
//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

PLANGUAGE CONCEPT
GLOSSARY

Glossary Introduction

Purpose of the Glossary

This glossary contains the master definitions of the fundamental

Planguage concepts. Its central purpose is to define ‘concepts’ – not

words. I view this concept glossary as a central contribution of this

book, standing in its own right.

‘‘What’s in a name? That which we call a rose, by any other name would
smell as sweet.’’

Shakespeare, Romeo and Juliet, Act 2
‘‘Every word or concept, clear as it may seem to be, has only a limited range
of applicability.’’

Werner Heisenberg1

With the Heisenberg quotation in mind, this glossary will try to give

the interpretation Planguage intends, when the glossary terms are used

in this book. (If the text and the glossary do not seem to agree, I suggest

you trust the glossary primarily as a correct interpretation.2)

Further explanation of the glossary-defined concepts is found in the

main text (via the index). An updated and extended Planguage

Glossary is also to be found on the website www.Gilb.com and at

www.books.elsevier.com. Space limitations within the book meant

that not all the glossary could be included.

Development of this Glossary

I have not tried to define all possible concepts for a systems engineer-

ing discipline. I have merely concentrated on defining those that I

have found useful in my work.

Some other concepts have been included because the glossary has been

developed in connection with drafting future books in this Planguage

1 Heisenberg, Werner, 1958, Physics and Philosophy, London: Penguin Books (2000),

ISBN 0-141-18215-6, 176 pages.
2 I believe Bertrand Russell (1872–1970) said that if the experts disagree, you cannot be

sure that either one of them is right. So, my advice to trust the glossary must be taken

with caution!

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

series. (The intended titles are Requirements Engineering, Priority Manag-
ement and Evolutionary Project Management. Unpublished versions and

drafts of these are to be found on the website www.Gilb.com.) So, the

glossary may seem somewhat detailed in the context of a single book.

But, the intention is to have a common glossary across all the books in

the series.

Development of Concepts

In defining a concept, I have not attempted to blindly follow any

single particular standard, such as INCOSE, ISO or IEEE. Indeed,

I regularly found them inadequate for the specialized purpose at

hand. I have primarily tried to let the concepts suit my narrow

‘systems engineering’ purposes and, above all, to be consistent with

each other.

It is worth explaining that I have had considerable help and feedback

from my editor and a number of colleagues, correspondents, friends,

students and clients regarding definitions, and the choice of primary

terms. I have served as a final subjective decision-maker because in

language there is no right or wrong, but it is central that the reader

know what the writer intends.

I do view the glossary as open-ended for both my own purposes and

for purposes of the reader. I also view each concept as potentially

capable of continuous improvement in definition.

The Glossary as a Reader-Extendible Tool

I do not mean to impose my terms or definitions on the reader. I

respect their rights and needs to define things, in any useful or

traditional way for them. I also respect their right to rename any

terms. I just needed to take a position on concepts and terms in order

to communicate and develop my own ideas. I intend to develop the

glossary as needed, and the reader should feel free to do the same, for

their own uses and benefits.

The deeper I have gone into this glossary, the more humbled I have

been with the infinite possibility of improvement. So, I beg the readers

to accept the many imperfections as the best I could do within the

timescales, and still publish it in book form at all. I promise to

continue the improvement, to participate in improvements and to

make this basis freely available at no cost or restriction to people who

want to improve it or make it specialized for their own purposes.

Permission is hereby given to quote from the glossary freely, and

partially, provided suitable credit is given as to origin (� credit to

Tom Gilb is sufficient). Notification of your use would always be

interesting to me, and may result in useful updates and feedback to

you. (Notification of use and reference to Tom@Gilb.com).

322 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

About the Glossary Concepts

A concept can have many ‘names’ (or ‘tags’ in Planguage), which act as pointers to

it: the names do not change or determine a concept, but merely cross-reference it.

The central, universal identification tag of a concept is its unique concept

number, prefaced by an asterisk, *nnn (for example, *001). The idea behind

the concept numbers is to allow and enable full or partial translation into various

international languages and into corporate dialects.

Concept

Find where Glossary Term is used
via the IndexSource

Related Concepts

Keyed Icon

Drawn Icon
Main Definition

Notes

Concept Number *nnn

English Name (Glossary Term)

Synonyms
Acronym

Type

Abbreviation

Figure G1

“When I use a word”, Humpty
Dumpty said, in a rather scornful
tone, “it means just what I choose it
to mean—neither more nor less.”
“The question is”, said Alice,
“whether you can make words mean
so many different things.” “The
question is”, said Humpty Dumpty,
“which is to be master—that's all.”
Lewis Carroll, Through the
Looking Glass, Chapter VI
(Humpty Dumpty), 1871.

Figure G2
Alice meets Humpty Dumpty3.

3 Illustration by John Tenniel to Chapter 6 of ‘Through the Looking-Glass’ by Lewis

Carroll. Wood-engraving by Thomas Dalziel. Illustration from http://www.scholars.

nus.edu.sg/landow/Victorian/graphics/tenniel/lookingglass/6.1html/. Additional Lewis

Carroll text was added in.

Planguage Concept Glossary 323

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

After Concept *313
‘After’ is used to indicate a planned sequencing of events, including
Evo steps and tasks.
Example:
Product Trials: Step: {F2, F1 After F2}.
This means that Product Trials (a tag) is a defined Evo Step consisting of
step elements F2, and then F1.

Aim Concept *001
An ‘aim’ is a stated desire to achieve something by certain
stakeholders. An aim is usually specified informally and non-
numerically.
Example:
Our aim is to be the dominant supplier of mobile phones in China by
the end of the decade.
Note the two constraining qualifiers (China, By End of the Decade) and the
function area (Supplying Mobile Phones).

‘‘ The aim must include plans for the future.’’
<- (Deming 1993 Page 51)

‘‘ It is important that an aim never be defined in terms of activity or
methods. It must always relate to how life is better for everyone.’’

<- (Deming 1993 Page 52).
‘‘ The aim precedes the organizational system and those that work in it.
Workers, for example, can not be the source of the aim, for how would one
know what kind of workers to choose?’’

<- (Deming 1993 Page 52)
Attributed to Deming by Carolyn Bailey.

Notes:
1. When using the term ‘aim,’ the intent may be to simplify, and give the

ambition level.
2. An aim is ultimately specified in the complete and detailed require-

ments specification.
Example:
‘‘Our aim is to have the <best> book on <gardening>.’’
Aim [New System X]: Superior long-term competitive edge in all
market areas and product lines.

Related Concepts: Goal *109; Budget *480; Target *048; Ambition *423;
Mission *097; Vision *422.

Ambition Concept *423
‘Ambition’ is a parameter, which can be used to summarize the
ambition level of a performance or resource target requirement.
Ambition must state the requirement concerned (like ‘Usability’) and it
must contain a notion of the kind of level being sought (like ‘high’).
Notes:
1. The Ambition summary is useful for getting team understanding

and agreement to its concept, before going on to the detailed
specification work. It can then be used during development of the
specification as a basis for judging the relevance of the details. The

324 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Ambition can also be updated to reflect the detailed specification
better, if desired.

2. Once the specification is completed, Ambition provides a useful over-
view summary of the more detailed specification.
Example:
Usability:
Ambition: The system will be extremely/competitively easy to learn,
and to use, for a variety of users and user cultures.
Reference: Quality Attribute Usability Paper, Version 0.2.

Keyed Icon: @.S ‘‘Target and Summary.’’

And Concept *045
‘And’ is used as a logical operator to join any two expressions within a
statement.
Example:
Goal [If War and Inflation]: 60%.
Goal [If Peace And Inflation]: 60%.
Goal [If War AND Stability]: 60%.
To make a statement read better, the lead capital letter can be dropped,
giving ‘and’ rather than ‘And’.

Architecture Concept *192
The ‘architecture’ is the set of components that in fact exist and impact
a set of system attributes directly, or indirectly, by constraining, or
influencing, related engineering decisions.
Note: Interesting specializations:
. Perceivable Architecture: the architecture, which is somehow directly or

indirectly perceivable in a real system, as determining the range of
performance and cost attributes possible. This applies regardless
of whom, if anyone, consciously specified the architecture design artifacts.

. Inherited Architecture: the architecture, which was not consciously selected
for this system at a particular level of architecture activity, but was either:
– incidentally inherited from older systems,
– accidentally inherited from specified design artifacts, specified by

architects, managers or engineers.
. Specified Architecture: the formally defined architecture specifications

at a given level and lifecycle point, including stakeholder requirements
interpretation, architecture specification, engineering specification done
by this architecture level, certification criteria, cost estimates, models,
prototypes, and any other artifact produced as a necessary consequence
of fulfilling the architecting responsibility.

Note: an extensive discussion of the architecture concept is given in
Maier (2002), including a special appendix on the history of attempts
to define a standard in DoD, IEEE, INCOSE, Appendix C pp. 283–
289. In addition the book gives a great many other insights into the
nature of the concept.
Note: The highest specified level of design ideas for a defined system is
called the ‘architecture’. The architecture is the collection of controlling
design ideas for a defined purpose. The architecture refers primarily to
frameworks, interfaces and other technology and organizational ideas
which more-detailed design ideas are expected to fit in to.

Planguage Concept Glossary 325

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. The architecture specifications (*617) would probably be classified as

generic design constraints (or ‘architecture constraints’, if you wanted
to emphasize the idea of ‘architecture’).

2. Architecture specifications would have priority over subsequent design
decisions, made at more-specialized engineering levels.

3. ‘Architecture specification’ is the set of system-wide decisions, which
are made in order to improve the systems survival ability, as it is
threatened by changes to it, and by its environment.

‘‘Architecture : A high level design that provides decisions about:
. purpose (What problem(s) that the product(s) will solve)
. function description(s) (Why has it been decomposed into these com-

ponents?)
. relationships between components (How do components relate in space

and time?)
. dynamic interplay description (How is control passed between and

among components?)
. flows (How does data or in-process product flow in space and time?)
. resources (What resources are consumed where, in the process or system?)’’
Source: Standard: FAA-iCMM Appraisal Method Version 1.0 A-19,
INCOSE Conference CD, June 1999, Brighton UK [FAA98]
This definition differs from Planguage in that we are primarily concerned
with design aspects, and this contains three requirement notions.
‘‘Architecture: The organizational structure of a system or component.’’
Source: [IEEE 90] in [SEI-95-MM-003] Standard: An example of an IEEE
definition of ‘architecture’.
Domain: systems
engineering.specification.design.architecture
Related Concepts [Architecture, *192 collective noun]:
. Design (noun) *047
. Design specification (*586, or *047 þ *137)
. Design Ideas *047
. Architecture (the process) *499
. Architecture Specification *617
. Artifact *645
. Systems Architecture *564
Keyed Icon *192 Architecture:
. (delta, symbol pyramid architecture).
Note keyed and drawn icon for design (a subset of architecture is a
rectangle
. (or [Design X]) which is analogous to the blocks used to make the

pyramid).
Type: engineering specification type.

Architectural Description [IEEE] Concept *618
Architectural description is ‘‘a collection of products to document an
architecture.’’ (This definition is identical with IEEE Draft Standard 1471,
December 1999.)
This concept is generic and can apply to any specific architecture type.
Notes:
1. The intentionally broad term ‘products’ is used to include anything,

which might be useful in describing an architecture. Anything can

326 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

include physical models, computerized models, prototypes, blueprints,
parts lists, planned test results, actual input and outputs from tests,
Planguage architecture specifications, sales and training materials, and
real systems – as long as their purpose is to document an architecture.

2. The term ‘Architecture Description’ is an IEEE term, it is NOT used
in the Planguage sense of a ‘Description’ parameter: it should really be
equated to the Planguage term, ‘Definition.’)

Related Concepts:
. Architecture Specification *617: This concept does not include models

and real systems, but only abstract specifications
. Systems Architecture *564: An architecture description can be for any

specialized subset of a systems architecture, such as software or hydraulics.
. Architecture *192: this is the real set of artifacts that the architectural

description describes.

Architecture Engineering Concept *499
The architecture engineering process puts in place the systems
architecture, which is a controlling mechanism for the design
engineering of any project.
Architecture engineering defines the strategic framework (the systems
architecture), which design engineering has to work within. It lays down
the standards, which help control such matters as the tradeoff
processes amongst requirements. It helps synchronize design
engineering disciplines across different systems.
The architecture engineering process is a subset of the Systems
Engineering process.
Notes:
1. The architecture engineering process is distinct from the larger systems

engineering process in that it is focused on design issues. (Systems
engineering is broader. It includes consideration of the requirements,
quality control, project management, and any other discipline, that is
useful for satisfying requirements.)

2. The architecture engineering process is distinct from the other system
level design engineering processes because it operates at a higher level,
and is therefore concerned with wider issues. It has to consider the
overall strategic framework and provide guidance to all the lower-level
systems. It considers especially the long-term objectives, and the total-
ity of the requirements for all systems.

3. The architecture engineering process is, ideally, technologically neu-
tral. It should provide guidance on design, using any relevant
technology, policy, motivation, organizational idea, contractual
agreement, sales practice and other devices. One of the main criteria
is that the architecture is cost-effective. Note that technological
neutrality is not always achieved! For example, promotion of the
use of standard platforms could be included within a systems
architecture; and while that is an architectural decision, it is not
technologically neutral.

Synonyms: Architectural Engineering *499; Architecting *499.
Related Concepts: Systems Architecture *564; Architecture *192;
Requirement Engineering *614; Design Engineering *501; Architecture
Specification *617.

Planguage Concept Glossary 327

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Architecture Specification Concept *617
An architecture specification is the written definition of an architectural
component.
Notes:
1. An architecture specification either specifies a component of a systems

architecture, or it specifies an architectural component of a specific
system.

2. An architecture specification is a specialized form of design specification.
3. Architecture (the collective noun) is the real set of artifacts that the

architecture specification describes. In other words, this is the observa-
ble architecture in a defined system. The specification may be describ-
ing desired future states of that system. Some parts of that specification
might never be implemented in practice, since it serves as a vehicle to
discuss architectural possibilities and options.

4. An Architecture Specification is not as broad as an Architecture
Description [IEEE], which can also include models, prototypes and
real systems to aid architectural description.

Synonyms: Architectural Specification *617.
Related Terms Architecture *192; Architecture Engineering *499; Sys-
tems Architecture *564; Architecture Description *618.

Assumption Concept *002
Assumptions are unproven conditions, which if not true at some defined
point in time, would threaten something, such as the validity of a
specification or the achievement of our requirements.
‘Assumption’ is a parameter that can be used to explicitly specify any
assumptions made in connection with a specific statement.

‘‘Assumptions are suppositions, conjectures, and beliefs which lack
verification at the time of writing, or requirements and expectations
that are not within our power to control, but which have been used as
part of the basis for planning future actions. We identify for each the
degree of risk involved and possible consequences if the assumption is
erroneous.’’

<-Don Mills, NZ 2002 (Personal e-mail)
Notes:
1. We need to document our assumptions systematically in order to give

warning signals about any conditions that need to be evaluated, or
checked, to ensure that a specification is valid. The aim is that the
assumptions will be considered at the relevant future points in time,
and that anyone with any additional information concerning an
assumption (including lack of specification of an assumption), will
volunteer it as soon as possible.

2. The purpose of the Assumption parameter is to explicitly state ‘other-
wise hidden’ or undocumented assumptions. This permits systematic
risk analysis.

3. There are many different ways in Planguage to express assumptions.
Alternatives to using the Assumption parameter include using the
Rationale, Condition and Basis parameters.
Example:
Hierarchic Structure [Health and Safety System]:
Type: Design Specification.
Description: A hierarchical database structure will be used.

328 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Assumption: No negative impact on performance of Emergency and
Rescue Inquiries <- JB.
Impacts: Access Response, Portability.
Is Impacted By: Available Database Packages.
Rationale: This structure is compatible with the current structure, and
can be directly converted to it.
Condition: Off-the-shelf software can be used, and no in-house sup-
port is needed.
Basis: Health and Safety System required by National Law.

