

Decision Rationale:

A Quantified Decision-Making Basis Using Planguage

Copyright © 2006 by Tom Gilb.
Iver Holtersvei 2, NO-1410 Kolbotn, Norway, Tom@Gilb.com, www.Gilb.com, +47 66801697

Abstract:
• Decision rationale are widely discussed in the literature for design

decisions [example Burge]. To a far lesser degree for requirements
decisions [example Ramesh95]. And practically not at all for
justification of Evolutionary project steps or iterative cycle selection
[exceptions see Evo in Larman03].

• It is my contention that all software engineering, systems
engineering, and management planning specifications can benefit
from a variety of forms of rationale. Even specification types not
mentioned above, such as source code and test plans can benefit.

• At one extreme all plan specifications, and even source code and
test cases, can all be viewed as types of ‘design’. So what applies to
any type of design applies to them; even though they be, from
another viewpoint, classified as something else.

Introduction

A major reason why there, according to the literature, seem to be
problems with design rationale, in my view, is that:

• the requirements, particularly quality requirements, are not
clearly and quantitatively stated [Burge is a typical example]
• the complete set of requirements, which all impact a design,
are not stated clearly, completely, and altogether, for the
designer (function, constraints, quality, performance, costs).
 • therefore these necessary design rationale (the requirements)
are not available for explicit use by the designer, nor are they
available as reference for the selected design options.

• This paper will attempt to provide some fresh thinking about the
specification rationale methods, compared to the available

literature. The current literature seems to universally ignore
fundamental problems such as the quantification of quality
requirements, and the quantified estimation of design impacts.

• The deeper basis for this paper is found in his book ‘Competitive
Engineering’ (‘CE’) [Gilb05CE]. My viewpoint is based on extensive
international consultancy practice and industrial teaching, rather
than an academic point of view.

 I will start with a set of principles, or, if you like position statements. 10
Principles of Rationale Specification.

• Change Risk: If you do not give a written rationale, then you risk
violation of your specification.

• Rationale Critique: If you state your rationale, then others can
challenge it, and help you to see if it is false or risky. [SEI97]

• Insurance:The cost of capturing a rationale in specifications is far
less than the cost of dangers if you do not.

• Review Basis: Rationale specification is necessary for helping
reviewers to review

• Traceabilty: Rationale Specification helps you realize that
specification changes might be necessary when the rationale itself
changes.

• Thought Provoker: Rationale specification makes you think twice
about the specification itself.

• Priority Info: Rationale specification is a contribution to
understanding the relative priority of the specification [Gilb-
Maier05]

• Risk Info: Rationale specification is a contribution the
understanding the risks associated with a given specification
[Gilb02].

• Validity Check: Specifying the source of a rationale enables us to
check correctness and to respect its priority.

• Process Improvement: Capturing rationale lays a foundation for
analysis of decision-making and improvement of the decision-
making process.

Planguage Introduction

• I have developed a specification language, called ‘Planguage’
[Gilb05CE, and Gilb88POSEM, Gilb76SM]. Planguage’ contains a rich
variety of direct and indirect ‘rationale’ specification language
devices, and other method artefacts, such as rules, process
definition, templates, concept glossary and principles. This paper
will introduce some of the Planguage rationale artefacts, and leave
others for readers to access in the more-detailed sources.

• Classes of Rationale Artefacts in Planguage:
 Specification Parameters
 Explicit Rationale Specification.

o Rationale: is an explicit parameter that can be directly
attached to any other specification, in order to explain the
reason for the specification.

o Example:
 PGB: Goal [UK]: 99.9% <- Annual Plan.
 Authority: Board of Directors, Jan 25th.
 Rationale [PGB]: Competition in UK prior to new

EU Laws about competition.
 Basis: Our long-range plan to be the <biggest> in

all European countries.

 In the example above, the PGB tag is inserted to show how to tie

any Rationale statement to another specific statement or

statements. This format can be used irrespective of where you

specify the Rationale statement. It does not have to be just below

or in the immediate vicinity. The Authority and Basis statements

are implied to be related, because they are just below the PGB

statement.

 Note ‘Basis’ is quite different from Rationale. Rationale is a set of

conditions leading to a desire to make a specification. It explains

how we got to that specification. Basis is a specified set of

assumptions that underlie a specification. If the basis conditions

are changed, then the specification may no longer be valid.

o
• Implicit Rationale Specification.

o Planguage contains a number of other parameters that can be
applied in connection with any type of specification, that give
some information regarding the rationale – at least by
implication. For example:

o Source (sometime written as ‘<-‘ , the source arrow).
 A source specification can be a person, instance or

document. It implies that the sourced specification is
justified in or by that source, and that the authority
level of the source is a degree of justification and
priority.

