
The Magazine for Agile Developers and Agile Testers

© iStockphoto.com/ThomasVogel

January 2011

issue 5www.agilerecord.com	 	free	digital	version	 	made	in	Germany	 ISSN	2191-1320



5www.agilerecord.com

Planguage	(Planning	Language)	is	a	comprehensive,	but	not	ex-
haustive,	set	of	tools	for	planning	systems	engineering.	It	encom-
passes	 language	 constructs	 to	 capture	 system	 requirements,	
designs	 and	 delivery	 increments.	 It	 also	 includes	 well-defined	
processes	for	some	of	the	systems	engineering	processes,	prin-
cipally	 requirements	 specification,	 quality	 control,	 and	 project	
management.

Planguage	has	been	developed	over	many	years	in	industry.	The	
guiding	principles	were	to	support	quantified	requirements	and	
the	evolutionary	delivery	of	such	requirements.	As	such,	Plangua-
ge	provides	a	strong	capability	to	underpin	and	improve	existing	
agile	practices.	It	achieves	this	through	providing	enhanced	mea-
surement	of	progress,	from	setting	the	objectives	to	supporting	
testing	 to	evaluate	deliverables.	Also	by	supporting	system	de-
livery	being	achieved	as	a	series	of	small,	early,	high-value	evo	
steps.

This	paper	discusses	certain	agile	aspects	of	Planguage	but	does	
not	describe	all	its	details.	If	the	reader	is	encouraged	to	find	out	
more	about	Planguage,	then	they	should	see	(Gilb	2005).	

Defining Agile
The	term	‘agile’	within	Planguage	is	considered	to	primarily	mean	
‘adapting	successfully	to	new	circumstances’.	Traditional	dictio-
nary	 definitions	 such	 as	 ‘moving	 quickly	 and	 lightly’	 (Webster)	
define	only	one	way	 in	which	 to	be	agile,	 they	do	not	cover	all	
the	possible	means	for	being	agile,	 in	 terms	of	adapting	to	cir-
cumstances.	Indeed,	some	of	the	alternative	and	supplementary	
means	of	‘adapting	successfully’,	may	involve	the	opposite	ideas	
to	being	quick	and	light.	For	example,	ideas	such	as	being	con-
servative	enough	to	make	sure	things	will	actually	work	success-
fully,	rather	than	changing	too	quickly	to	an	untested	way.	Simply	
being	quick	and	light	are	not	necessarily	the	right	strategies	for	
meeting	the	requirements	of	a	project	or	organization,	especially	
if	there	are	no	new	circumstances.	

The	previous	point	highlights	one	of	the	dominant	characteristics	
of	Planguage.	Planguage	emphasizes	the	‘ends’,	rather	than	the	
‘means’.	 This	 alone	 can	 be	 seen	 as	 key	 to	 the	 agility	 of	 Plan-
guage	as	every	aspect	of	 a	 system	 is	 subject	 to	 consideration	
for	change	(all	lower	priority	requirements,	designs,	deliverables,	
systems	 engineering	 processes	 and	 project	 management	 pro-
cesses)	in	order	to	give	maximum	effect	to	the	satisfaction	of	the	
higher	prioritized	objectives,	when	responding	to	new	informati-
on	and	situations.

The	 key	 principles	 of	 agile	 as	 defined	 by	 the	 agile	 community	
(Agile	 Principles	 2001)	 include	 “early	 and	 continuous	 delive-
ry	 of	 valuable	 software”,	 “welcoming	 changing	 requirements”,	
“delivering	working	software	 frequently”,	“business	people	and	
developers	must	work	together	daily”,	and	“working	software	is	
the	primary	measure	of	progress”.	Planguage	with	 its	 focus	on	
‘ends’	can	support	these	principles.	What	Planguage	demands	in	
addition	though	is	that	progress	is	measured	through	quantified	
requirements	and	results.