4. It would be good practice to specify the consequences of a failure for the
assumption to be true. Use Impacts, Supports and similar parameters
just below the Assumption statement. See above example.

5. It would also be good practice to specify the things that determine if
this assumption is going to be true. Use Depends On, Authority,
Source, Is Impacted By and similar parameters just below the Assump-
tion statement. See above example.

Related Concepts: Basis *006; Rationale *259; Condition *024; Quali-
fier *124; Risk *309.

Attribute Concept *003
An attribute is an observable characteristic of a system. Any specific
system can be described by a set of past, present and desired
attributes. There are four main categories of attribute:
. Performance: ‘How Good the System Is’
. Function: ‘What the System Does’
. Resource: ‘What the System Costs’
. Design (or Architecture): ‘The Means for delivering the System’
All attributes are qualified by Conditions, which describe the time,
place and events under which the attributes exist.

Attribute: ‘‘A characteristic of an item; for example, the item’s color, size, or
type.’’

Source: Dictionary of Computing Terms, IEEE 630-90.
Notes:
1. Performance and resource attributes are scalar (described by a scale of

measure). Function and design attributes are binary (either present or
absent).

2. Attributes can be complex. They can be defined by a sub-set of
elementary attributes.

3. An attribute may be described by any useful set of Planguage parameters.
Example:
Reliability: ‘‘The attribute tag name.’’
Ambition: High duration of operation. ‘‘Summary of the target.’’
Scale: Hours of <uninterrupted service>. ‘‘Defining the measure.’’
Goal [Next Release]: 6,000 hours. ‘‘The required target level for the
attribute.’’
The tag (Reliability) and the parameters (Ambition, Scale and Goal)
provide a systematic framework for defining and referring to a scalar
attribute’s components.

Synonyms: Characteristic *003; Property *003.
Related Concepts: Performance *434; Function *069; Resource *199;
Design *047.

Planguage Concept Glossary 329

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Author Concept *004
An author is the person, who writes or updates a document or
specification of any kind.
Notes:
1. This is a generic term, which depending on the specific document type,

is usually replaced by specific roles, such as {engineer, architect, manager,
technician, analyst, designer, coder, test planner, specification writer}.

Synonyms: Writer *004; Specification Writer *004.
Related Concepts: Owner *102.

Authority Concept *005
Authority is a specific level of power to ‘decide’ or ‘influence’ or ‘enforce’ a
specific matter requiring some degree of judgment or evaluation. For
example, the status of a specification is usually the responsibility of some
‘authority’ (somesetof individuals holding the specificauthority). Authority is
oftenheldbya specified individualorbyanorganizationalgroup.A specific
rolemay hold the authority. In addition, a document that is authorized can
be used, within the document’s scope, as a source of authoritative
information (in lieu of access to the people holding the authority).
An Authority parameter is used to indicate the specific level of
authority, approval, commitment, sanction, or support for a specified
idea, specification or statement.
Notes:
1. This is not the same as ‘Source,’ which is the written or oral source of

information. A Source might convey no authority whatsoever (for
example, ‘‘60% <- My best guess!’’).
Example:
Past [Last Year]: 60% <- Marketing Report [February, This Year].
Authority: Marketing Director [Tim].

Background Concept *507
Background information is the part of a specification, which is useful
related information, but is not central (core) to the implementation, nor
is it commentary.
Example:
In a requirement specification, the benchmarks (Past, Trend, Record)
are not the actual requirements (not ‘core’), but they are useful ‘back-
ground’ to the requirements.
The key requirement targets (Goal and Budget levels) and constraints
(Fail and Survival levels) are central (core) to implementation, and are
therefore not background.
Notes:
1. Parameters are clearly typed as either ‘core’ (for example, Scale, Meter

and Goal) or ‘background’ (for example, Ambition, Gist and Past), or
‘commentary’ (for example, Source and Note).

2. Background specifications are essential to the understanding and use of
a specification. However, any defects in background will not necessarily
materially and/or negatively impact the real system. Such defects might
potentially have bad impacts when used in a certain way. For example,
when a Goal (core specification) is set on the basis of an incorrect Past

330 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

or Record (background specification) the resulting Goal level (a ‘core’
specification) will be incorrect.
Specification defects in ‘background specification’ are either major or
minor, depending on our judgment, in the specific context, of the
potential consequences.
Example: [Background Parameters]
. Benchmarks {Past, Record, Trend} . Owner . Version . Stakeholders
. Gist . Ambition

Related Concepts: Non-Commentary *294; Core Specification *633;
Commentary *632; Specification *137.

Backroom Concept *342
Backroom is an adjective or noun, referring to a conceptual place,
used to describe any processes or activities in Evo that are not
necessarily visible to the Evo step recipients.
Notes:
1. Typically, Backroom is used to refer to the development and produc-

tion cycles of the Evo result cycle.
2. This is where concurrent engineering takes place. Backroom activities

(for example, detailed design, purchasing, construction and testing)
may have to be carried out in parallel with other activities as step
preparation (prior to being ready for delivery), can take arbitrary
lengths of time. The overriding Evo requirement is for frequent
stakeholder delivery cycles.

3. Evolutionary project management needs to manage the backroom and
frontroom as one synchronized process.

Related Concepts: Frontroom *343.

Baseline Concept *351
A system baseline is any set of system attribute specifications that
defines the state of a given system.
Frequently, the choice of system baseline is governed by project
timescales; a significant project milestone date in the past will be
selected and then it is simply a case of determining the relevant
individual attribute baselines on that date.
An attribute baseline is a benchmark that has been chosen for use as a
start point to measure any relative system change (estimated or
actual) against.
Notes:
1. Within Impact Estimation, for each scalar attribute a ‘Baseline to

Target Pair’ is declared. The chosen baseline is usually a Past level
and represents zero percentage impact (0%). In an IE table, each
baseline to target pair appears immediately under the tag of its attri-
bute on the left hand side on the table.
Example:
QX: Quality.
Scale: Time to complete a defined [Task] for a defined [Person Type].
Baseline: Past [Task¼Learn to Drive Off, Person Type¼Experienced
Driver, Our Competitor’s Product]: 1 minute.

Planguage Concept Glossary 331

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Target: Goal [Task¼Learn to Drive Off, Person Type¼Experienced
Driver, Our New Product]: 10 seconds.
This example shows setting a baseline and a target for a quality, QX.

Example:
ABC: IE Table [Baseline Date¼Nov 7, Target Date¼Dec 7].
QX:
BABC: Baseline [ABC]: Past [. ‘‘declare as a baseline for ABC
IE table’’].
TABC: Target [ABC]: Goal [. ‘‘declare as a target for ABC IE
table’’].
Baseline to Target Pair [ABC]: 1 minute <-> 10 seconds. ‘‘deduced
from baseline and target declarations above. Strictly not needed as
repetition.’’
This example shows an alternative way to set a baseline and target. It
introduces the idea of declaring a Baseline Date and Target Date applying
across an IE table.

Design ‘ADI’ has zero percentage impact, meaning that if Design ‘ADI’
were implemented then there would be no visible change in the quality
level (it would remain at one minute and there would be no forward
progress towards the target (10 seconds)).
Design ‘CDI’ would be even worse than the baseline and the quality level
would be worse than before.

Related Concepts: Benchmark *007.

Basis Concept *006
A basis is an underlying idea that is a foundation for a specification.
A ‘Basis’ parameter is used to explicitly specify a foundation idea, so
that it can be understood and checked. Hopefully, if necessary, a basis
specification will be challenged and corrected. It is a tool for risk
analysis.
Notes:
1. Basis statements are used to declare a set of conditions, which we

assume will be true. We want to make it quite clear that the
related statements are entirely contingent upon the conditions being
true.
A Basis statement is, or will be, for the appropriate qualifier time,
place and other conditions, fundamental and stable. We state a
Basis in case it is untrue, or is a misunderstanding, or needs
improvement in specification: the intended readership needs to
check whether they agree that a Basis statement applies. In addi-
tion, we state a Basis to ensure that the conditions are checked
later, at the relevant time.

Table G1 ABC: IE table.

Design Idea -> ADI BDI CDI DDI

QX

1 minute<–> 10 seconds 0% 100% �20% 150%

332 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. Basis is different from Assumption. An Assumption is a set of state-
ments, which we expect be true in the planning horizon (for example,
the dates indicated in Goal and Fail parameters), but we cannot be sure ;
they can well change. The related specification may need updating if
they do.

3. Basis is quite different from Rationale. A Rationale is a set of
statements, which lead to a desire to make a specific specifi-
cation. It explains how we got to that particular specification. Basis
is a set of statements, which are the foundation on which a
specification is made. If the result of evaluation of any of the
relevant Basis statements changes, then the specification may no
longer be valid.
Example:
Fail [A1]: 60%, [Not A1]: 50%? <- Guess as to consequence.
A1: Assumption: Drugs Law [Last Year] is still in force and unchanged
with respect to this plan.
Basis: Drugs Law ‘Conditions for Approval for Human Trials’<-
Pharmaceutical Law [Last Year].
Rationale: Our Corporate Policy about following laws, strictly and
honestly <- Corporate Ethics Policy.
Condition: Applies only to<adult, voluntary, healthy, field-trial people>.
‘A1’ is a defined assumption that can be reused in this or other contexts.

Synonyms: Base *006; Foundation *006.

Before Concept *312
‘Before’ is a parameter used to indicate planned sequencing of
events, including Evo steps and tasks.
Example:
Stage Liftoff: Step: {Ignition On Before Check Thrust OK, Ignite
Motors} Before Release Tie Down.
The Evo step is planned as a sequence of step elements. Ignition On is to be
done first. Followed by Check Thrust OK. Ignite Motors can be done
anytime in relation to the first two, but, since it is in the brackets, it, as
well as the other two events in the brackets, must be done before Release Tie
Down.

Benchmark Concept *007
A benchmark is a specified reference point, or baseline. There are two
main types: scalar and binary benchmarks.
Notes:
1. A scalar benchmark is a reference level for a performance or resource

attribute. It is usually used for comparison purposes in requirement
specification, design and implementation.

2. A scalar benchmark is normally defined using the benchmark para-
meters {Past, Record, Trend}.
Example:
Usability:
Ambition: Order of magnitude better than future competitors.
Scale: Average time needed to learn to do Typical Tasks for Typical
User.

Planguage Concept Glossary 333

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Trend [Best Competitors, During New Product Lifetime, Europe
Market & USA Market]: 5 minutes.
Fail [New Product, All Markets]: 2 minutes.
Goal [New Product, Initial Release]: 1 minute.
Goal [New Product, 1 Year After Initial Release]: 30 seconds.
‘Trend’ is the benchmark specification.

3. Function and design attributes are specified as binary benchmarks:
binary attributes are either present or absent in a system.

Related Concepts: Baseline *351; Past *106; Record *127; Trend *155.

Benefit Concept *009
Benefit is value delivered to stakeholders.
Notes:
1. Benefits are the positive things that the stakeholders experience from a

system. ‘Bene’ means ‘good’.
2. Benefit differs from stakeholder value. Value is perceived future ben-

efit. Value is reflected in what priority, and consequent resources,
people are willing to give for something, in order to get the benefits
they expect.

3. Benefit is the reality experienced in practice by defined stakeholders.
4. Benefits can include improved stakeholder environment performance,

reduced costs, and improved functionality.
5. Benefits could also include the relaxation of previous constraints.
6. Systems engineering control can only be exercised over benefits, which

have been specified as requirements. Reaching and keeping an unspe-
cified benefit is unlikely!

7. Systems engineering can add value, it is up to the stakeholders to
actually turn that value into benefit by exploiting the system.

8. One way to measure improvements in benefit is to extrapolate from
changes in performance levels.

Synonyms: Gain *009; Profit: Informal use; Advantage: Informal use.
Related Concepts: Value *269; Performance to Cost Ratio *010; Value
to Cost Ratio *635; Effectiveness *053; Stakeholder *233.

Binary Concept *249
Binary is an adjective used to describe objects, which are specified as
observable in two states. Typically, the two states are ‘present’ or
‘absent’, or ‘compiled with’ or ‘not complied with.’
Notes:
1. All the non-scalar attributes are binary (that is, the function and design

attributes).
Related Concepts: Scalar *198.

Budget Concept *480
A ‘budget’ is a resource target: an allocation of a limited resource. A
Budget parameter is used to specify a primary scalar resource target.
The implication of a Budget parameter specification is that there is, or
will probably be, a commitment to stay within the Budget level
(something which is not true of a Stretch or Wish specification).
Example:
Maintenance Effort:

334 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Scale: Total annual Maintenance Engineering Hours per thousand lines
of software code supported.
Budget [First Four Years Average]: 10 hours.
Stretch [First Four Years Average]: 8 hours.
Wish [First Four Years Average]: 2 hours.
Fail [Any Single Operational Year]: 100 hours <- Client payment limit
in contract §6.7.
A Budget specification, together with 2 other resource targets and a
constraint.
Notes:
1. A budget level is often arrived at through a formal budgeting process:

the budget levels usually being set with regard to priorities, and
available financial resources. Sometimes a budget level is determined
by cost estimation, or it is determined by using competitive bidding
and contracting. In some cases, the budget is absolutely fixed in
advance, and we have to try to keep within it by making requirement
tradeoffs or by using ‘design to cost’.

2. At the very least a warning signal should be noted when a budgeted
level is exceeded by a design, by an evolutionary step, or when there is a
risk or threat that the budget might be exceeded. For example, we need
to react if a resource threat to the budget level is discovered while
evaluating potential alternative designs.

3. A resource target is a budget concept (small ‘b’ for budget). In
Planguage, there are several parameters used to specify resource targets
{Budget, Stretch, Wish}. The Budget parameter (capital ‘B’ for Bud-
get) is used to specify the major type of resource target.

Synonyms: Budget Level *480: See Level *337; Planned Budget *480;
Plan [Resource] *480: Historic usage only; Planned Level [Resource]
*480: Historic usage only.
Related Concepts: Aim *001; Resource Target *436: Synonym is budget
(the concept); Target *048; Stretch *404; Wish *244; Ideal *328; Goal
*109.
Keyed Icon: > ‘‘A single arrowhead pointing towards the future.
The same basic icon as for Goal *109, but always use an input
arrow to a function oval to represent a resource attribute. In context:
--->--->O
The Budget icon is the ‘>’ on the arrow. If other levels for the resource are
shown on the same arrow, the positioning of the tips of the icon symbols
reflects the levels relative to each other.’’

Catastrophe Concept *602
A catastrophe level of an attribute is where disaster threatens all, or
part, of a system. Catastrophe can mean a variety of things such as:
. contractual non-payment performance level
. illegal quality level
. totally unacceptable level for defined stakeholders
. a level which causes the entire system to be useless (that is, worse
than the survival limit).

The Catastrophe parameter can be used to specify any such known
disaster level. Using the Survival parameter is another option. (These two
parameters are the two sides of the same level.)

Planguage Concept Glossary 335

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. The default assumption is that the catastrophe is for the complete system.

If it is not, then qualifiers must limit its scope.
2. If a design or architecture threatens to result in any attribute being equal

or worse than its Catastrophe Level, then you would discard the design,
abandon or modify the requirement, or potentially abandon the project.

3. A catastrophe is not a transient failure – that is we do not expect the
system to recover without some major intervention.
Catastrophe does not imply complete irrecoverable failure. After the event,
someone might change their mind and decide to ‘bail out’ the system. But
Catastrophe, once reached, is most likely to be irrecoverable in practice.

4. A Catastrophe Range starts from the ‘best’ Catastrophe Level and goes
in the direction of ‘worse’. This can be made explicit by describing the
Catastrophe Range, not just the Catastrophe Level (Describe the range
by using ‘or less’ or ‘and worse’ after the numeric value).
Example:
Catastrophe [System Wide]: 60% or less.
Catastrophe [Security]: 60%.