 Example:
 D1: Architecture Standard 1207 <- Our Chief

Architect
 The implication is that the rationale for this

specification is to be found in a decision by the
Chief Architect. If you want to know their
rationale, ask them or refer to their specification.

o Authority
This is a specification of the authority for another
specification. It is similar to ‘Source’, except that a source
itself does not necessarily have authority or power. An
‘Authority; specification is a direct reference to the power
or authority level of a specification that is one form of
rationale for the spec.
Example:
Goal [Next Year]: 60% Marketing Report

[February, This Year].
Authority: Marketing Director [Tim].
Notice that the source (<-) is also given, and is not
identical to the Authority for the 60% goal specification.

o Depends On: and similar ‘dependency’ specifications.
 Planguage has a large set of parameters and devices for

indicating dependency of a specification. Some of these
devices are explicit parameters like ‘Depends On’. Other
devices are the use of a qualifier statement, where the

validity of the statement depends on the truth of a set
of qualifier conditions.

 In both cases, all notion of dependencies, are a type of
rationale. They help explain why that statement is
there. They explain explicitly the conditions that would
make the specification invalid.

 For example (explicit dependency)
 Goal: 90%. Depends on Market Volatility.
 Goal: 90%. Assumption: Market Stability.
 Goal: 90%. Impacts: Market Profitability.
 Goal: 90%. Risk: Competition Increases.
 Goal: 90%. Dependency: Stage 1 completed.

 Obviously not all of these are a direct justification for
the specification level or existence. But they all serve
the same basic purposes and intents as rationale do,
namely:

 Traceability
 Review-ability
 Change Control
 Quality Control
 Clarity of specification purpose
 Clarification of specification context.

 Our argument here is that direct ‘rationale’ alone is not
sufficient to serve the often-cited purposes of ‘rationale’
statements. The language of ‘background information’
for a specification must be enriched to better serve the
overall purposes such as traceability, review-ability and
change control.

 Example: ‘Qualifier Statements’
Fail [Europe, Year = After Ten Years, Peace]: 60%
±20% Annual Plan Section 6.4.5.

 The three qualifier conditions must be all three be ‘true’ for

the ‘60%’ constraint requirement level to be a valid

requirement. ‘Peace’ is an example of an event condition.

Europe is a place condition.

 In general qualifier conditions can be inserted after
most all parameter statements. Any number and type of
useful qualifier conditions can be stated (like [Europe,
Year = After Ten Years, Peace]). The parameter
statement (like ‘Fail’ above) is only valid if all qualifier
conditions are ‘true’. The parameter specification
depends on the qualifier conditions, and they largely
explain what it is doing there. Additional statements can
be combined to give more ‘rational’ information.

 Example
 Fail [Europe, Year = After Ten Years, Peace]:

60% ±20% Annual Plan Section 6.4.5.

Authority: EU Commission.
Impacts: Military Expenditure.

o Impacts
 The entire purpose of a ‘design’ is to satisfy a set

of requirements.
 Notice, I wrote ‘requirements’ not ‘requirement’. A

design that satisfied one or more requirements, but
does not satisfy all valid requirements, is either invalid,
or in itself unsatisfactory. We can only understand the
relative value of a design in the context of:

 The entire set of requirements that the design
must satisfy – at least partly, and at the same
time, not ‘violate’.

 All other designs that are being considered as a
set of designs to satisfy one set of requirements.

 A given design can have the following basic impacts on
performance or quality requirements:

 Partly satisfy (help be more reliable for example)
 Totally satisfy or requirement level
 Have a negative side effect on one or more

requirement levels; even though it has positive
effects on others.

 It can have a wide variety of impacts on a wide
assortment of simultaneously valid requirement
levels.

 This simple fact, which anyone can observe, is
entirely ignored in the literature I have seen on
design rationale. At best [Burge, is typical] this is
expressed there in non-quantified forms such as:

• “Minimizes keystrokes”
• Or worse: “provides user guidance”.[Burge]

 In our view, to put it kindly, this type of ‘rationale’
does not provide a serious and useful level of
rationale.

• It does not estimate how much the design
satisfies the required level of performance or
quality

• It does not consider side effect
systematically and quantitatively

• It does not give credible sources for the
impact assertion in the rationale

• It does not even reference a defined level of
requirement (like Goal 90%)

• It does not deal with constraint levels in any
explicit way. Like,

o Fail level: 45 degrees C.
o Design Impact: > 50 degrees C

• In short it is a set of fuzzy and undefined
rationale statements meeting an equally
fuzzy notion of performance and quality
requirements.