In	some	respects,	agility	in	Planguage	can	be	though	of	as	being	
quantified	by	the	efficiency	concept.	Agility	is	the	effectiveness	of	
meeting	a	defined	set	of	requirements,	in	relation	to	the	cost	and	
timescales.	The	lower	the	cost	and	timescales	of	meeting	all	the	
requirements,	 the	more	agile	 the	method.	As	 such,	Planguage	
focuses	on	understanding	the	objectives	as	quantified,	measu-
rable	requirements,	and	on	identifying	and	delivering	high-value	
evo	steps	to	deliver	early	stakeholder	value	and	obtain	feedback	
from	real	deployment.	So,	the	key	question	is	not	whether	a	given	
method	is	light	or	heavy!	The	only	rational	question	is,	‘What	is	
the	smartest	way	to	satisfy	the	requirements?’	Many	in	the	agi-
le	community	have	never	understood	this	notion,	and	therefore	
they	seem	to	embrace	lightness	itself,	even	if	that	is	too	light	for	
purpose.

©
 O

rlando Florin R
osu - Fotolia.com

Agile Aspects of Planguage 
for Cost-Effective Engineering
by Tom Gilb & Lindsey Brodie



6 www.agilerecord.com

Requirements Language Agility
Specification of Planguage Requirements

In	order	to	aid	communication	amongst	the	stakeholders,	Plan-
guage	defines	a	very	comprehensive	set	of	statements	and	ex-
pressions	to	specify	information	about	a	requirement.	Over	90%	
of	a	typical	Planguage	requirement	specification	can	be	additio-
nal	information	filling	in	the	background	details,	such	as	the	rela-
tionships,	priorities,	risks,	dependencies	and	change	control.	The	
Planguage	user	is	at	liberty	to	specify	what	is	mandatory,	what	is	
optional,	and	what	 is	discouraged,	 for	any	 type	of	 requirement	
specification	according	to	its	potential	different	system	contexts.	
A	specification	can	grow	and	be	modified	over	time,	as	a	project	
develops	and	obtains	more	information	and	insights.	For	examp-
le	a	requirement	can	start	 life	as	a	simple	name,	 like	‘Agile’.	 It	
can	then	have	its	overall	aim	defined:	

Ambition: to be more effective than competitors in meeting our 
requirements efficiently.

It	can	then	be	improved	by	adding	initial	attempts	at	quantifica-
tion,	such	as:

Scale: % Product Cost to meet requirements compared to Bench-
mark.

Past [This Organization, New Product Development, End of Last 
Year]: 100%.

Goal [This Organization, New Product Development, End of This 
Year]: 95%.

With	Past	 and	Goal,	 a	 notion	of	where	 the	 system	 is	 currently	
and	where	 it	should	be	at	some	future	time	is	 introduced,	and	
of	course	these	are	measurable	so	we	can	understand	our	pro-
gress.	To	increase	clarity,	other	details	might	be	added:

Product Cost: defined as: Product Development Cost as a per-
centage of real or projected system costs over product lifetime.

Authority: Corporate Policy paragraph 6.3.

Dependencies: Mandated policies such as safety, security, and 
ethics.

Risks: R1: Long-term effects of changes to the development pro-
cess might be hidden for too long.

Issues: I1: How long a life cycle scope shall we include? In par-
ticular, does it include on-going costs when product is not sold?

Such	specification	provides	a	lightweight	means	of	capturing	and	
communicating	 the	 key	 aspects	 of	 a	 system.	 The	 use	 of	 Plan-
guage	templates	ensures	that	the	main	specification	details	are	
considered	and	aids	readers	to	find	the	information	that	they	are	
seeking	rapidly.

Reuse Aspects
Reuse	contributes	to	agility	because	you	do	not	have	to	take	the	
effort	to	redefine	things	from	scratch,	and	the	reused	items	are	
more	 likely	 to	be	safe	 to	use	 than	quickly	made-up	definitions.	
Planguage	 provides	many	 opportunities	 for	 reuse	 of	 specifica-
tions,	for	example,	tag	definitions	and	concepts.	