Keyed Icon: . ‘‘A full stop. In context, a series of ‘.’ indicates a Catastrophe
Range ------->--!--------]>O [-----!-->----------->
The Survival icon (square brackets on a scalar arrow icon [----]>)
can be used to emphasize the transition from Survival status to Cata-
strophe (non-survival) status.’’
Synonyms: Catastrophe Level *602; Catastrophe Limit *602; Intolerable
*602; Catastrophic Failure: Informal use only; Death: Informal use only;
Non-Survival: Informal use only.
Related Concepts: Survival *440; Range *552: For description of ‘Cat-
astrophe Range.’
Historical Note: The idea for Catastrophe originated from Terje Fossnes and
Cecilia Haskins in August 2002.

Checking Rate Concept *015
The checking rate is the average speed at which a specification is
checked by a checker, using all the relevant related specifications
and standards {the main specification, rules, checklists, source
documents and kin documents}.
Notes:
1. The checking rate is critical for Specification Quality Control, and

must normally be about 300 significant words (of checked main
specification) per hour. This can vary (0.1 to 1.9 hours per 300
significant words), depending on many factors, such as the number
of documents to be referenced while checking. The optimum checking
rate is the checking speed that in fact works best for an individual
checker to do their assigned tasks.

Related Concepts: Rate *139; Optimum Checking Rate *126.

Checklist Concept *016
A‘checklist’ for SQCusually takes the formofa list ofquestions.All checklist
questions are derived directly and explicitly from cross-referenced
specification rules. Checklists are ‘stored wisdom’ aimed at helping to
interpret the rules and explain their application. Checklists are used to
increase effectiveness at finding major defects in a specification.

336 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
STDQ: Rule: All critical project requirements must always be expressed
numerically and measurably.
This is the rule. The associated checklist question is designed to help people
understand how to apply the rule in practice, and identify any defects
breaking the rule.
Checklist Q: Are all performance concepts (including all qualitative
concepts – all ‘-ilities’) expressed quantitatively? <- Rule.STDQ.
An example of a checklist question with the rule it supports (STDQ) being
referenced.
Notes:
1. Checklists are like law court interpretations of the law. They are not the

official ‘law’ itself, but they do help us understand the proper interpreta-
tion of the law. Anyone can write checklists at any time to give advice on
how to check. They are intentionally less formal to create, and to change,
than specification rules. They do not necessarily have formal ‘owners.’

2. Checklists should not be used instead of a proper set of rules, which is
maintained by an engineering process owner. They are only intended
as a supplement for checkers. Issues can only be classified as real
defects if they can be shown to violate the official agreed rules for a
specification.

3. Less formal ‘de facto checklists’ also exist. These include any docu-
ments that can be used to check a document with a view to identifica-
tion of defects. These can have other names and even other purposes
than a ‘pure’ checklist. Examples of ‘de facto checklists’ include
‘sources,’ ‘standards,’ ‘guidelines,’ ‘templates’ and ‘model documents.’
If they help check, they must be some sort of checklist, irrespective of
what people call them or intended them to be used for.

Commentary Concept *632
Commentary specifications are remarks about other specifications.
Commentary specifications will probably not have any economic,
quality or effort consequences if they are incorrect: defects in
commentary are almost always of minor severity.
Example:
. Note . Comment . ‘‘Text in quotes’’ . Source
Related Concepts: Non-Commentary *294; Core Specification *633;
Background *507; Specification *137.

Complex Concept *021
A complex component is composed of more than one elementary
and/or complex component.
Notes:
1. A complex component consists of several sub-components. The sub-

components may be all of the same type as the component, or of
several different types.

2. Requirements, Design Ideas and Evo Steps are often complex components.
Example:
Goal [Alpha]: 30%, [Beta]: 20%. ‘‘This is a complex statement.’’
Goal [Theta]: 50%. ‘‘This is an elementary statement.’’

Related Concepts: Elementary *055; Component *022.

Planguage Concept Glossary 337

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Concept [Planguage] Concept *188
A Planguage concept is a formally specified idea used in Planguage.
Notes:
1. There are several types of concept found in Planguage specification.

These include:
. formal Planguage concepts defined in this glossary or other Plan-

guage glossaries and assigned a concept number (*nnn). Some
concept names are written with a Capital letter first, to signal that
they are formally defined terms. Examples: Scale, Goal, and
Defined As.

. user-defined terms.
2. A Planguage concept, once defined, can be referenced by any

useful synonyms or identifiers. These include tags, keyed
icons, drawn icons, abbreviations, synonyms, acronyms and alter-
native language terms (for example, German or Japanese terms).

3. The central idea of a Planguage concept is that the concept itself is
independent of the particular means (pointer, reference, cross-refer-
ence, tag, icon, concept number) that we choose to apply in order to
reference that concept. We can focus on the concept, and not the
particular term, about which people might disagree or have cultural
difficulties in accepting.

4. Defined concepts can be:
. reused without explaining them again
. redefined by Planguage users locally (which simultaneously changes

(hopefully improves) the definition of all the other terms, which
reference the defined concept)

. referenced by a set of terms in any language, without necessarily
having to rewrite the concept definitions themselves in that lan-
guage. For example, the concepts could be defined in English, but
a Norwegian set of pointers to the concepts can be quickly defined,
to permit teaching or multinational project learning and use of
specifications.

Example:
Begrep [Norwegian Bokmål]¼ *188 ‘‘Concept [Planguage, US].’’
Tilstand [Norwegian Bokmål]¼ *024 ‘‘Condition [Planguage, US].’’
Marked [Norwegian Bokmål]¼Market [Corporate Glossary].
Is [Norwegian Bokmål]¼ Ice Cream [Project XYZ Glossary].
In these examples Planguage concepts like *188 are given a foreign
language name (‘Begrep’) in Norwegian. Using the synonym, ‘Begrep,’ a
user can access the full definition in English.

Synonyms: Planguage Concept *188.
Related Concepts: User-Defined Term *530; Planguage *030.

Condition Concept *024
A condition is a specified pre-requisite for making a specification or a
system component valid.
Notes:
1. Evaluation of the status of a condition can be carried out anytime, and

on many different occasions, each with a potentially different result.

338 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

The result of an evaluation of a condition is the ‘current condition
status’ or more simply, ‘status.’

2. Evaluation of a condition will determine if its status is currently true or
false.

3. There are several distinct kinds of conditions:
. Reusable Conditions
. Qualifier Conditions
. Pre-requisite Conditions
Reusable Conditions:
The Planguage parameter ‘Condition’ is used to define conditional
terms. The ‘true or false’ status of such a term can be determined when
required. This parameter statement can be used to define:

. reusable conditions (conditions that many other statements can make
use of)

. conditions which are complex, and get simplified by having a single tag
to express them.
Example:
Senior: Condition {Senior Citizen Or Service over 20 years to Company}.
Pass Through: Condition: Traffic Light {Green, Yellow, Blinking
Yellow, Not Red}.
Qualifier Conditions:
One or more qualifier conditions can be used to specify a statement
qualifier (for example, ‘[End of March, USA, If Peace]’). A statement
qualifier must be completely true for the qualified statement to be
valid.
Example:
Level X: Goal [A, B, C]: 33%.
Note: Level X is only a valid Goal when all three qualifiers {A & B &
C} are true/valid.
Another example, a Goal level specification is only valid when all the
conditions in its qualifier are true. The qualifier in the Goal statement
below has three conditions.
Example:
Goal [Year¼Releaseþ 1 Year, Market¼Europe, Not War]: 66%.
A qualifier condition may consist of an explicit tag name with an
appropriate variable declared (for example, ‘Market¼Europe.’ ‘Mar-
ket’ is the tag name and ‘Europe’ is the variable).
If there is no ambiguity, the tag name may be implied and simply the
variable is stated.
A qualifying condition may, or may not, be satisfying a Scale qualifier.
Example:
Learning Time:
Scale: Time in minutes for a defined [Role] to <learn> a defined
[Task].
Goal [Task¼Login, Role¼Operator, Country¼ Spain]: 2 minutes.
In the above example, ‘[Task¼ Login, Role¼Operator]’ is a statement
qualifier.
Both ‘Task’ and ‘Role’ are qualifier conditions. They are also both
Scale qualifiers. Task is assigned a variable of ‘Login,’ and ‘Role’ a
variable of ‘Operator’.
‘Country¼ Spain’ is an additional qualifier condition, which has been
added. It is not a Scale qualifier.

Planguage Concept Glossary 339

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

If the Task under consideration is ‘Login,’ the Role is ‘Operator’ and the
Country is Spain, then the target goal for consideration must be 2 minutes.
In other words, the evaluation of the statement qualifier as ‘true’
depends on all its qualifying conditions being ‘true.’ Each qualifier
condition is only true if its variable matches the specific instance being
considered (Task is ‘Login,’ Role is ‘Operator’ and Country is ‘Spain’).
Each qualifier condition might have a set of valid variable settings. For
example, Country: {Spain, USA, Germany}.
Pre-requisite Conditions:
A set of conditions, can be used as a prerequisite for a system compo-
nent, such as entry to a defined process, or exit from a defined process,
or use of a product. Any such conditions should be explicitly listed as
pre-requisites or qualifications.
Example:
Exit Conditions:
X1: Senior. ‘‘See definition in above example.’’
X2: Level X. ‘‘Not only A & B & C, but also 33% Goal reached.’’

Example:
Process: Evening Closedown [Application: Default: ABC].
‘‘The square brackets, ‘[]’, specify a qualifier condition. It asks the
question: Which application is this generic process being applied to?’’
Gist: Application process for evening closedown for the night.
Entry Conditions:
E1: All users have logged off. ‘‘A condition. Are all users logged off:
true or false?’’
E2: After 8pm. ‘‘Another condition. Is time after 8pm: true or false?’’
Procedure
. . . ‘‘If all entry conditions are met (that is, are ‘true’), then it is ‘valid’
to carry out the process.’’

Synonyms: Conditional Term *024; Pre-Requisite Condition *024.
Related Concepts: Condition Constraint *498; Qualifier *124; Status
*174: The result of the evaluation of a condition.
Keyed Icon: [<condition tag name>]

Condition Constraint Concept *498
A condition constraint is a requirement that imposes a conscious
restriction for a specified system scope. A condition constraint, also
called a ‘restriction,’ is a binary type of requirement.
Notes:
1. A condition constraint differs from a ‘condition’ in that some kind of

failure, invalidity, problem, dependency, risk, or other problem may
be experienced, if the constraint is not met. It serves as a warning signal
for problems.
Example:
CCR: Constraint [Release 1]: Initial product must be delivered before
the end of January.
Rationale: Financial penalties apply if this contractual deadline is not
met <- Contract Section 2.4.

2. A condition constraint can be categorized by innumerable useful
categories, but some common ones are design, legal, cultural, market,

340 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

geographic, safety, and language. (Note these categories can also
apply to other types of constraint, for example, a certain level of
reliability – a scalar performance constraint – could also be a ‘legal
constraint’).
Example:
C1: Constraint [Language]: All official languages of a market will be
fully supported in the user interface, and all training and handbook
information.
C2: Constraint [Safety]: All Electrical Equipment brought onboard
any Corporate Aircraft as Standard Kit will comply with Corporate
Electrical Safety Standard 1.5.

Synonyms: Restriction *498.
Related Concepts: Condition *024; Constraint *218; Status *174: Syno-
nym is ‘State’.

Consists of Concept *616
‘Consists Of’ is a parameter used to list a complete set of the sub-
components or elements comprising a component.
Example:
Security:
Consists Of: {Integrity, Attack}.
Alternatively, Security¼ {Integrity, Attack}.
Related Concepts: Includes *391 ‘‘Used to list some, but not necessarily
all components’’; Element *022.
Keyed Icon:¼ { . . . } ‘‘Is equal to the set.’’
Example:
Core Family¼ {Mother, Father, Children}.

Constraint Concept *218
A constraint is a requirement that explicitly and intentionally tries to
directly restrict any system or process. A key property of a constraint is
that a penalty or loss of some kind applies if the constraint is not
respected.
Constraints include limitations on the engineering process, a system’s
operation, or its lifecycle.

‘‘A constraint is ‘something that restricts’.’’
(The American Heritage Dictionary (Dell))

Notes:
1. There are two kinds of constraints: Binary and Scalar.

Binary constraints are statements that tend to include the words ‘must’
or ‘must not’: that is, they tend to make demands about what is
mandatory for the system or what is prohibited for the system. Binary
constraints are declared either by using a Constraint parameter or by
specifying ‘Type: Constraint.’
Example:
C1: Constraint: A design idea must not be made of material, compo-
nents or products only produced outside the European Market, if there
is any EU material which can be used.
C2: Constraint: The design must contain ideas based on our own
patents whenever possible.

Planguage Concept Glossary 341

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

C3:
Type: Constraint.
Defined As: All stakeholder critical qualities must be planned and
delivered so that they are viewed as obviously and significantly better
than any competitor in the same price range.
From an attribute viewpoint, binary constraints are function con-
straints, design constraints or condition constraints.
Scalar constraints are specified for performance or resource attributes.
They are specified using Fail and Survival parameters, which set the
constraint levels on a scale of measure.

2. All engineering specifications (requirements and design) and manage-
ment plans, once stated, potentially and probably have some constrain-
ing influence on the rest of the planning or engineering process. So all
specifications and plans are ‘constraints’ in this sense.
However, we can clearly distinguish between specifications where
the primary intent is to constrain (like a mandatory constraint or a
level for Survival), and those specifications where the primary idea
is not to constrain, but to motivate positively (for example, a binary
function target or, a scalar performance target, such as a Goal or
Stretch level). We could classify the former as ‘intentional and
direct constraints’ and the latter as ‘unintentional and indirect
constraints’.
So, we only classify specifications and concepts as ‘constraints’ when
the clear intent and primary purpose is to restrain, limit, restrict
constrain or stop.

3. You have to look at constraints from a ‘stakeholder’ viewpoint. As with
any requirement or design, what is a requirement for one level of
system stakeholder, is a constraint as viewed by sub-ordinate stake-
holder levels.
One stakeholder’s requirement is another stakeholder’s constraint.

4. All constraints are valid for their associated defined conditions. Some-
times the constraint conditions are stated explicitly, sometimes they are
implied or inherited from more global specifications.
A ‘global’ constraint is usually imposed by higher levels of authority, or
by earlier planning processes. For example: by company policy, law,
contract, strategic planning or systems architecture.
Example:
An example of a global constraint:
Availability Criteria: Constraint: No Company Product shall ever be
designed with less than 99.5% availability.
A corresponding local constraint setting a higher constraint level:
Fail [US Market, Military Systems]: 99.98%.

5. Constraints can be classified by the ‘relative level of organization’ they
apply to, as proposed by Ralph Keeney (1992):
. Fundamental Constraints: handed down to us from higher authority
. Strategic Constraints: ones we have imposed at our own level, over

which we have control
. Means Constraints: constraints imposed at levels supporting us,

which we can therefore overrule.
6. All requirements, including all constraints, have different ‘priority.’

This priority (or ‘power’) is determined by the conditions (the

342 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

qualifiers) and by their related specifications (for example, by para-
meters like ‘Authority’). It is a complex process to determine constraint
priority, and the ‘answer’ is dynamically changing. There is probably no
absolute constraint that must be respected ‘no matter what.’ That is,
there might always be a higher priority consideration that overrides a
given constraint. For example, ‘Thou shalt not kill (except in self-
defense).’

7. Constraints always represent, in some way, some of the values of
some stakeholders. But a given constraint does not necessarily agree
with the values of all stakeholders. The constraint of one stakeholder
might be in direct conflict with the requirements of another stake-
holder.

8. Any set of categories (including no categories!) can be specified for
classifying constraints. System, performance, budget and design are
an arbitrary few such categories.

9. I view constraints as borders around a problem. We can do any-
thing we like within the borders, but we must not wander outside
them.

OK

Figure G3
Constraints impose restrictions on both other requirements and designs. But the remaining
space (‘OK’) gives considerable freedom to set more-exact requirements, and to specify
more-exact designs.