 Budgeted Resource Impacts
 A given design can, in addition to the above noted

impacts on performance and quality levels,
simultaneously impact any number of budgeted
resources (time, effort, money, space) in similar
ways.

 Understanding exactly how a design impacts
resources, is clearly a critical part of the design
rationale. The literature is equally poor on costs;
[Burge, Ramesh, SEI97] are all typically silent on
this critical cost aspect of a rationale.

 Binary constraints
 In addition to performance, quality and cost basis

for design rationale, there remains the subject of
binary constraints which can both dictate a design
(a Design Constraint) and be violated so as to
eliminate a design, whatever it other
justifications.

 Binary constraints are of the type:
• Must be Legal in EU.
• Cannot inhibit entrance by mobility

impaired customers
 The Generic rationale:

 In general a design idea rationale must meet
the following conditions:

• It contributes something towards the target
levels of performance and quality

• It does not eat up budgeted resources out of
proportion to its value

• It does not violate specified binary
constraints

• It does not have unintended negative side
effects that outweigh any positive value
delivered to some performance and quality
level targets

• The uncertainty (risk of not delivering what
the designer expects and estimates) must
be acceptable and known in advance (and
accepted by design review function).

o Impact Estimation:

 The Planguage approach to this is to apply numeric
estimation [Gilb98IE] of the impacts of an entire set
(ultimately, a complete set) of design ideas.

 Here is a conceptual analogue view of Impact
Estimation: horizontal size represents degree of impact.

 Here is a real example, courtesy Stuart Woodward,

London

 The numeric estimation will apply to all target levels

required (performance, quality, budgeted resource
levels) at once.

 The designs evaluated must not, even before impact
estimation, fail to satisfy all binary constraints.

 The impact estimation will help us to
 Understand if the entire proposed set of design

ideas has sufficient rationale to be adopted
 Understand if any single design idea has such

poor rationale (low impacts, negative effects, high
costs, bad value to cost ratio, high uncertainty)
that we should not include it in the set of
acceptable designs, even for review purposes.

 The Rationale of the Impact Estimation.

Proposed
Design Ideas !

Sum of

Estimates

CAP
Foundation

Upgraded Data
Model

API Risk
Monitoring

CAP
Groups

Counterparty
Hierarchies

PERFORMANCE

REQUIREMENTS

Credit Information

Response
60 mins. <-> 2 mins.

[2003]

105% 15% 30% 25% 35%

Credit Request
Cycle
60 hours <-> 48 hours

[2003]

95% 40% 15% 25% 15%

Credit Request
Capacity
5 <-> 100 [2003]

85% 40% 5% 25% 15%

RESOURCE

REQUIREMENTS

Project Duration
0 <-> 300

86% 12% 10% 8% 16% 10% 30%

Manpower Cost
0 <-> 750

77% 10% 12% 15% 5% 10% 25%

OVERALL

IMPACT

Total Performance
Level Increase

285% 95% 50% 50% 40% 15% 35%

Total Cost 163% 22% 22% 23% 21% 20% 55%

PERFORMANCE /

COST RATIO
4.32 2.27 2.17 1.90 0.75 0.64

 Without going into extensive detail here
[Gilb98IE, Gilb05CE suffice] it is important to at
least list the ‘rationale’ for the impact estimation.

 Each estimate, of impact of one design on one
performance/quality/cost requirement has the
following structure:

• An estimate is made,
• assuming a given set of designs already

in place before next design implementation,
• and for a defined design implementation

environment (example education and culture
of people using the system) that will be
hosting the design –

• of the expected impact increment (or final
level achieved) of that design,

• on a defined scale of measure (like Scale:
Mean Time Between Bug experienced by
User).

• For example: 60 seconds
• An estimate of the upper and lower bounds

of the impact (best case/worst case level):
For example (60 sec) ±20 seconds.

• This ‘real scale’ estimate is converted into a
% of target (target = 100%, baseline = 0%)
so that we can more clearly and immediately
see if the design will satisfy our target levels
on time.

• The estimates will have specific evidence
cited (on what basis, if any did you make
the estimate? Is it based on experience?).
For example: Evidence: The distinct
software always gave more than 60
seconds MTBF.”

• The evidence will have a specific source of
evidence cited: example Source: IEEE

Software June 2003, NASA Case, page
23, use of Distinct Software.

• The combination of evidence and source will
be rated on a credibility level scale and the
Credibility Level (from 0.0 to 1.0) will be
attached as part of the set of data for each
estimate listed just above here.