Concepts:	 Planguage	 currently	 defines	 over	 640	 concepts	 in	
the	 Planguage	 Concept	 Glossary	 (Gilb	 2010).	 These	 are	 basic	
systems	engineering	concepts,	such	as	‘Quality’,	‘Requirement’,	
‘Constraint’	and	‘Goal’.	They	are	assigned	a	specific	meaning	that	
is	consistent	with	the	rest	of	Planguage.	They	are	then	referred	to	
by	a	tag,	preferably	but	not	always,	with	a	leading	capital	letter	in	
order	to	announce	that	they	are	formally	defined.	These	concepts	
are	reused	constantly	and	frequently.	Many	of	them	provide	the	
core	language	for	specification,	such	as	‘Scale’,	‘Goal’	and	‘Ambi-
tion’	(see	the	previous	example	specifying	‘Agile’).

Templates:	Planguage	provides	templates	to	aid	users	with	their	
specification.	These	templates	are	often	adopted	and	modified	
at	 the	corporate	 level	by	my	clients	and	 readers.	The	 template	
definitions	are	fairly	stable	over	time,	and	apply	to	all	projects.	By	
contrast,	many	corporations	have	no	standard	definitions	of	the	
most	basic	concepts,	and	they	offer	nothing	to	be	systematically	
reused	by	their	engineers.	This	tends	to	lead	directly	to	ambiguity	
and	wasted	effort.

Tag Definitions:	Almost	any	set	of	words	or	symbols	can	be	name	
tagged	with	a	unique	 tag.	Whenever	 this	 tag	 is	 referred	 to,	we	
are	reusing	 the	 initial	definition	of	 the	tag.	This	reuse	principle	
applies	as	many	levels	of	specification	from	Planguage	definition,	
through	 to	 user-specific	 definitions.	 The	 symbol	 indicating	 that	
we	are	reusing	a	predefined	specification	is	the	use	of	words	with	
leading	capital	letters,	for	example,	‘Product	Development	Cost’.

Define Once:	One	of	the	suggested	basic	formal	(reusable!)	rules	
of	Planguage	is	that	planning	objects	such	as	requirements	and	
designs	should	have	only	one	specification,	which	is	tagged	and	
reused	whenever	needed.

”R3:	Unique:	 Specifications	 shall	 exist	 as	one official ‘master’ 
version only.	 Then	 they	 shall	 be	 re-used,	 by	 cross-referencing,	
using	their	identity	tag.	‘Duplication’	(copy	and	paste)	should	be	
strongly	discouraged.”	(Gilb	2005,	Section	1.4).

Process Reuse:	 Fundamental	 processes	 such	 as	 clear	 techni-
cal	specification,	quality	control	of	a	specification,	or	quantifying	
quality	ideas,	are	designed	to	be	reused	in	several	contexts,	such	
as	in	requirement	or	design	specification.

Tailoring Aspects
One	 thing	 that	makes	 reuse	more	 interesting	 and	 practical,	 is	
when	 the	 reused	 specification	 can	 be	 tailored	 to	 adapt	 to	 the	
local	circumstances.	Of	course	reuse	is	not	the	only	benefit	with	
such	tailoring,	more	accurate	specification	can	also	be	achieved	
that	 better	 reflects	 the	 real	 requirements	 and	 so	 saves	 effort.	
Planguage	gives	many	such	options.	Consider	for	example,	 the	
use	of	scale	qualifiers	and	qualifiers.

Scale Qualifiers

For	a	given	scale,	any	useful	number	of	scale	qualifiers	can	be	
defined	 in	 the	scale	definition.	These	must	and	can	be	 further	
defined	in	any	statements	that	refer	to	the	scale	(such	as	Past,	



7www.agilerecord.com

Goal,	Meter).	 This	 tailors	 these	 particular	 statements	 to	 parti-
cular	 circumstances	of	 interest,	 such	as	 the	 type	of	 customer,	
market,	type	of	use	of	product,	etc.	For	example,	Task	is	a	scale	
qualifier	in	the	scale	below.

Scale: Time to learn a defined [Task]. 

Scale	qualifiers	are	generic;	each	scale	qualifier	needs	to	be	ex-
plicitly	 assigned	a	 corresponding	 ‘scale	 variable’	 (unless	 a	 de-
fault	 is	being	used)	when	the	scale	 is	used	in	other	parameter	
statements	(such	as	any	benchmarks	or	targets).	For	example:

Goal [Task = Setup]: 10 minutes.	