---[------! -------

---[------! -------] ----------

Performance Constraints

Resource Constraints

Function ConstraintDesign Constraint Condition Constraint

] ----------

Figure G4
Drawn Icons for Constraints.

Planguage Concept Glossary 343

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

10. A requirement is a ‘constraint on succeeding engineering processes’ if and
only if it has an authority, or other form of priority, which means that:

. you must stay within its guidelines (when making later decisions or
specifications)

. you cannot change it yourself (in order to avoid obeying it), without
authority to do so.

Related Concepts: Requirement *026; Function Constraint *469; Per-
formance Constraint *438; Resource Constraint *478; Design Constraint
*181; Condition Constraint *498; Survival *440; Fail *098.
Keyed Icons: For Survival: [and/or] and for Fail: !
‘‘In context: ----[----!---]---->O---[-------!---]----->’’

Continuous Process Improvement Concept *424
Continuous Process Improvement (CPI) includes any and all continuous
long-term effort to systematically improve an organization’s work
processes.
Acronym: CPI *424.
Related Concepts: Defect Prevention Process (DPP) *042; Statistical
Process Control (SPC) *466.

Core Specification Concept *633
Anything classed as, ‘core specification,’ will result in real system
changes being made: incorrect core specification would materially
and negatively affect the system in terms of costs, effort or quality.
Specification defects in core specification are almost always of major
severity.
Example:
Core Specification Parameters include:
. Scale . Meter . Goal . Definition . Constraint
Notes:
1. Core specification can be distinguished from ‘commentary’ and ‘back-

ground’ (supporting) specification.
2. Core specification is the ‘meat’ in specifications of requirements,

designs, Evo steps and test cases.
Synonyms: Implementable Specification *633.
Related Concepts: Non-Commentary *294; Background *507; Commen-
tary *632; Specification *137; Specification Quality Control (SQC) *051.

Cost Concept *033
Cost is an expense incurred in building or maintaining a system. It is
consumption of a resource.
Synonyms: Price *033; Expense *033: The degree of consumption, how
much resource was used.
Related Concepts: Resource *199.
Keyed Icon: -|->O
‘‘The keyed icon is a level symbol, ‘|’, set on a resource scale of measure,
‘-->O’.’’
Note: The neutral symbol ‘|’ is chosen to represent the generic cost
concept, rather a currency symbol, because the resources involved are
more than just money. If you want to link the icon to the idea of a cost
range, then think of the chosen symbol as a minus sign, turned 90
degrees.

344 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
---||||||||-->O expresses a cost range.
The keyed icon for Cost [Money] is a currency symbol, default 6 (Euro).

Example:
--6-->O to express a money cost and ----<666666666|¼¼¼¼¼¼>O
to express a cost range.

Credibility Concept *035
Credibility expresses the strength of belief in and hence validity of,
information. Within Impact Estimation, credibility is usually assessed for
the evidence and sources supporting each specific impact estimate.
Credibility is expressed as a numeric value on a range of credibility
ratings from 1.0 (for perfect credibility) to 0.0 (for no credibility at all).
These credibility values can be used to credibility-correct the impact
estimates: each impact estimate is multiplied by its relevant credibility.
Example:
If an impact estimate were 40% and its credibility were 0.5, then the
credibility-adjusted estimate would be 20% (40% multiplied by 0.5).

Critical Factor Concept *036
A critical factor is a scalar attribute level, a binary attribute or condition
in a system, which can on its own, determine the success or failure of
the system under specified conditions.
Notes:
1. A critical failure factor is usually specified as a constraint level (for example

a ‘Fail’ or ‘Survival’ level), or as a binary constraint (‘Constraint’).
2. A critical success factor is usually specified as a target level (a ‘Goal’ or

‘Budget’ level), or as a binary target (‘Target’).
Related Concepts: Critical Success Factor *418; Critical Failure Factor *025.

DDP Concept *041
Acronym for Defect Detection Process *041

Defect Detection Process Concept *041
The Defect Detection Process (DDP) is part of Specification Quality
Control (SQC), which also includes the Defect Prevention Process
(DPP). It is the systematic, project-focused process of identifying
specification defects.
Source: A detailed description of the DDP process can be found in (Gilb
and Graham 1993) and (Wheeler, Brykcznski and Meeson 1996).
Rationale: This is to avoid the high cost of late defect removal (at test, or in
field), or to avoid the high cost of the consequences of malfunctions caused
by the defect: ‘‘A stitch in time saves nine.’’
Notes:
1. The DDP is ‘project oriented’ in that it is primarily concerned with a

project’s economics, rather than an organization’s work process eco-
nomics (that is the DPP concern).

2. DDP is not itself concerned with process improvement, but it provides
a stream of data, concrete defect examples, and a working environment
that can be used to feed into, and to help analyze effects of, a Defect
Prevention Process.

Planguage Concept Glossary 345

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Acronym: DDP *041.
Related Concepts: Specification Quality Control (SQC) *051; Defect
Prevention Process (DPP) *042.

Defect Prevention Process Concept *042
The Defect Prevention Process (DPP) is a specific IBM-originated
process of continuous process improvement. It is part of Specification
Quality Control (SQC).
Notes:
1. The DPP process works towards continuous process improvement for

ongoing, and especially future, projects in a larger organization. It is
fed suggestions, and data, on problems, from the Defect Detection
Process (DDP), and from other defect-identification sources, like
testing and customer feedback.

‘‘An ounce of prevention is worth a pound of cure.’’

2. As reported by IBM, in organizations of 100 to 1,000 people, about
200 to 1,000 process changes may be implemented annually. On
initial DPP implementation (the first project), 50% of the total
number of historical defects may be eliminated in the first year of
use and 70% eliminated within 2–3 years.

Sources:
. Inspired by classical Statistical Process Control ideas (Deming 1986), the

Defect Prevention Process (DPP) was developed and refined (from 1983
onwards) by Carole Jones and Robert Mays of IBM Research Triangle
Park NC with the aim of improving IBM’s processes for software
engineering, hardware engineering and administration (Mays 1995).

. A detailed description of DPP can be found in (Gilb and Graham 1993
Chapters 7 and 17).

. DPP was the direct inspiration for IBM assessment process Level 5 (Ron
Radice cited in Mays 1995), US DoD Software Engineering Institute’s
Capability Maturity Model, CMM Level 5, and CMMI Level 5.

Acronym: DPP *042.
Related Concepts: Plan-Do-Study-Act Cycle (PDSA) *168; Specification
Quality Control (SQC) *051; Defect Detection Process (DDP) *041;
Continuous Process Improvement *424; Process Improvement *114;
Process Improvement Suggestion *088; Process Meeting *119; Process
Change Management Team *118.

Definition Concept *044
‘Definition’ or ‘Defined As’ is a parameter that is used to define a
tagged term.
Notes:
1. The tagged term could then be re-used anywhere else within scope,

and would always have this precise definition.
2. Any tagged statement is, in practice, a definition of that tag, so the use

of the ‘Defined’ parameter is to make it explicit that the statement is
intended as a reusable definition.
Example:
Trained: Defined As: At least 30 hours classroom, and ‘passed’ prac-
tical exam.
Trained: At least 30 hours classroom, and ‘passed’ practical examination.

346 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Trained: Def: At least 30 hours classroom, and ‘passed’ practical
examination.
Trained: Definition: At least 30 hours classroom, and ‘passed’ practical
examination.
Trained¼At least 30 hours classroom, and ‘passed’ practical examination.
Equivalent definitions of the term, ‘Trained.’

Example:
Reliability:
Scale: Hours to <complete> defined [Task: Default¼Most Complex
Task].
Fail [USA]: 5 hours. ‘‘Most Complex Task is suitable default for a Fail
specification.’’
Goal [Europe, End Next Year]: 10 hours.
Most Complex Task: Defined As: The work task, which normally
takes most employees longest clock time to complete on average.

Abbreviations: Def *044.
Synonyms: Defined *044; Defined As *044.
Keyed Icons: : or¼ ‘‘Whatever follows the icon symbol is a definition of the
tag or parameter to the left of the symbol. ‘¼’ is less commonly used.’’

Dependency Concept *189
A ‘dependency’ is a reliance of some kind, of one set of components
on another set of components.
Notes:
1. Any given component can be part of numerous dependencies (either

having one or more dependencies, and/or having one or more depen-
dencies placed on it).

2. The reliance involved in a dependency can be of many kinds. For example,
there can be dependency for operation, for success, or for failure avoidance.

3. Qualifiers specify implied dependencies.
4. The parameter, ‘Dependency,’ or its synonym, ‘Depends On,’ is used

to explicitly specify a dependency.
Example:
Z [T]: YY. ‘‘Only if T is true, does Z have a value of YY.’’
A: Depends On: B. ‘‘If B is not true then A is not true.’’
Tag A:
Dependency: XX. ‘‘Tag A has a dependency on XX.’’

Example:
Goal [Contract Beta]: 60%.
This means that the Goal level requirement of ‘60%’ is valid as a Goal if,
and only if, ‘Contract Beta’ is ‘in force.’ The Goal has an implied
dependency on the qualifier, ‘Contract Beta.’

Example:
Dependency: The satellite must be operational for the phone to
operate. <- Catherine.

Example:
Dependency XX: Design Idea XX -> Reliability [USA, If Patent PP].
Example of dependency of an objective (Reliability [USA]), on both a design
idea (Design Idea XX) and a condition (Patent PP). Note: -> ¼ ‘Impacts’.

Planguage Concept Glossary 347

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

This is a ‘weak’ dependency statement because we have no specification of
whether the dependency is trivial or critical in degree. A numeric impact
estimate could be used to give us that information, later, if we wanted it.

Example:
Tag: Refugee Transport.
Type: Function.
Description: Moving refugees back to home villages.
Source: Charity Aid Manual [March, Last Year].
Depends On: The mode of transport will be determined by safety and
cost factors.
Or the equivalent:
Dependency: The mode of transport will be determined by safety and
cost factors.

Example:
Contract Beta: Depends On: Conglomerate Corp [Our Customer, USA].
This means that if ‘Conglomerate Corp [Our Customer, USA]’ is not true,
then ‘Contract Beta’ is not ‘true.’

Rationale: To promote awareness of relationships, ensure more realistic
planning, and provide the ability to identify reliance, and therefore cope
with any associated risks.
Synonyms: Depends On *189.
Related Concepts: Before *312; After *313; Impacts *334; Is Impacted
By *412.

Description Concept *416
A description is a set of words and/or diagrams, which describe, and
partially define, a component.
The parameter ‘Description’ is used to specify description.
Notes:
1. A description will convey the essence of a concept, or of a specification,

but the full definition of the element may well require many other
parameters to define it fully (from all interesting viewpoints), includ-
ing implied or inherited definitions from other system components.

2. Models, real systems and prototypes can also provide a form of
‘description.’
Example:
Mechanical Power:
Type: Function.
Assumption: At least 100 horsepower.
Constraint: Product Cost is lower than 6500.
Risk: Last of European Commission Development Funding.
Version: March 1, This Year.
Description: The mechanical component that will provide all mechan-
ical power to the system.
Note that the function description is only one part of the full function
definition of ‘Mechanical Power.’

Design Constraint Concept *181
A design constraint is an explicit and direct restriction regarding the
choice of design ideas. It either declares a design idea to be

348 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

compulsory (Mandatory Design) or to be excluded (Prohibited
Design).
Design constraints are dictated from an earlier system
development stage (a higher level or a more specialized level). For
example, the system architects pass on a number of design
constraints, within the architecture specifications, to the system
engineers.
A design constraint is a binary requirement. It can be a generic
constraint or involve specific design(s).
Example:
=================== Prohibited Designs ===================
P1: Constraint: Products and Services of direct competitors shall be avoided.
P2: Constraint: No software product version shall be released for sale
until at least 3 month field trial has completed reporting no major faults
outstanding <- Technical Director’s Policy 6.9.
P3: Constraint [Europe]: No goods will be shipped without advance
payment or bank guarantee.
=================== Mandatory Designs ==================
M1: Constraint: Resident Workers in Country of Export shall be used
wherever possible.
M2: Constraint [IT Projects, In House]: Commercial Off The Shelf
Software shall be used exclusively.
M3: Constraint: Products and Services from Our Corporation, Our
Customers and Partners are preferred <- Corporate Policy 5.4.
M4: Constraint [Programming]: Use Java as Programming Language.
Notes:
1. Some people use the term ‘Design Constraint’ to mean anything that

constrains the choice of design. However, within Planguage the term is
more restricted. It is a direct constraint on design ideas themselves;
directly referring to design ideas, generically or specifically. All other
types of requirements ‘constrain’ our choice of design, but not as
directly as a design constraint.
Indirect Constraints:
. A Resource Constraint determines resource, and so impacts optional

design.
. A Performance Constraint determines performance, and so impacts

optional design.
. A Function Constraint determines function, and so impacts optional

design.
. A Condition Constraint determines conditions, and so impacts

optional design.
Direct Constraints:
. Design Constraints determine design directly, by specifying a man-

datory design or a prohibited design.
All requirement types: targets and constraints – have some potential
effect on our design choices. But, design constraints are ‘direct’ in the
sense that they make specific design decisions.
Example:
Spruce Goose:
Type: Generic Design Constraint.
Definition [If Wartime]: A troop transport plane may not use scarce
<metal alloys>.

Planguage Concept Glossary 349

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Howard Hughes’ airplane, ‘The Spruce Goose,’ had this design con-
straint before the end of the Second World War. He made the plane
largely of ‘spruce’ wood.

2. Only designs that are ‘design constraints’ should be allowed within
requirement specifications. All optional design ideas, designs you can
swap out if you find a better one, should be specified in design
specifications. This is so that each level of design responsibility knows
what it is free to do, and not free to do.

Synonyms: Architectural Constraint *181; Design Restriction *181;
Constrained Design: Informal Use; Required Design: Informal Use;
Solution Constraint: Informal Use.
Related Concepts: Constraint *218; Requirement *026; Design Idea
*047; Condition Constraint *498.

Design Engineering Concept *501
Design Engineering is an iterative process of determining a set of
designs, with rigorous attention to quantified and measurable control
of their impact on requirements.
The design engineering process implies the matching of potential and
specified design ideas with quantified performance requirements,
quantified resource requirements, and defined design and condition
constraints.
Notes:
1. Planguage involves design engineering. By contrast, conventional ‘design’

activity (the kind of ‘design’ often found in the literature and in practice)
usually has a less systematic, less quantified process, using perhaps intui-
tion, tradition, and more trial and error, to determine satisfactory tech-
nology and to determine stakeholder satisfaction. It is characterized by
naming objectives (for example, ‘better usability’), and naming designs
(for example, ‘single standard interface’), but not following up with
quantified versions (that is, providing the information captured in Plan-
guage, using such parameters as Scale, Goal, Impact Estimate and Meter).

Related Concepts: Design Process *046; Architecture Engineering *499;
Systems Engineering *223; Engineering *224.

Design Idea Concept *047
A design idea is anything that will satisfy some requirements. A set of
design ideas is usually needed to solve a ‘design problem.’
Notes:
1. A design idea is not usually a requirement. However, a design idea can

be a requirement if it is a design constraint. That is, a specific design is
stated as mandatory or prohibited in the requirements.

2. Requirements are inputs into a design process; design ideas are the
outputs.

3. A design idea can, in principle, be changed at any time for a ‘better’ design
idea (without having to ask the permission of any stakeholders because the
system designers are responsible for the proposed design ideas). A ‘better’
design meets the requirements by giving more performance and/or less cost.

4. A satisfactory design idea can have some negative performance scalar
impacts, and still be acceptable overall. As long as the negative impacts
(negative side effects) of a design idea do not prevent us from reaching
all the required target levels, the design idea can be used.

350 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

5. A design specification is a written definition of a specific design idea.
(See also the design specification template.)

Synonyms: Design *047; Strategy *047; Proposed Solution *047; Means
*047.
Related Concepts: Architecture *192; Policy *111; Design Constraint
*181; Design Specification *586; Design Problem *048.
Drawn Icon: A lying-down rectangle. (The standing rectangle is a docu-
ment icon.)