• Here is the Credibility table we use at
present:

o
o Here is an example of building up the Impact Estimation

‘Rationale’

Credibility Rating Meaning

0.0 Wild guess, no credibility

0.1 We know it has been done somewhere

0.2 We have one measurement somewhere

0.3 There are several measurements in the estimated

range

0.4 The measurements are relevant to our case

0.5 The method of measurement is considered reliable

0.6 We have used the method in-house

0.7 We have reliable measurements in-house

0.8 Reliable in-house measurements correlate to

independent external measurements

0.9 We have used the idea on this project and

measured it

1.0 Perfect credibility, we have rock solid, contract-

guaranteed, long-term, credible experience with

this idea on this project and, the results are

unlikely to disappear

o
o Once you have developed these basic estimates, you can use

them to compare design ideas, with respect to uncertainty
(the ± estimate) and the credibility level, like this:

Strategy-> A B[A] B [NOT A] C

LEARNING

PAST=10, PLAN=1

MUST=5

[end this year]

1a. Impact (SCALE) 4.5 min. 1 min. 8 min. 4.0 min

1b.Goal %increment 50% 100% 22% (2/9) 120% (6/5)

2. ± Uncertainty ±40% ±50% ±80%? ±20%

3. Evidence Project Ajax,

1996

Competitor Beta

EVID-B

Guess Contract

Guarantee

4. Source Ajax report, pg.6 World Report

p.17

John B. Supplier Delta

5. Credibility 0.8 0.6 0.2 0.6

6. Comments A [NOT B] Assumes A B alone high cost

o

•
o Finally this information can be combined with feedback from

incremental deliveries to control progress and to learn from
experience, as my client FIRM AS [Johansen04].

o
o

On-line

Support

On-line

Help

Picture

Handbook

On-line Help +

Access Index

Learning
Past: 60minutes <-> Goal: 10minutes

Scale Impact 5 min. 10 min. 30 min. 8 min.

Scale Uncertainty ±3min. ±5 min. ±10min. ±5 min.

Percentage Impact 110% 100% 60% 104%

Percentage Uncertainty ±6%
(3 of 50

minutes)

±10% ±20%? ±10%

Evidence Project

Ajax: 7

minutes

Other

Systems

Guess Other

Systems

 + Guess

Source Ajax

Report,

p.6

World

Report,

p.17

John B World Report,

p.17 +

John B

Credibility 0.7 0.8 0.2 0.6

Development Cost 120K 25K 10K 26K

Performance to Cost Ratio 110/120 =

0.92

100/25 =

4.0

60/10 =

6.0

104/26 =

4.0

Credibility-adjusted

Performance to Cost Ratio

(to 1 decimal place)

0.92*0.7

= 0.6

4.0*0.8

= 3.2

6.0*0.2

= 1.2

4.0*0.6

= 2.4

Notes:

Time Period is two years.

Longer

timescale to

develop

o A real impact estimation table used to give the rationale for
specific implementation steps, then compare reality, weekly,
with the estimates.

o
o Here are the initial product (web surveys software)

improvement results obtained from this method: Source:
[Johansen04]. The second line below refers to the results on
the chart above.

o

o This should illustrate the following points:
 rationales should be given numerically
 they should probably only make assertions on a small

scale and short term (like a weeks work)

Description of requirement/work task Past Status

Usability.Productivity: Time for the system to generate a survey 7200 sec 15 sec

Usability.Productivity: Time to set up a typical specified Market Research-

report (MR)

65 min 20 min

Usability.Productivity: Time to grant a set of End-users access to a Report

set and distribute report login info.

80 min 5 min

Usability.Intuitiveness: The time in minutes it takes a medium experienced

programmer to define a complete and correct data transfer definition with
Confirmit Web Services without any user documentation or any other aid

15 min 5 min

Performance.Runtime.Concurrency: Maximum number of simultaneous

respondents executing a survey with a click rate of 20 sec and an response

time<500 ms, given a defined [Survey-Complexity] and a defined [Server
Configuration, Typical]

250 users 6000

Table 1: Improvements to product qualities

 then actual confirmation of the rationale reality;
measurement with real stakeholders, and the
incremented system should be undertaken.

 This feedback at frequent intervals will help keep the
designers and project managers completely realistic

Summary
• The conventional ideas of how to deal with software and systems

specifications with ‘rationale’ are not nearly powerful enough to
serve their intended purposes well.

• The author suggests that the rationale behind any design idea
(including ‘means objectives’ (defined as those which support
higher level requirements <- Ralph Keeney), and any other
specification type, should be specified in numeric terms, and be
related primarily to numeric requirements levels.

• In addition the ‘numeric rationales’ should be constantly tested in
the short term using Evolutionary feedback from real stakeholders
and real environments.