	‘Setup’	is	a	scale	qualifier	defining	the	Scale	qualifier	‘Task’	that	
was	previously	undefined	in	the	original	scale	definition.

The	purpose	of	scale	qualifier,	and	their	consequent	definitions,	
is	to	allow	a	scale	specification	to	be	more	generalized	and	flexib-
le;	this	consequently	makes	a	scale	specification	more	reusable	
and	agile.

Qualifiers

Qualifiers	are	sets	of	parameters	that	enable	tailoring	of	specifi-
cations.	They	can	contain	any	number	of	interesting	parameters	
(usually	 from	1	 to	6),	and	 they	can	be	as	 tailored	as	a	project	
needs.	For	example:

Goal [User = Engineer, Maturity = Novice, Task = Calculation, 
Market = Europe, Deadline = Release 9.0]: 60%.

The	format	is	

<parameter Name> [<set of qualifiers>] <specification that is 
valid when all qualifiers are ‘true’>. 

The	 qualifiers	 allow	much	more	 detailed	 specification	 than	we	
would	tend	normally	to	try	to	do.	They	invite	you	to	specify	many	
interesting	variations.	Instead	of	just	one	requirement,	we	end	up	
with	a	set	of	requirements	for	specific	contexts,	that	is	for	specific	
categories,	localities,	conditions	and	delivery	intervals.	The	requi-
rement	becomes	a	‘curve	of	improvement	in	a	multi-dimensional	
space’.	Note	the	system	space	is	described	by	the	qualifiers.	This	
allows	projects	to	be	divided	up	into	many	smaller	evolutionary	
delivery	steps	that	correspond	to	each	specification	variant,	or	to	
increments	of	improvement	levels	between	such	required	points.	
This	in	turn	directly	allows	the	project	to	be	far	more	sensitive	to	
being	 effective	 earlier	 in	 delivering	 specific	 requirements.	 This	
directly	 lays	 the	basis	 for	more-sensitive	agile	 reactions	 to	any	
deviations	from	the	planned	trajectory.	

Mid-Development Agility
Agility	is	about	obtaining	useful	feedback	on	progress	and	devi-
ation,	as	early	and	frequently	as	possible,	and	making	sure	that	
the	 information	 is	acted	on	quickly.	Specifications	such	as	 the	
example	below	help	deal	with	‘midway	progress’:

Usability.Intuitiveness:

Ambition: Radical improvement in the intuitiveness of the pro-
duct, compared to the existing product and competitors’ pro-
ducts.

Scale: Percentage probability that the defined [Tasks] can be 
successfully completed by the defined [Users] without any refe-
rence to training, handbooks and help desks.

Past [Release 8.5, Tasks =Normal Mix, Users = Beginners, Feb-
ruary 2005]: 30%. ‘The benchmark’

Fail [Release 9.0, Tasks =Normal Mix, Users = Beginners]: 50%. 
‘A constraint level’

Goal [Release 9.5, Tasks =Normal Mix, Users = Beginners]: 80%. 
‘A target level’

To	give	an	example,	 in	one	customer	case	 (Johansen	and	Gilb	
2005)	when	the	project	was	midway	between	start	and	product	
version	 release,	 the	client	 could	measure	 that	 the	project	had	
reached	 about	 50%	 of	 the	 intuitiveness	 requirement.	 So	 they	
knew	 they	 had	 kept	 within	 the	 worst	 case	 constraint	 (Fail	 le-
vel),	and	knew	that	they	were	on	track	to	reach	their	80%	target	
(which	they	in	fact	did).	Their	website	could	brag	“Up	to	175	per-
cent	more	intuitive	user	interface”	(Confirmit	2010).

Background Specification
Numerous	background	 requirement	 specifications	 can	make	a	
contribution	 to	 the	 ability	 of	 project	management	 to	 see	 prob-
lems,	to	sense	emerging	problems,	and	to	react	to	problems.	For	
example:

Risks: R1: Lack of skilled specialists can threaten deadline.