Design Process Concept *046
The design process is the act of searching for, specifying, evaluating
and selecting design ideas, in an attempt to satisfy specified
stakeholder requirements.
Design is finding a set of solutions (design ideas) for a set of defined
requirements.
Overview of the Design Process:
. Analyze the Requirements
. Find and Specify Design Ideas
. Evaluate the Design Ideas
. Select Design Ideas and Produce Evo Plan
Design can be carried out in several ways. It can be based on tradition,
on intuition, on dogma, on principles or heuristics. It can also be based
on multidimensional quantified logic – this latter we would call
‘engineering’ or ‘systems engineering.’

‘‘ Design comes about entirely from the playing out of the evolutionary
algorithm.’’ <-Susan Blackmore.1

Related Concepts: Design Engineering *501; Systems Engineering *223;
Engineering *224.

Design Specification Concept *586
A design specification is the written specification of a design idea. A set
of design specifications is the main output of a design engineering
process. A specific set of design specifications, when implemented,
will, to some degree, meet the stated requirements.
Notes:
1. A set of design specifications attempts to solve a design problem.

Identification and documentation of the individual design ideas, and
their potential contribution towards meeting the requirements, helps
selection of the ‘best’ design ideas for implementation.

Figure G5
The drawn icon for a Design Idea *047.

1 Blackmore, Susan, The Meme Machine, Oxford: Oxford Paperbacks, 2000, ISBN:

019286212X. See Page 205.

Planguage Concept Glossary 351

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. The design engineering process uses the requirement specification as
input. The design engineering process output is a set of design (solu-
tion) specifications (of design ideas).

3. See the design specification template for details of the required speci-
fication data.

4. The design specifications might contain information about the expected
attributes of the designs for meeting requirements. This ‘expected
attributes’ information of a design specification might be in the form
of an Impact Estimation table or, it can be as simple as an assertion of
impacts on requirements, referenced by their tags (see example below).
Example:
Engineer Motivation:
Gist: Motivate, using free time off.
Type: Design Idea.
Impacts [Objectives]: {Engineering Productivity, Engineering Costs}.
Impacts [Costs]: {Staff Costs, Available Engineering Hours}.
Definition: Offer all Engineers up to 20% of their Normal Working
Hours per year as discretionary time off to invest in Health, Family
and Knowledge {Studies, Write Papers, Go to Conferences}.
Source: Productivity Committee Report 1.4.3.
Implementor: Human Resources Director.

Template: Design Specification Template.
Abbreviations: Design Spec *586.
Synonyms: Technical Design: Informal use; ‘The Design’: Informal use.
Related Concepts: Design Engineering *501; Design Idea *047; Systems
Architecture *564; Architecture *192; Architecture Specification *617;
Specification *137.

Deviation Concept *475
Deviation is the amount (estimated or actual) by which some attribute
differs from some specific benchmark or target. Deviation is usually
expressed numerically using either absolute or percentage difference.
Synonyms: Variance *475.
Keyed Icon: �

DPP Concept *042
Acronym for Defect Prevention Process *042

Due Concept *554
‘Due’ is a parameter indicating when some aspect of a specification is
due.
Example:
Due [Sample A]: End of January Next Year <- Contract Section 3.5.6
[Supplier X].
Synonyms: Deadline *554; Due Date *554.
Historical Note: The idea of ‘Due’ as a parameter was from an unpublished
note by Jens Weber, Daimler Chrysler, Frankfurt.

During Concept *314
‘During’ is used when specifying events (including Evo steps and tasks)
to indicate a time dependency for events that must be carried out
concurrently (that is, done in parallel).

352 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
Step 33: Step: {A During B During C}. ‘‘Do A, B and C concurrently.’’

Elementary Concept *055
An ‘elementary’ component is not decomposed into sub-components.
Notes:
1. A component can be elementary because it is unable to be decomposed into

sub-components, or because there is no declared intent to decompose it.
2. The decision to subdivide a complex concept into elementary concepts

is a practical and economic matter. It depends on:
. the size and complexity of a project
. the need for precise control over system attributes
. the risks taken if specification detail is inadequate
. engineering culture
. intellectual ability to decompose
. other factors.
Even when an initial decision is made about having no further decom-
position of an idea, later events and opportunities, or later more
detailed phases of systems engineering, may cause a concept to be
decomposed into elementary concepts.
The reverse can be true too. Initial decomposition may seem unneces-
sarily detailed or unnecessarily constraining. So, the concept may be
simplified from a complex concept back to an elementary concept.

3. The essential characteristic of scalar attributes, which tells us if they are
elementary, is the number of defined scales of measure. There is only
one distinct Scale for each elementary concept.

4. Elementary concepts are directly measurable or testable. You can only
test or measure a complex concept by way of testing and measuring the
set of its elementary concepts. A complex concept is not the ‘sum,’ but
the ‘set’ of its elementary concepts.

5. Normally an elementary statement can have its own distinct ‘tag,’ and
can be treated (developed, tested, costed, quality controlled) relatively
independently of any other elementary statement.

Related Concepts: Complex *021.

Error Concept *274
An ‘error’ is something done incorrectly by a human being.
Notes:
1. Errors are usually committed unintentionally; they are often forced to

happen by ‘bad’ work processes (Statistical Process Control Theory
(Deming 1986; Juran 1964; 1974)).

2. Human errors in specification processes lead to defects in specification or
evaluations. For example, errors in systems engineering processes result in
(written) engineering and contractual specification defects. In turn, speci-
fication defects result in faults in the system, which may or may not, result
in system malfunctions (the fault actually occurs). See related concepts.

Error/Slip (Specification
Issue) MalfunctionFault/Bug/

System Defect
Specification

Defect

Figure G6

Planguage Concept Glossary 353

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

3. SQC is a means of checking specifications to discover whether errors
have been made. Any suspected violation of any applicable specifica-
tion rule is logged as an issue.

‘‘ To err is human.’’
Saying, and similar to Plutarch (AD 46–120) ‘‘ For to err in opinion, though
it be not part of wise men, is at least human’’.

Synonyms: Slip *274.
Related Concepts: Specification Issue *529; Specification Defect *043;
Fault *339; Malfunction *275.

Estimate Concept *058
Anestimate is anumeric judgmentabouta future, presentorpast level of a
scalar system attribute. (This includes all performance and cost attributes.)
Notes:
1. Estimates are usually made where direct measurement is:

. impossible (future), or

. impractical (past), or

. uneconomic (current levels).
2. An estimate is usually extrapolated from available information, and

past experience.
3. An estimate can be made for numeric facts from the past (benchmarks),

even if precise past data is not available.
4. Estimates are made about any scalar system attribute: cost levels, resource

availability, quality levels, savings and other dimensions of systems.

Estimate, To Concept *059
In Planguage, to ‘estimate’ is:
The process of arriving at a judgment by guessing the probable
numeric value of a numeric attribute level using other methods than
immediate measurement.

Estimate: ‘‘to judge or determine generally but carefully (size, value, cost,
requirements, etc.); calculate approximately.’’

Webster’s New World Dictionary

Estimation is not to be confused with Quantification or Measurement.
(See figure in concept, ‘Quantify, To *385’.)
Related Concepts: Estimate *058; Quantify, To *385; Specify, To *239;
Measure, To *386.

Event Concept *062
An event is a specified occurrence.
Example:
. President Inaugurated
. Process Begun
. Process Ended
. Task Started
. Task Interrupted
. Contract Signed
Notes:
1. ‘Event’ is not used here in the ‘organized occasion’ sense of the term. In

other words, it is not used in the sense of a ‘wedding’ or a ‘gala opening
of a building’ being an ‘event.’

354 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. An event is not the ‘carrying out’ of an activity, such as performing a
task, a process, or some systems engineering implementation (like
implementing an Evo step).

3. An event must be clearly distinguishable from the non-occurrence
of the event. It must be reliably observable, testable or measurable in
the real world. Consequently, events must be precisely defined –
unambiguously.
However, the occurrence of an event is not the same as our measure-
ment of it. An event occurs whether or not it is immediately detected
or measured.

4. An event usually results in some measurable change in a status. If a
specific event has occurred, then any status associated with the event
will have changed. By evaluating the relevant event condition, the
setting of a status can be determined.

5. An ‘event condition’ can be defined as a qualifier condition – the event
must have happened for the qualifier condition to be true.
Example:
Goal [First Sale]: 9% Or Better.
First Sale: Event: We make our first sale of refrigerators to the USA.
Past [Last Year, Europe, First Flight]: 98%.
First Flight: Type: Event. Description: Successful first flight <officially
logged>.

6. To attempt a more detailed definition:2 An event is an occurrence (a
set of circumstances, which include changes in status), localized in
space and time, which results from some activity and which is sig-
nificant as an indicator of progress or as a stimulus (acts as a trigger) for
other activity.

7. An event can be defined in time and space (theory of relativity), but it can
be conceived of, specified and defined without time and space coordinates.

Synonyms: Happening; Occurrence; Point (in space-time).
Related Concepts: Qualifier *124; Condition *024; Status *174.

Evidence Concept *063
Evidence is the historic facts, which support an assertion. The evidence
usually will have been the basis for making an assertion.
In Impact Estimation, evidence is required for each impact estimate.
Where there is no evidence, it should be clearly stated that there is none.
Example:
Design B -> Goal 1.
Scale Impact: 10 minutes.
Evidence: Of 100 surveyed Customers last year, 30 agreed there was this
level of impact on Goal 1 <- Marketing Report A123.

Evo Concept *355
Abbreviation for Evolutionary Project Management *355 and Evolution-
ary *196.
Readers will have to bear with me that I use this abbreviation for both
‘Evolutionary Project Management’ and ‘Evolutionary.’ The underlying
concept is the same <-TG.

2 With thanks to Don Mills, New Zealand.

Planguage Concept Glossary 355

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Evo Plan Concept *322
An Evo plan is a set of sequenced and/or a set of yet-to-be sequenced
Evo steps. The current planned sequence of delivery of any of the steps
should be reconsidered after each Evo step has actually been
delivered and the feedback has been analyzed. Many factors,
internal and external, can cause a re-sequencing of steps and/or the
insertion of previously unplanned additional step(s) and/or the deletion
of some step(s).
It is the identification of the next Evo step for delivery that should be our
focus for detailed practical planning. After all, at an extreme, the other
planned steps may never be implemented in practice.
Notes:
1. For the Evo steps, an Evo plan is likely to specify only the tag names.

Detailed specification of an Evo step will be held in its step specifica-
tion.

2. An Impact Estimation table may be included in an Evo plan. Such a
table would hold the estimates for the impacts of each of the Evo steps,
and the feedback after delivery of each of the Evo steps. The progress
made could then be tracked against the Evo plan estimates.

Synonyms: Evolutionary Plan *322; Evolutionary Delivery Plan *322.
Related Concepts: Evolutionary Project Management (Evo) *355; Evolu-
tionary *196.
Drawn Icon: A series of any number of steps, each one representing an
Evo step.

Evo Step Concept *141
An Evo step (‘evolutionary step’ or simply ‘step’) is a ‘package of
change,’ containing a set of design ideas that on delivery to a system
is intended to help move the system towards meeting the yet-unfulfilled
system requirements.
Evo steps are assumed to be small increments, typically a week in
duration or 2% of total budget. There are two purposes for Evo steps:
to move us towards the long-range requirements, and to learn early
from stakeholder experience (with a view to changing plans and
designs early).
Notes:
1. Evo Step Content: A step will contain the ‘means’ for meeting speci-

fied ‘ends’ (requirements). It will contain some combination of design
ideas, which aim to achieve the requirements.

2. Dynamic Step Sequencing: Evo is conceptually based on the Plan-Do-
Study-Act cycle. An Evo plan for a project consists of a planned series of
Evo steps sequenced in order for delivery. Step sequencing for delivery
can be roughly sketched or planned in actual time sequence. Step

Figure G7
The drawn icon for Evo Plan *322 consisting of several Evo Steps *141.

356 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

sequencing always remains finally contingent upon actual feedback
results, and on external considerations such as new requirements, chan-
ging priorities or new technology. The step delivery sequence is deter-
mined dynamically, after the previous step results are analyzed (Study
Phase) and a decision is made about the next step (Act Phase). Selecting
the next step for delivery is the main focus of Evo planning activity.

3. Step Priority: Steps with the highest stakeholder value to cost ratios or
performance to cost ratios ought to be scheduled for early delivery.
Step dependencies have also to be considered.

4. Step Size: A step is typically, but not unconditionally, constrained to
be between 2% and 5% of a project’s total financial budget and total
elapsed time. Why? Well, because 2% to 5% is a reasonable amount of
resource to gamble, if you are not absolutely sure whether a step will
succeed.

5. Step Specification: An evolutionary step specification is the written
description of the step content; that is, specification of the list of design
ideas involved.

6. Step Lifecycle Location: A step is developed and delivered within a
result cycle: any necessary step development occurs as part of the
development cycle, any step production required occurs as part of
the production cycle, and step delivery takes place as part of the
delivery cycle.

7. Step Content Reuse: It is possible for the same step content to be
repeated in several different steps (that is, in effect a ‘roll-out’ across a
system, over time, such as to different countries or states or branch
offices). In such cases, the step specifications will differ only in the
qualifiers. For example, Step 1: Function XX [California], Step 2:
Function XX [New York], and so on.
Example:
S23: Step [<Time, Place, Event to be determined>]: F1, F2 [Europe],
D3 [China].

8. The main difference between an Evo step package (above example
with undetermined qualifier) and a delivery-specified Evo step is that
the latter has been assigned a sequence or timing and a place of
application qualifier. The Evo step package is just a specification of
the step contents. An Evo step package can be deployed in multiple
times and places. You could say that an Evo step package is a reusable
specification. For example, every week it could be to different
countries.

Design Idea 1
&

Design Idea 2

Design Idea 1
&

Design Idea 2

Design Idea 1
&

Design Idea 2

[First Release,
California]

[Third Release,
Oregon]

Figure G8
Evo Step packaging. Delivery-specified Evo Steps: same underlying step specification, but
two different times and places.

Planguage Concept Glossary 357

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Synonyms: Step *141; Evolutionary Step *141; Build, Increment, Install-
ment, Release: Near synonyms depending on whether there is use of
feedback and dynamic change (Royce 1998).
Related Concepts: Evo Step Specification *370; Evo Plan *322; Evolu-
tionary *196; Evolutionary Project Management (Evo) *355; PDSA
Cycle *168: See also the individual Plan, Do, Study, Act components;
Result Cycle *122; Development Cycle *413; Production Cycle *407;
Delivery Cycle *049; Result *130: Synonym is Step Result.
Keyed Icon: ->J or ->:) ‘‘Symbolizing ‘Impact’ on stakeholder. The J
symbol is sometimes automatic ‘correction’ for the colon and right
parenthesis keyed symbols, in Microsoft Word.’’

Evolutionary Concept *196
The ‘evolutionary’ concept implies association with Evolutionary Project
Management; an iterative process of change, feedback, learning and
consequent change. Evolutionary processes needs to be carefully
distinguished from other processes – those that do not iterate, do not
learn from experience, and do not cater for change.
Abbreviation: Evo *196.
Related Concepts: Evolutionary Project Management *355; Evo Plan
*322; Evo Step *141; Plan-Do-Study-Act Cycle *168.

