a member of INCOSE and is an active member of the Norwegian
chapter NORSEC. He participates in the INCOSE Requirements Working
Group, and the Risk Management Group.

Email: Tom@Gilb.com
URL: http://www.Gilb.com

Version Nov 9 2005,
CorrectionS made 22 JUNE 2007

http://www.gilb.com
http://www.Gilb.com/

	Designer Concept *190 May 6, 2006
	Major Defect Concept *091 November 20, 200x
	Need Concept *599 March 17, 200x
	Author Concept *004 February 5, 200x
	Survival Range: Concept *585 March 3, 200x
	Architectural Description [IEEE] Concept *618 July 18, 200x
	The power of non-trivial definitions
	The problem of consistency in hundreds of conceptual definitions

	Gilb05: Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann.
	The published book has about 168 Concepts in the Concept Glossary. A total of 650 defined concepts are available from the full Concept Glossary (www.gilb.com). Some concepts have been submitted to the INCOSE Glossary. The web glossary is kept up to date with improvements and changes to the published concepts.
	Author Bio
	Tom has been an independent consultant, teacher and author, since 1960. He mainly works with multinational clients; helping improve their organizations, and their systems engineering methods.
	Tom’s latest book is ‘Competitive Engineering: A Handbook For Systems Engineering, Requirements Engineering, and Software Engineering Using Planguage’ (Summer 2005).
	Other books are ‘Software Inspection’ (with Dorothy Graham, 1993), and ‘Principles of Software Engineering Management’ (1988). His ‘Software Metrics’ book (1976, OoP) has been cited as the initial foundation of what is now CMMI Level 4.
	Tom’s key interests include business metrics, evolutionary delivery, and further development of his planning language, ‘Planguage’. He is a member of INCOSE and is an active member of the Norwegian chapter NORSEC. He participates in the INCOSE Requirements Working Group, and the Risk Management Group.
	Email: Tom@Gilb.com
	URL: http://www.Gilb.com
	Version Nov 9 2005,
	CorrectionS made 22 JUNE 2007