Issues: I1: The mandatory duration of the software leasing con-
tract can seriously impact our ability to reduce costs if the volu-
me of sales is lower than expected.

Dependencies: D1: The software outsourcer must be able to turn 
around the most-critical changes within a week.

Authority: The local national authority or possibly super-national 
authority (such as European Union) law may restrict freedom to 
choose sub-suppliers.

Again	this	is	all	about	capturing	the	necessary	information	in	a	
lightweight	way.	The	use	of	templates	helps	achieve	this.

The Requirement Specification Object Database
Planguage	does	not	think	in	terms	of	specification	documents	or	
specifications,	as	such.	However,	the	requirement	specifications	
are	 themselves	 primarily	 reusable	 objects,	 containing	 all	 the	
collected	information	about	a	requirement,	in	a	highly	organized	
format.	Requirements	(and	designs	and	other	specifications)	are	
essentially	 regarded	 as	 a	 database	 of	 project	 information.	We	
can	 systematically	 extract	whatever	 views	 of	 the	 requirements	
we	need	for	the	purpose	at	hand.



8 www.agilerecord.com

Each	requirement	has	its	own	set	of	specification	management	
information,	such	as:

Type:

Version:

Specification Owner:

Specification Implementer:

Test Specifications:

Last Change Date:

Stakeholders:

These	parameters	essentially	allow	you	to	manage	change	and	
analysis	at	the	level	of	the	single	requirement	object.	They	help	
you	know	exactly	who	 to	communicate	with	about	 requirement	
changes	when	you	are	in	a	hurry.

High Level Requirements Give Agility
Planguage	is	especially	adamant	that	we	capture	the	‘real	requi-
rements’.	These	are	the	requirements	really	needed	by	defined	
stakeholders.	Too	many	‘requirements’	are	actually	design	(the	
‘means’)	 assumed	 to	 be	 the	way	 to	 satisfy	 the	 real	 objectives	

(the	 ‘ends’)	 and	 they	are	often	completely	un-stated,	or	poorly	
defined.	For	example,	a	requirement	to	implement	a	password	(a	
design	for	security)	is	specified,	instead	of	a	specification	of	how	
much	security	(the	real	requirement)	is	needed.

The	key	is	an	emphasis	on	quantification	of	all	the	qualitative	re-
quirements	(like	security,	adaptability	and	usability)	(Gilb	2005,	
Chapter	 5,	 How	 to	 Quantify:	 Scales	 of	Measure).	 Once	 people	
have	learned	how	to	quantify	qualitative	requirements,	they	can	
be	specific	about	their	requirements;	and	do	not	have	to	stoop	
to	the	wrong	level	of	articulation	(design)	in	order	to	specify	their	
needs.	This	dramatically	promotes	agility,	in	that	we	are	then	free	
to	chose	and	re-choose	any	design	 idea	that	best	satisfies	our	
quality	objectives.	We	are	not	locked	into	the	initial	design	ideas,	
falsely	stated	as	‘requirements’.

Impact Estimation
Space	does	not	permit	a	full	description	of	Impact	Estimation	(IE)	
(Gilb	2005,	Chapter	9),	which	is	one	of	the	main	Planguage	me-
thods.	However,	see	Figure	1	for	an	overview	of	how	the	method	
operates:	 it	 places	 the	designs	 in	 a	matrix	 against	 the	 system	
objectives	and	demands	the	designer	consider	how	well	each	de-
sign	meets	each	of	the	objectives.	Further	when	the	chosen	de-

Figure 1: An example of an IE table. This 
shows an initial proposed set of designs, 
ordered by increment, and their impacts on a 
selected set of the system quality require-
ments. For requirement R1, the current time 
taken for a customer to submit a request is 
30 minutes and the goal is to reduce this 
time to 10 minutes. Note the cumulative 
performance to development cost ratio at 
the bottom of the table, which measures 
comparative cost-effectiveness of the dif-
ferent designs by summing the percentage 
increases in impacts up to 100% and dividing 
by the design cost. This IE table example was 
developed by Lindsey Brodie.