Evolutionary Project Management Concept *355
A project management process delivering evolutionary ‘high-value-
first’ progress towards the desired goals, and seeking to obtain, and
use, realistic, early feedback.
Key components include:
. frequent delivery of system changes (steps)
. steps delivered to stakeholders for real use
. feedback obtained from stakeholders to determine next step(s)
. the existing system is used as the initial system base
. small steps (ideally between 2%–5% of total project financial cost and time)
. steps with highest value and benefit to cost ratios given highest priority

for delivery
. feedback used ‘immediately’ to modify future plans and requirements

and, also to decide on the next step
. total systems approach (‘anything that helps’)
. results-orientation (‘delivering the results’ is prime concern).
Description: Chapter 10, ‘‘Evolutionary Project Management: How to
Manage Project Benefits and Costs’’.
Abbreviation: Evo *355.
Synonyms: Evo Management *355; Evolutionary Delivery Management
*355; Rapid Delivery Management (Acronym: RDM), Result Delivery
(These synonyms are used within Jet Propulsion Labs. (Spuck 1993);
Synch-and-stabilize or Milestone Approach (These synonyms are used
within Microsoft (Cusumano and Selby 1995); None of them are perfect
synonyms, but since each author and company has a long list of extremely
similar features that make up these processes, they are close enough.
Historical Note: Evolutionary Project Management had an early large-scale
documented use in the Cleanroom techniques used by Harlan Mills within
IBM in the 1970s (Mills 1980). Larman and Basili (2003) gives a compre-
hensive history of the method.

358 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Except Concept *389
‘Except’ is used to specify that the following term or expression is an
exception from the previous term or expression.
Example:
Goal [Europe Except {Denmark, France, Luxembourg}]: 20%.

Fail Concept *098
‘Failure’ signals an undesirable and unacceptable system state. A Fail
level specifies a point at which a system or attribute failure state begins.
A single specified number (like Fail: 90%) is the leading edge of a Failure
Range.
A Fail parameter is used to specify a Fail level constraint; it sets up a
failure condition.
Notes:
1. Failure ranges can be arbitrarily stipulated by a stakeholder. They

might be stated in a contract. They are specified so as to keep
designers and implementers aware of the levels at which stakeholders
are likely to experience failure, or to contractually declare some
degree of failure.

2. A failure range maps an extent of unacceptable levels. The failure range
is better than ‘catastrophic’ levels, and worse than ‘acceptable’ levels. In
other words, the failure range extends from the defined Fail level in the
direction of ‘worse’ until a Survival level (or Catastrophe level) is
reached.

3. The purpose of the ‘Fail’ concept is to inform us that we need both to
design for, and operate at, more acceptable levels.
Example:
Fail [Euro Release]: 99.5%.
For example, a state of failure can result from issues such as safety
problems, operator discomfort, customer discomfort, loss of value, and
loss of market share. Failure levels cause problems, even temporary
system loss, but they are not immediately critical to a system’s con-
tinued survival. The assumption is that it is possible to get the system
out of a failure range.

4. Fail levels do not represent total failure. That role is defined by catastrophe
levels. However, system development should keep going until, at least, the
actual system levels are better than the specified failure levels. Otherwise,
they are delivering some degree of failure to some stakeholder; that is, the
system or attribute will at some stage fail in some sense.

5. A Fail constraint specification means that some defined stakeholder has
stated the level at which the attribute’s numeric value becomes unac-
ceptable to them. Any level equal to or worse than the Fail level, is
outside the ‘acceptable’ range for that stakeholder.

6. A systems engineer should document why a specific Fail level was
chosen (using Rationale or similar), and the likely impacts (using
Impacts) and consequences of any failure (using Risks), so that risk
analysis and prioritization can be carried out.
Example:
Learning Time:
Scale: Mean Time to Learn defined [Task] by defined [Operator].
Fail [Outgoing Call, Beginner]: 3 minutes <- Marketing Requirement
3.4.5.

Planguage Concept Glossary 359

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Risk: If the Mean Time is not lower, then Competitor Products will be
perceived as better and we will lose <market share> <- Marketing
Planner [Andersen].
Fail [Address List Update, Professional User]: 30 seconds <- Market-
ing Requirement 3.4.6.
Authority: External Consultants. ‘‘Outside consultants tell us we will
be rated badly if we fail to beat this level.’’
Goal [Average Task, Average User]: 25 seconds <- Marketing
Requirement 3.4.7.
Rationale: Marketing believes this will make us best in the Market.
The local parameters, Risk, Authority and Rationale can be used to explain
why scalar levels have been set at specific levels. Note that the Source(s) of
information (format: ‘B <- Source of B’) give indirect authority for the
specification levels. (The Goal specification is included here to give a more
realistic specification example.)

Synonyms: Fail Level *098; Fail Limit *098; Failure Level *098; Failure
*098; Warning *098; Must (Avoid) *098: Historical usage only.
Related Concepts: Survival *440; Catastrophe *602; Range *552: See
‘Failure Range’; Must Do *539: Historical usage only.
Keyed Icon: ! ‘‘In context on scalar arrows: ---!--->O---!--->
A Failure Range would use multiple Fail icons: ----!!!!!!--->-> ’’

Frontroom Concept *343
Frontroom is an adjective or noun, referring to a conceptual place,
used to describe any project management processes or activities, in
Evo, that are visible to the Evo step recipients.
Notes:
1. Typically, ‘frontroom’ is used to refer to the delivery cycle part of the

result cycle. The frontroom is where the step is delivered to the
stakeholders.

2. The frontroom is where stakeholder-level results of the step integration
can be tested and measured.

Related Concepts: Backroom *342.

Function Concept *069
A function is ‘what’ a system does.
A function is a binary concept, and is always expressed in action
(‘to do’) terms (for example, ‘to span a gap’ and ‘to manage a
process’).
Notes:
1. A function has a corresponding implied purpose. For example ‘to span

a gap’ usually has as an implied purpose to enable something to get
from point A to point B over the gap.

2. Function is a fundamental part of a system description: a system
consists of function attributes, performance attributes, resource (cost)
attributes and design attributes. All attributes exist with respect to
defined specified conditions.

3. All the system attributes must be described together, in order to fully
understand a real world system. Function is a ‘pure’ concept, which
cannot exist in the real world alone. Functions need to have associated
with them, the relevant performance and resource attributes.

360 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Further, functions can only exist and successfully interact with the real
world if they have certain minimal levels of such attributes, for exam-
ple, levels of availability.

4. Function is a system attribute that is expressed without regard to the related
performance, cost and design. A function needs to be clearly distinguished
from design ideas. Design ideas are a real world method for delivering all
the function, performance and cost attributes of a system.

5. Function itself is binary. Function in a system is either implemented or
not. It can be tested as present or not. Any real implemented function
will have some associated performance and cost attributes – whether
we planned for them or not. Once a design with the required func-
tionality is specified (or later implemented), we need to consider
whether that particular design has satisfactory performance and
resource (cost) attributes. In other words, we control these scalar
attribute’s levels mainly by specifying appropriate design options,
which deliver the required performance and cost levels.

6. A function can often be decomposed into a hierarchical set of sub-
functions. For specification clarity, prefixes such as ‘sub-’, ‘supra-’ or
‘family’ relationships (such as kid, parent, sibling) can be used to
express the relationships amongst the different functions. Alternatively,
the parameters, Includes, Is Part Of and Consists Of can be used.

7. I have intentionally chosen the term ‘function’ as the adjective for
‘function’ (for example, in ‘function specification’ and ‘function
requirement’), rather than the more common ‘functional.’ It is the
‘requirement for function’ that is being expressed, rather than ‘making
the requirements functional.’ The logic of this choice is the same as for
choosing ‘quality’ (for example, in ‘quality requirements), rather than
‘qualitative.’

Related Concepts: Attribute *003; Design Idea *047; Mission *097;
Function Design *521.
Drawn Icon: An oval (a circle would also be considered a function.)
Keyed Icon: O or parentheses, () ‘‘In context: ------->O------> This
describes a system: the function keyed icon, ‘O,’ is combined with two
scalar arrows representing scales of measure for cost and performance
attributes. Alternatively: ----->(<function tag>)----> ’’

Function Constraint Concept *469
A function constraint is a requirement, which places a restriction on the
functionality that may exist in a system.
A function constraint is binary: it specifies that a specific function must
be, or must not be, present. The implication is that some kind of failure
will result if a function constraint is not met (such as contract penalties).
Example:
No New Games:
Type: Function Constraint.

Function

Figure G9
The drawn icon for Function *069.

Planguage Concept Glossary 361

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Rationale: No new games of any kind will be available on the new
product.
Definition: No functionality required solely for a New Game is to be
developed.
Support for Old Games [Release 1]:
Type: Function Constraint.
Rationale: All available games from our older product will be available to
any customer on request. Some customers would be upset at losing the
existing games.
Definition: Functionality to support Old Games must be included.
Related Concepts: Function *069; Function Target *420; Requirement
*026.

Function Design Concept *521
Function design is a design primarily aimed at satisfying specified
function requirements. A specified function design has two
characteristics, which we primarily select it for:
. function requirement satisfaction, and
. satisfactory consequent levels of performance and cost attributes.
Example:
Cross River:
Type: Function Requirement.
Definition: Move people and goods from one shore to the opposite
shore of a river.
Function Design Ideas [Version 1]: {Build a Bridge, Use a Boat,
Swim Over ‘‘minimal design,’’ Take Route ‘Around’ the River, Fly
Over}.
Consideration of potential design ideas: Function Design Ideas [Version 1]
shows selecting on function satisfaction: some function designs, which satisfy
the function requirement.

Example:
Function Design Ideas [Version 2]: {{Build a Bridge and/or Use a Boat},
Not {Swim Over, Take Route ‘Around’ the River or Fly Over}}.
Function Design Ideas [Version 2] shows further selection using knowledge
of performance and resource (cost) attributes: The function designs that look
most promising for the system.
Notes:
1. The final real performance and cost levels delivered is dependent on

the specific design chosen (for example, exactly what specific design of
bridge, or specific type of boat).
Functional design necessarily narrows the remaining design scope to
some degree. It can even narrow the design scope to a set of function
designs without actually taking a final choice of specific design (for
example, Build a Bridge and/or Use a Boat – without yet saying exactly
which type). The final design specification would then be left to a
downstream design process.
This delay might be justified by their more specialized knowledge
downstream, or justified by the advantage of putting off the decision
due to changed technology/market conditions/costs, or due to an
advantage of making the decision in the context of many other sys-
tem/project-wide decisions (avoiding sub-optimization).

362 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. Any function design in its real implementation (as opposed to pure
function specification) will impact many of our non-function require-
ments (performance requirements, resource (cost) requirements, con-
dition constraints or design constraints). This multiple impact is
inevitable whether we like it or not. We cannot, it seems, only design
for one pure requirement dimension without having some effects on
the others.
When a design is primarily specified for non-function purposes (like
improving a quality level), it might inadvertently impact existing
functionality as a side effect. This might possibly be acceptable. It
might introduce new function, modify old function or make existing
function inaccessible totally or practically.

3. The key reasons for considering function design, as a distinct design
type, is that:
. you can narrow the function design scope gradually
. you become more conscious of the side effects on performance and

cost
. you become more conscious of the necessity of choosing function

design alternatives on the basis of their impacts on performance and
cost.

. you can separate the design rationale for the function, from con-
sideration of the other attributes.

Related Concepts: Function *069; Function Requirement *074; Design
Process *046; Design Specification *586.

Function Requirement Concept *074
A function requirement specifies that the presence or absence of a
defined function is required.
A function requirement is binary, and can either be a specific function
target or a generic function constraint.
Example:
Voice Recognition:
Type: Function Requirement.
Definition: The ability to recognize a human voice in terms of vocabu-
lary and individual voiceprints.
Step 1: Step: Voice Recognition [Europe, If Company C has this
function on the market].
Voice Recognition is defined as a function. It is then ‘required’ to be
delivered in Evo step ‘Step 1,’ only in ‘Europe’ and only if ‘Company C
has this function on the market.’ A specific design to implement Voice
Recognition needs to be specified.
Notes:
1. Do not include technical design ideas in function requirements.

Designs are quite different from functions. If designs are mandatory,
then they should be specified as design constraints. A function is an
abstract concept specifying activity of some kind, which is implemen-
ted by a design. For example: An accounting application (a design)
provides a solution to support Maintaining Accountancy Information
(a defined function).

2. Distinction should be made between a function target and a function
constraint. A function constraint implies that a function must be

Planguage Concept Glossary 363

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

present or absent (subject to its qualifier conditions) in a system, or a
penalty of some kind will be incurred.

3. By default, if there is no information that a function requirement is
actually a function constraint, or ‘Type: Function Constraint’ specifi-
cation, a function requirement is assumed to be a function target.

4. To authority levels, which are lower than the one that specified it, a
function target does become mandatory. If a lower authority disagrees
with a requirement they have to take the issue up with the higher authority.

5. A function requirement is satisfied by any design, which meets the
function description. For example, {transport via a bridge, transport by
air, transport across water} all meet the function requirement ‘to transport
people from shore to shore of a river.’ Note, in this example, the designs
are high-level and are actually functions. They can be termed ‘function
designs.’ A lower, more specific level of design {by public transport over a
bridge, by hot-air balloon, by canoe} can also be considered.
At the early rough stages of design, function requirements are best satisfied
by rough function designs (like ‘bridging the river’). At the latter stages of
design, specific designs are better, like ‘rope bridge.’ The issue is that the
more specific a design is, the less freedom of design choice remains, but the
greater the knowledge of its attached performance and resource attributes.
For example, the quality attributes of a software package selected to satisfy
the function requirement, like reliability and portability.

Synonyms: Functional Requirement *074.
Related Concepts Function Target *420; Function Constraint *469;
Function Design *521; Function *069.

Function Target Concept *420
A function target is a specified function requirement. We need to plan
delivery of the function under the specified conditions.
A function target can be contrasted with the other class of function
requirement, a function constraint. A function constraint specifies
mandatory functionality (either a function has to be present or
absent), as a penalty of some kind will result if the constraint is not met.
Example:
Propulsion Capability:
Type: Function Target. ‘‘Could also be termed a Function Require-
ment.’’
Description: A means to mechanically drive the vehicle around in three
dimensions.
Basic definition of a function target.

Example:
Step 22:
Type: Evo Step.
Dependency: Step 23 completed successfully.
Step Content: Propulsion Capability [Version¼Prototype, Capabil-
ity¼ Surface Movement, Means¼Electrical-Powered].
Exploitation of the function target specification by referencing its tag in an
Evo step plan, with suitable qualifiers. Notice how the qualifiers make the
generic function somewhat more specific.
Related Concepts: Function Constraint *469; Function Requirement
*074; Target *048; Function *069.

364 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Fuzzy Concept *080
A specification, which is known to be somewhat unclear, potentially
incorrect or incomplete, is called ‘fuzzy.’ It should be clearly declared
as ‘fuzzy.’
The keyed icons ‘<>’ are used to explicitly mark any fuzzy specifications.
Example:
Scale: <define units of measure>.
Note: This is a template with a hint in fuzzy brackets.
Goal [<Europe>, <2005>]: <66%>.
Rationale: The idea is to avoid forgetting to improve specifications, and
to avoid misleading other people into thinking you have done your
potential best, when you know better should be done, when you have
time and information, in order to define specifications at the necessary
quality level.
Notes:
1. The obligation to mark dubious specifications with fuzzy brackets is

typically adopted as a generic specification rule.
2. In general, a fuzzy term or expression should be enclosed in <fuzzy

brackets>, but alternative notations (such as ‘??’) can also be used.
3. Fuzzy brackets are used in electronic templates to indicate something

to be filled out, and usually to give a hint as to what should be filled
out. See Scale in example above.

4. A fuzzy specification essentially amounts to a declaration by the writer
that the specification is defective at that point.

Keyed Icon: <fuzzy term>

Gap Concept *359
For a scalar attribute, a gap is the range from either:
. an impact estimate, or a specific benchmark (usually the current
level),

. to a specific target (or occasionally, to a specific constraint).
Notes:
1. In general, the larger the gap, then the greater the need to deal with it

(‘the higher the priority’) in order to reach the target or constraint. Of
course, large gaps could be easy and some small gaps could be difficult,
so that is why this paragraph says ‘ in general.’

2. When a gap no longer exists for a specific scalar attribute, then that
attribute ceases to have ‘claim on project resources’ (priority). It then
has no priority.

Related Concepts: Range *552; Design Problem *048.

Gist Concept *157
A Gist parameter is used to state the essence, or main point, of a
specification. A Gist is a summary of the detailed specification.
Notes:
1. A good Gist serves two purposes:

. it helps a planning group to agree on the summary of a specification,
before they spend more time formulating the specification in greater
detail.

. it summarizes a detailed specification. This serves several purposes:
– readers can quickly grasp the subject matter
– readers can decide to avoid the detail

Planguage Concept Glossary 365

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

– presenters can refer to a specification by using just its tag name
and Gist. (A reader who needs more detail can ‘drill down’ to the
detail using the tag name.)

Example:
Gist: All the functions related to transportation of people.

Example:
Software Interfaces:
Type: Architecture.
S: The total set of software interfaces needed for this project.

2. The detailed specification may already exist, or it may be made on the
basis of an agreement about the Gist.

3. When summarizing a scalar specification, use the more specific para-
meter ‘Ambition.’

Synonyms: Summary *157.
Related Concepts: Ambition *423.
Keyed Icon: S ‘‘Greek Summa, mathematical summary symbol.’’

Goal Concept *109
A goal is a primary numeric target level of performance. An implication
of a Goal specification is that there is, or will be, a commitment to
deliver the Goal level (something not true of a Stretch or Wish target
specification). Any commitment is based on a trade-off process,
against other targets, and considering any constraints. The specified
Goal level may need to go through a series of changes, as
circumstances alter and are taken into consideration.
A specified Goal level will reasonably satisfy stakeholders. Going beyond
the goal, at the cost of additional resources, is not considered necessary
or profitable – even though it may have some value to do so.
A Goal parameter is used to specify a performance target for a scalar
attribute.
A Goal level is specified on a defined scale of measure with its relevant
qualifying conditions [time, place, event].
Notes:
1. To reach a Goal level is a success to specific stakeholders. It is also a sort of

‘stop’ signal (a red light) for use of project resources on the specific
performance attribute concerned: although better levels might be reached,
and might be of value to some, they are not called for, under the stated
conditions. For example, the additional value gained, given the estimated
costs, is not viewed as worthwhile. In economic terms, we have at the Goal
level probably reached the point of diminishing return on investment.

2. ‘Goal’ is intentionally not used for resource targets (‘Budget’ is used
instead).

3. I now prefer the term ‘Goal’ instead of my traditional ‘Plan’ parameter.
‘Plan’ refers to so many other elements of planning. If an alternative
were needed for Goal, I would use the more explicit ‘Planned Level.’
Example:
Glory: ‘‘Humpty’s and Alice’s problem, what does ‘glory’ mean?’’
Scale: Number of Literature Citations to a defined [Person’s Work]
during a defined [Time Span].
Goal [Person’s Work¼The Academic, Time Span¼ Each Decade]:
Over 1,000 <- Prof. H G. ‘‘That is glory!’’

366 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Synonyms: Plan *109: Historic usage only; Planned Level *109: Historic
usage only; Goal Level *109: See Level *337; Planned Goal *109.
Related Concepts: Aim *001; Target *048; Stretch *404; Wish *244;
Ideal *328; Objective *100.
Keyed Icon: > ‘‘A single arrowhead, on a performance arrow, pointing
towards the future. It is the same icon as for Budget *480 (which is on a
resource arrow, --->--->O).
In context: O---->---->
Always use an output arrow from a function oval to represent a perfor-
mance attribute. The Goal icon is the ‘>’ on the scalar arrow. If other
scalar levels are shown, the positioning of the tip of the icon symbol
should reflect the Goal level relative to these other levels.’’

Icon Concept *161
In Planguage, an icon is a symbol, that is keyed (Keyed Icon) or drawn
(a Drawn Icon), that represents a concept. All icons are graphic or
pictorial in nature – they should not use words or national languages.
Related Concepts: Keyed Icon *144; Drawn Icon *085; Symbol *161.

IE Concept *283
Acronym for ‘Impact Estimation’.
Historical Note: History of the development of Impact Estimation: I’ve devel-
oped the IE method in the course of my consultancy work. I originally started
in the early 1960s with multidimensional evaluation models, which were
later published (in 1968 at the Nord Data Conference) as ‘Weighted Ranking
by Levels’ or the MECCA method. By the 1970s, I had adopted a table
format. This was chiefly inspired by the ‘Requirements/Properties Matrix’
presented by Dr. Barry Boehm, then of TRW Systems, in his 1974 IFIP
Speech in Stockholm. The main difference in my approach was that I wanted
to provide a more quantified method; while I liked the idea of the matrix
structure, I found the TRW implementation too fuzzy. See my ‘Software
Metrics’ book (Gilb 1976 Out of Print). Finally, by the mid-1980s, I had
the basics of Impact Estimation (IE), which was described in my Principles of
Software Engineering Management (Gilb 1988) book. Subsequently, during
the early 1990s, we (Kai Gilb and I) added credibility evaluation and the use
of graphical ‘skyscraper’ representation. I have also recently started using IE to
explicitly outline evolutionary step sequences.
Notes:
Key Differences: Impact Estimation and QFD. I am frequently asked to
compare IE with Quality Function Deployment (QFD) (Akao 1990).
The key difference between IE and QFD tables lies in the degree of
quantification. In QFD, the objectives are rarely stated quantitatively,
design ideas tend not to be formally specified, cost is hardly ever con-
sidered and the evaluation of the impact of the design ideas is not numeric
(usually only an assignment of ‘weak’, ‘medium’ and ‘strong’ is made).
Also, there is no attempt at citing evidence, sources or credibility.

If Concept *399
‘If’ is a logical operator used in qualifiers to explicitly specify conditions.

Planguage Concept Glossary 367

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. The ‘If ’ is implied for all terms in a qualifier. However, ‘If ’ may be

used to communicate a condition more explicitly to the novice reader.
Example:
Goal [USA, If Law 153 Passed]: 99.9%.
Goal [If Europe, If Product XYZ Announced]: 60%.

Synonyms: IF *399.
Related Concepts: Qualifier *124; Condition *024.

Impact Concept *087
An ‘impact’ is the estimated or actual numeric effect of a design idea
(or set of design ideas or Evo step) on a requirement attribute under
given conditions.
Notes:
1. Full impact information includes the following: a scale impact, a

percentage impact and uncertainty data (known error margins). The
additional related information required to support an impact includes
the evidence, source(s) and credibility.

2. If an impact is estimated, it is an Impact Estimate *433.
Related Concepts: Impact Estimate *433; Impacts *334.

Impact Estimate Concept *433
An impact estimate is an evaluated guess as to the result of
implementing a design idea. In other words, it is a considered,
quantified guess of the effect on a specific scalar requirement
attribute (performance or resource) of implementing a design idea
(or set of design ideas) in a system (or system subset) under stated
conditions.
A full impact estimate includes the following: a scale impact, a
percentage impact and uncertainty data (known error margins). The
additional related information required to support an impact estimate
includes the evidence, source(s) and credibility.
Notes:
1. An impact estimate can be positive, neutral or negative (undesirable in

relation to stated target levels).
2. Note the distinction between a scale impact (an absolute numeric value on a

Scale), and a percentage impact (the percentage improvement estimated to
be achieved in moving from the chosen baseline towards the chosen target).

3. An impact estimate is usually concerned with the system improvement,
rather than with stakeholder value (however, this depends on the
choice of requirement attribute: stakeholder value can be tackled, for
example, Financial Saving).

4. An impact estimate is usually on a scalar requirement. However, much
more rarely, it can be on a binary requirement of the system (that is, on
a function requirement, a design constraint or a condition constraint).
This is used in situations where an explicit check is considered neces-
sary to help evaluate design ideas.

Abbreviations: Impact *433 ‘‘Often ‘Impact’ is short for ‘Impact Esti-
mate’. See also Impact *087.’’
Related Concepts: Impact *087; Scale Impact *403; Percentage Impact
*306; Side Effect *273.

368 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Impact Estimation Concept *283
A Planguage method/process used to evaluate the quantitative
impacts of design ideas on requirements.
Description: Chapter 9, ‘‘Impact Estimation: How to Understand Stra-
tegies and Design Ideas.’’
Acronym: IE *283.

Impacts Concept *334
The ‘Impacts’ parameter is used to identify the set of attributes that are
considered likely to be impacted by a given attribute (usually another
requirement attribute or a proposed design idea).
Notes:
1. ‘Impacts’ can be used to capture Impact Estimation table relationships

before actual numeric estimation.
2. ‘Impacts’ differs from ‘Supports’ in that it can be used to identify side

effects, including negative side effects, as well as the intended direct
positive impacts.
Example:
Design Idea 1: Handbook Impacts {Learning, Development Cost}.
or
Design Idea 1: Handbook -> {Learning, Development Cost}.

Keyed Icon: ->
‘‘The ‘Impacts’ arrow is only valid in the context of tags referring to things
that can impact one another.’’
Example:
Design A -> Requirement B.
Related Concepts: Supports *415; Is Impacted By *412.

Includes Concept *391
‘Includes’ expresses the concept of inclusion of a set of components
within a larger set of components. ‘A Includes B.’ means that B is a sub-
component of the component A.
Example:
B: Includes {C, D, E}.

Example:
Bee.Wings ‘‘Wings is a member of supra concept, or parent concept,
Bee.’’
Bee: Includes {Wings, Legs, Eyes, Sting, Body}.
Bee: {Wings, Legs, Eyes, Sting, Body}. ‘‘Includes is implied by the set
parenthesis.’’
Alternative formats and synonyms for Includes.
Related Concepts: Consists Of *616.
Keyed Icon: { } ‘‘In context, X: {A, B} means X includes A and B.’’

Incremental Development Concept *318
Incremental development means designing a system largely up-front,
and then dividing its construction, and perhaps handover, into a series
of cumulative increments.

Planguage Concept Glossary 369

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. Incremental Development is defined here in order to contrast it with,

and distinguish it from, Evo:
. Incremental development differs from Evo in that most all of the

Incremental Development requirements design effort is up-front. In
contrast Evo carries out requirements and design detailing gradually
in each Evo cycle

. Incremental development is without Evo’s intent of measuring the
progress of each (incremental) step fully (for example, measuring
delivered performance levels), then learning from these feedback
measures and, changing the requirements and/or design accordingly

. Incremental development is also without the intent of delivering the
steps (increments) with the highest ‘value to cost ratio’ or ‘perfor-
mance to cost ratio’ first.

2. It is unfortunately common practice to say or write ‘incremental’ when the
strictly correct term according to the distinctions defined here is ‘evolu-
tionary.’ Indeed, all evolutionary processes are also incremental, but they
are a subclass deserving distinctive terminology to announce the differ-
ences. This ‘lazy’ use of the term is a sure sign of people who do not
have deep understanding, or concern for, the value of feedback
and change. Beware of their advice or opinions! The US DoD (DoD
Evo 2002 http://www.acq.osd.mil/dpap/ar/1_multipart_xF8FF_2_EA
%20SD%20Definitions%20final.pdf), among others, has taken the trou-
ble to carefully distinguish these concepts!

Related Concepts: Evolutionary Project Management (Evo) *355.

Incremental Scale Impact Concept *307
For a scalar requirement, this is the numeric impact of a design idea
relative to the specified baseline level. If there is a negative impact,
then the numeric value will be negative.
Scale Impact – Baseline¼ Incremental Scale Impact
Example:
Consider an objective concerning say, a ‘Customer Response Time,’
with a defined Scale of ‘Minutes to Wait.’ If the Baseline was ‘Past: 20
minutes to wait’ and the Target was ‘Goal: 5 minutes to wait’ and, the
Scale Impact (estimated or actual) of Design Idea X on Customer
Response Time was a result of ‘12 minutes to wait,’ then the Incre-
mental Scale Impact is 8 minutes (20� 12¼ 8).
The Percentage Impact is 8/15 or 53% relative to the Baseline (0%, or
20 minutes) and to the Target (100%, or 5 minutes).

Past = 20

Scale Impact = 12

Goal = 5

Incremental Scale Impact = 20 – 12 = 8

Figure G10

370 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. Designs vary in their impact, depending on previous circumstances.

The incremental impact is a function of these circumstances. The
impact of a design idea is not a constant, irrespective of the circum-
stances it is implemented in.

Related Concepts: Percentage Impact *306; Scale Impact *403.

Inspection Concept *051
‘Inspection’ is a synonym for Specification Quality Control (SQC).
Notes:
1. Michael Fagan originated the term ‘Inspection’ in connection with

software within IBM. He developed the initial method for quality
control of software. It is based on the work of Walter Shewhart, Joseph
Juran and others, who used the term for quality control of products
(rather than of specifications). Given the confusion in engineering
environments over the use of the term ‘Inspection’ (to hardware
engineers it means quality control after production of something), I
prefer to use the term, SQC.

2. Many people incorrectly equate the Defect Detection Process (DDP)
with ‘Inspection.’ They omit the Defect Prevention Process (DPP).
This is because they are unaware of the additional developments to
Inspection introduced by Mays and Jones (Mays 1995).

Synonyms: Specification Quality Control (SQC) *051; Peer Review
*051.

Is Impacted By Concept *412
‘Is Impacted By’ is used to indicate any other specified items (such as
requirements, objectives, designs, policies or conditions), which
affect, or might affect, a defined specification itself, or what it
refers to.
Notes:
1. The purpose of ‘Is Impacted By’ is to help in risk identification and

analysis. We are trying to explicitly identify and document factors,
which we believe influence the results. This will hopefully result in
specific action or design to keep those impacts from threatening our
planned results.

2. The more general purpose of Is ‘Impacted By,’ and many other
Planguage relationship mechanisms, is to build a ‘web of connections’
between specifications (that is, between system components). This web
of connections serves many purposes. Risk management was men-
tioned above. Other uses are configuration management, system famil-
iarization, quality control, estimation, contracting, prioritization, and
reviewing.
Example:
A:
Is Impacted By: {Help Desk Capacity, User Motivation, User Train-
ing, Bug Frequency}.

3. ‘Is Impacted By’ is differs from considerations of Risk/Threat in that
both good and bad impacts are considered. With Risk/Threat, we are
primarily concerned with the potential for negative impacts.

Planguage Concept Glossary 371

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

4. For strong primary intended impacts, the ‘Is Supported By’ icon can
be used, A ->> B. meaning B is supported by A. In other words, A is
primarily the way we intend to achieve the requirement/value B.

Synonyms: Impacted By *412.
Related Concepts: Risk *309; Threat *309; Dependency *189; Impacts
*334; Supports *415; Is Supported By *414.

Is Part Of Concept *621
‘Is Part Of’ is a parameter, which indicates that a specification is a
component or element of some other component or element.
Example:
PDSA Cycle:
Type: Process.
Consists Of: Sub-Process {Plan, Do, Study, Act}.
Plan:
Type: Sub-Process.
Is Part Of: PDSA Cycle.

Example:
Reliability Is Part Of Availability.
Related Concepts: Consists Of *616; Includes *391; Component *022;
Element *022.

Is Supported By Concept *414
‘Is Supported By’ is used to list the tags of any and all attributes that
contribute usefully to the accomplishment of the planned target levels
of a defined requirement.
Notes:
1. The attributes that can provide support include designs and

Evo steps.
Example:
Goal X:
Scale: <some scale definition>
Goal [Next Version]: 55%.
Is Supported By: Design Idea {A, B, C}.

Synonyms: Supported By *414.
Related Concepts: Supports *415; Impacts *334; Is Impacted By *412.

Issue Concept *276
An issue is any subject of concern that needs to be noted for analysis
and resolution.
Example:
ISS1: Issue: We have not analyzed risks and dependencies yet.
Notes:
1. A specification issue is an element of written specification, which we

suspect violates a specification rule. It is noted for later resolution. It
will be resolved by being declared to be either a defect (a rule violation)
or as requiring no further action.

Related Concepts: Resolution *525; Specification Issue *529.