9www.agilerecord.com

signs	are	implemented,	the	actual	results	can	be	input	and	any	
deviations	in	the	original	estimates	assessed.	The	designer	can	
then	reconsider	the	system	design	in	the	light	of	this	feedback.

Conclusions
Planguage	not	only	supports	the	principles	of	the	agile	communi-
ty,	it	goes	a	step	beyond	by	providing	a	method	that	supports	ef-
fective	specification	and	focuses	on	measurable	result	delivery.	
Communication	is	at	the	heart	of	Planguage	and	by	capturing	the	
system	quality	requirements	in	a	measurable	way,	unambiguous	
progress	can	be	tracked	throughout	a	project’s	lifetime.	■

References
Agile	 Principles	 (2001).	 Available	 from:	 http://agilemanifesto.
org/principles.html	[Accessed	20	December	2010].

Confirmit	(2010).	Available	from:	http://www.Confirmit.com	[Ac-
cessed	21	December	2010].

Gilb,	T.	(2004)	What	is	missing	from	the	conventional	agile	and	
extreme	 methods?	 Slides	 presented	 as	 keynote	 at	 XP	 Days,	
2004,	London.

Gilb,	 T.	 (2005)	 Competitive	 Engineering:	 A	 Handbook	 For	 Sys-
tems	 Engineering,	 Requirements	 Engineering,	 and	 Software	
Engineering	Using	Planguage,	Elsevier	Butterworth-Heinemann.	
ISBN	0750665076.

Gilb,	 T.	 (2010).	 Planguage	 Glossary	 Concepts.	 Available	 from	
http://www.Gilb.com.

Johansen,	 T.	 and	Gilb,	 T.	 (2005)	 From	Waterfall	 to	 Evolutiona-
ry	 Development	 (Evo)	 or	 how	 we	 rapidly	 created	 faster,	 more	
user-friendly,	and	more	productive	software	products	for	a	com-
petitive	multi-national	market.	Paper	presented	at	INCOSE,	July	
2005,	Rochester	NY.	See	also	http://www.confirmit.com/news/
release_20041129_confirmit_9.0_mr.asp

Tom Gilb
 has been an independent 

consultant, teacher and 
author, since 1960. He 
mainly works with multina-
tional clients helping im-
prove their organizations, 
and their systems engi-
neering methods.
Tom’s latest book is ‘Com-
petitive Engineering: A 

Handbook For Systems Engineering, Requirements En-
gineering, and Software Engineering Using Planguage’ 
(2005).
His other books include ‘Software Inspection’ co-au-
thored with Dorothy Graham (1993), and ‘Principles of 
Software Engineering Management’ (1988). His ‘Soft-
ware Metrics’ book (1976, Out of Print) has been cited 
as the initial foundation of what is now CMMI Level 4.
Tom’s key interests include business metrics, evolution-
ary delivery, and further development of his planning 
language, Planguage. He is a member of INCOSE and is 
an active member of the Norwegian chapter, NORSEC. 
Email: Tom@Gilb.com 
URL: http://www.Gilb.com

Lindsey Brodie
is currently carrying out 
research on prioritiza-
tion of stakeholder value, 
and teaching part-time 
at Middlesex University. 
She has an MSc in Infor-
mation Systems Design 
from Kingston Polytech-
nic. Her first degree was 
Joint Honours Physics and 

Chemistry from King’s College, London University. Lind-
sey worked in industry for many years, mainly for ICL. 
Initially, Lindsey worked on project teams on customer 
sites (including the Inland Revenue, Barclays Bank, and 
J. Sainsbury’s) providing technical support and develop-
ing customised software for operations. From there, she 
progressed to product support of mainframe operating 
systems and data management software: databases, 
data dictionary and 4th generation applications. Hav-
ing completed her Masters, she transferred to systems 
development - writing feasibility studies and user re-
quirements specifications, before working in corporate 
IT strategy and business process re-engineering. Lind-
sey has collaborated with Tom Gilb and edited his book, 
“Competitive Engineering”. She has also co-authored a 
student textbook, “Successful IT Projects” with Darren 
Dalcher (National Centre for Project Management). She 
is a member of the BCS and a Chartered IT Practitioner 
(CITP). 

> About the author