372 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Kin Concept *353
Kin specifications are specifications, which derive from an identical set
of source specifications.
Notes:
1. For example, test plans, source code and user handbooks could all be

derived from the same requirements or the same design.
2. Kin specifications can serve as additional information to perform

defect checking in the Specification Quality Control (SQC) process.
For example, United Defense in Minnesota reported [personal com-
munication] that their software engineering checked the program code
against their test cases, both derived from the same requirements. They
reported that they usefully found major defects in both these kin
documents.

Landing Zone Concept *605
A landing zone is a target range that stretches from just better than a
Fail level through the Goal/Budget level to the Stretch Level.
Notes:
1. A landing zone is analogous to a parachute’s landing zone. A range that

we realistically hope we can land in somewhere. This avoids the
simplified notion of an exact Goal/Budget being the target.

2. For a set of requirements, the overall landing zone is the set of
landing zones, which ‘creates a space’ over all the requirement
dimensions.

3. The multidimensionality of landing zones is an important feature.
The space below Goal may seem unacceptable, but when you
consider all dimensions at once, sub-par achievement in a single
dimension is completely acceptable, if it means optimal system
performance.

4. A landing zone covers a success range and an acceptable range.
Related Concepts: Range *552.
Historical Note: The source of the Landing Zone concept was Intel, Oregon
(via Erik Simmons, 2002).

Table G2 A simple example showing multidimensional landing zones. It is landing within all
the landing zones simultaneously that is the aim. A teaching example using fictional data.
(Courtesy of Erik Simmons, Intel).

Attribute Fail Goal Stretch

Price >$27000 $20000 $17,500

Mileage (City) <18 mpg 25 mpg 35 mpg

Seating <4 adults 5 adults 6 adults

Interior Noise at 65 mph >74 dBA 65 dBA 55 dBA

Projected 3-year Maintenance Cost >$3000 $2000 $1500

Planguage Concept Glossary 373

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Level Concept *337
A level is a defined numeric position on a scale of measure.
Notes:
1. A scalar level applies to either a performance or a resource attribute.
2. A level on a scale of measure indicates one of the following:

. a benchmark: an actual measurement or estimated level in the past

. a target: a requirement level

. a constraint: a limit

. an estimate of the impact of a design idea
Synonyms: Point *337: A position on a Scale.
Related Concepts: Range *552; Goal *109: Goal Level; Budget *480:
Budget Level; Stretch *404: Stretch Level; Wish *244: Wish Level; Fail
*098: Fail Level; Survival *440: Survival Level; Catastrophe *602: Cata-
strophe Level; Past *106: Past Level; Record *127: Record Level; Trend
*155: Trend Level; Limit *606: An extreme boundary of the range of a level.
Keyed Icon: | ‘‘In context on a Scale: ----|---> This is the generic attribute
level icon. It can be used instead of any of the more specific level icons (for
example, ‘>’ for Goal or Budget).’’

Limit Concept *606
A limit is a numeric level at a border, that is, at an edge of a scalar
range (a success range, an acceptable range, a failure range or a
catastrophe range). It is specifically used at the edges of ranges
associated with constraints: fail limit and survival limit/ catastrophe limit.
Related Concepts: Range *552; Fail *098: Fail Limit; Survival *440:
Survival Limit; Catastrophe *602: Catastrophe Limit.

Logical Page Concept *103
A logical page is definedas adefinednumber of non-commentarywords.
Default Volume: If no other definition is given, use ‘300 non-
commentary words’ per logical page as default.
Rationale: This measure of specification ‘volume’ is used to make sure
that varying page sizes and page content does not cause false volume
measures. Volume measures are important for establishing checking rates
(logical pages per hour) and defect density (majors per logical page).
Notes:
1. ‘Non-commentary’ is a useful concept because it only pays off to worry

about optimum checking rates or defect densities on non-commentary
specification (where potential danger lies in defects).

Abbreviations: Page *103: In an SQC context.
Acronym: LP *103.
Synonyms: Logical Page Size *103.
Related Concepts: Physical Page: This is one side, facing a reader, of space
for textual and/or graphical symbols, of physical or electronic nature. It
has clearly defined borders, traditionally rectangular, with any arbitrary
quantity of symbols.

Major Defect Concept *091
A major defect is a specification defect (a rule violation), which if not
fixed at an early stage of specification, then it’s consequences will
possibly grow substantially, in cost-to-fix and/or damage potential. A

374 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

major defect has on average approximately an order of magnitude
more downstream cost potential than it’s cost to remove immediately.
Rationale: This concept and classification is necessary to help SQC
checkers and other QC people to focus on what defects it pays off to find
and eliminate in a specification. Without this classification, up to 90% of
QC effort might be wasted dealing with minor defects.
Abbreviations: Major *091; M *091: Often intentionally written with a
capital ‘M’.
Related Concepts: Specification Defect *043; Minor Defect *096.

Master Definition Concept *303
The master definition of a specification or specification element is the
primary and authoritative source of information about its meaning. The
master definition overrides any other (informal, not master) definition
that is in conflict with it.
Notes:
1. This glossary contains master definitions, but the definitions them-

selves may contain explanations of other terms (for example, in the
Related Concepts sections), which are less formal and less authoritative
than the master definition for that concept.

2. A master definition should contain full information about the source,
authority, version and status, where relevant.

3. It is good practice to only permit a single master definition for a term
to exist, and all references concerning the master definition must point
to that single definition.
Example:
Master Definition: The primary correct source of a term’s meaning.
Type: Master Definition.

Measure, To Concept *386
To measure is to determine the numeric level of a scalar attribute under
specified conditions, using a defined process, by means of examining a
real system.
Notes:
1. Measurement is done on the defined Scale, with respect to specified

qualifier conditions.
2. Measuring is done using defined Meters.

Example:
Usability:
Scale: Mean Time To Learn.
Meter [Experts]: Use the upper 5% of our experienced staff in tests.
Meter [Novices]: Use 10% of current year’s intake of new people.
Fail [Experts, Complex Task]: 15 minutes.
Goal [Novices, Simple Tasks]: 10 minutes.
Two different Meter specifications are made in order to make it clear how
the two different targets shall be measured.

3. Measuring is distinct from quantification and estimation. Quantifica-
tion is merely defining an attribute with the help of a scale of measure,
and benchmarks and/or target values. Estimation is trying to deter-
mine results based on past data.

Related Concepts: Scale *132; Meter *093; Quantify, To *385; Esti-
mate, To *059.

Planguage Concept Glossary 375

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Meter Concept *093
A Meter parameter is used to identify, or specify, the definition of a
practical measuring device, process, or test that has been
selected for use in measuring a numeric value (level) on a
defined Scale.

‘‘there is nothing more important for the transaction of business than use of
operational definitions.’’

(W. Edwards Deming, Out of the Crisis (Deming 1986))
Example:
Satisfaction:
Scale: Percentage of <satisfied> Customers.
Meter [New Product, After Launch]: On-site survey after 30 days use for
all Customers.
Past [This Year, USA]: 30%.
Meter [Past]: Sample of 306 out of 1,000+ Customers.
Record [Last Year, Europe]: 44%.
Meter [Record]: 100% of Customers.
Goal [After Launch]: 99% <- Marketing Director.
In the above example, the first Meter specification is the one that will be
assumed, in default of any other specification, particularly for use in
validating the achievement of Goal targets. Both the benchmarks (Past
and Record) have local Meter specifications, which tell us more exactly the
measuring process used to gather their data. Of course, this implies that these
benchmark and target numbers are not as comparable as we would like them
to be. But that is the way it often is, and our local Meter specifications at
least allows us to judge whether this difference is significant for our current
purposes.
Keyed Icon: -|?| – ‘‘A ‘?’ on top of a Scale icon, -|-|-.’’

Metric Concept *095
A metric is any kind of numerically expressed system attribute. A metric
is defined in terms of a specified scale of measure, and usually one or
more numeric points on that scale. The numeric points can be
expressed with defined terms that can be translated into numbers. For
example, ‘Record þ10%.’
Normally there will also be other parameters and qualifiers, which add
background detail to the metric. For example, Meter and Assumption.
A metric specification encompasses all related elements of
specification, not just the Scale of the numeric attribute.
A complex specification, with a set of scales of measure, is also ametric
expression. There is no implication that it is elementary (has only a single
Scale).
Notes:
1. Metrics are used to express ‘concepts of variability’ clearly – in parti-

cular more clearly than mere words (Gilb 1976).
Example: [Metric Expressions]:
Scale: Mean Time Between Failures.
Use: Scale: Time to Learn defined [Average Task]. Past: 30 minutes.
Design A: Impacts Requirement B: 30%.
Each of these 3 statements is based on a ‘metrics culture.’

376 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example: [Non-Metric Expressions]:
‘‘Reliability’’
‘‘Easy to learn’’
‘‘Very effective design’’
Each of these 3 expressions is based on a ‘non-metrics culture.’ Nice words –
no numbers expressed, defined or implied.

2. The rationale for using metrics includes:
. to increase clarity and unambiguousness of specifications
. to increase sensitivity to small changes in specifications and the

system itself
. to enable systems engineering logical thinking about relationships –

for example the relation of designs to requirements
. to provide a better basis for legal contracting about systems
. to enable evolutionary tracking of progress towards goals
. to enable a process of learning within projects, engineering and

management domains
. to force engineers to think more clearly and communicate more

clearly with others
3. A metric can be used to express the numeric impact of a design on a

performance requirement (for example, when using the Impact Esti-
mation method).

Related Concepts: Scale *132; Meter *094.

Minor Defect Concept *096
A minor defect is a non-major defect. It has no major downstream cost
potential.
Notes:
1. A defect which, if not removed at a given time, can be removed later

(for example, in test phases or in customer use) at approximately the
same cost or penalty.

2. There is little value in dealing with it immediately after it occurs. It can
be left to chance, or ignored until it surfaces of its own accord.

3. Minor does not refer to the size of the defect, but to the potential
consequences of it downstream.

Abbreviations: Minor *096; m *096: Deliberately written with a small ‘m’.
Related Concepts: Major Defect *091.

Mission Concept *097
A mission specifies who we are (or what we do) in relation to the rest of
the world. It is the highest level of function of a system. The mission
should not contain ‘vision’ description (‘We make the best planes in
the world’). It is an undramatic statement of the main function of a
business or organization.
Mission, like function, intentionally excludes specific levels of attributes
in its description.
Example:
Mission: We make semiconductors.
Mission: We provide business solutions in manufacturing software.
Related Concepts: Function *069.

Planguage Concept Glossary 377

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Non-Commentary Concept *294
‘Non-commentary’ refers to written specification that is not
commentary: it is either core specification or background
specification. All major specification defects are found in non-
commentary. But, not all specification defects in non-commentary
specifications are major. By definition, major defects cannot be found
in ‘commentary.’
Notes:
1. Text diagrams or symbols that are secondary to the main specifi-

cation purpose, and which do not lead to ‘real product’ are
‘commentary.’

2. Non-commentary sections of a specification can be termed ‘meat,’
and commentary sections can be termed ‘fat’. Commentary includes
{notes (like footnotes), comments (‘‘like this’’), remarks (Note),
introduction, and references (Source)}.

3. Checkers, in SQC, should concentrate on carrying out rigorous check-
ing, at optimum checking rates, on the non-commentary territory.
This gives better efficiency in finding defects.

4. It is important to formally distinguish between non-commentary and
commentary. Authors/writers need to try to make the distinction
visually for readers (for example, by using plain text for non-com-
mentary and italics for commentary). When the visual distinction is
made, and it is clear what is commentary and what is not, then
quality control analysts can more easily, and more certainly, decide
which defects are major and which are not. They can more quickly
scan the commentary and more carefully study and cross-reference
check the core specification, and then, somewhat faster, the back-
ground specification.

Related Concepts: Commentary *632; Background *507; Core Specifi-
cation *633; Specification *137; Major Defect *091.

Specification *137

Core Specification *633

• Function Requirement
• Scale
• Meter
• Goal/Budget
• Fail
• Survival
• Priority
• Other

Background *507

• Gist
• Ambition
• Past
• Assumption
• Risk
• Other

Non-Commentary *294 Commentary *632

• Note
• Bibliography
• Credits
• Other

Figure G11
The diagram shows the relationship amongst the different categories of
specification.

378 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Note Concept *018
A ‘note’ is a comment or any text that makes any kind of remark
related to any statement.
Ways of specifying notes include: italics, the use of ‘‘quotation marks’’,
and the Note parameter (which has a synonym of ‘Comment’).
Example:
Ambition: Main share of the market. ‘‘This is just an example of a
comment using quotes in a background statement.’’
Note: This is an example of the use of the Note parameter.
Notes:
1. Notes must be distinguished from the ‘significant’ core specification (for

example, Goal and Scale) and from ‘background’ specification (for
example, Source, Evidence and Gist). The main reason for this being
that a defect in Note specification is usually only a minor defect. Any
SQC checking should concentrate on the specification that is not Note
specification (that is, non-commentary–core and then background), as
that is where the major specification defects will be found.
Example:
Goal [First Release]: 60% <- Marketing Director [June 6 200X].
‘‘Source is background, but good for credibility and SQC.’’
Source: The Encyclopedia.

Synonyms: Notes *018; Comment *018; Remark *018.
Related Concepts: Commentary *632.
Keyed Icon: ‘‘ . . . ’’ ‘‘Double quote marks around the note.’’

Objective Concept *100
Objective is a synonym of Performance Requirement. See Performance
Requirement *100.

Or Concept *514
‘Or’ is a logical operator used in qualifiers, or other appropriate
specifications, to indicate alternative conditions. If any one ‘Or’
condition is true, then the set of conditions is true.
Example:
Stretch [If Multinational Or Government]: 99%.
Stretch [If Multinational or Government]: 99%.
Stretch [If Multinational OR Government]: 99%.
To make a statement read better, the lead capital letter may be dropped,
giving ‘or.’ It can also be spelled all capitals, ‘OR,’ to emphasize that it is a
Planguage logical operator and not a simple text word.
Notes:
1. Parenthesis: {Set parenthesis} and (ordinary mathematical parenth-

esis), may be used to limit and clarify the extent of a logical
expression.

Or Better Concept *550
‘Or Better’ is an expression used within a scalar specification to explicitly
emphasize that the specified level has a range of acceptable values,
rather than being just a fixed, single value. In other words, ‘Or Better’
helps identify the specified level as the beginning of a desired range.

Planguage Concept Glossary 379

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

‘Or Better’ is actually implied by a scalar target specification, but it can
be useful to be more explicit.
Example:
Goal [Mechanical]: 60 degrees Or Better.
Stretch: 99.90% Or Better.
Survival [Offices]: 35 degrees C Or Better.
Related Concepts: Until *551; Or Worse *549; Or Better *550; Range
*552.

Or Worse Concept *549
‘Or Worse’ is an expression used within a scalar specification to explicitly
emphasize that the specified level has a range of unacceptable values,
rather than being just a fixed, single value. In other words, ‘OrWorse’ helps
identify the beginning of a ‘nogo’ range. ‘OrWorse’ is actually implied by
a constraint specification, but it can be useful to be more explicit.
Example:
Must Avoid [EU, Next Generation Product]: 50% Or Worse.
Fail [Banking Market]: 20% Or Worse.
Related Concepts: Until *551; Or Better *550; Range *552.

Owner Concept *102
An owner is a person or group responsible for an object, and for
authorizing any change to it.
The parameter, Owner, can be used to explicitly identify ownership.
Notes:
1. For example: a system owner, a specification owner, a standard owner

or a process owner.
2. An owner is responsible for updating or changing an object, including

maintaining its control information (for example, Status, Version,
Quality Level and Location).

3. An owner will ensure the object adheres to any relevant standards.
Related Concepts: Stakeholder *233.

Parameter Concept *105
A parameter is a Planguage-defined term. Parameters are always
written with at least a leading capital letter, to signal the existence of
a formal definition.
Notes:
1. The master definition of most of the Planguage parameters is found in

this Glossary. See also http://www.gilb.com for additional, updated
and new parameters.

2. A project or specification author can declare and define tailored para-
meters (as part of a Project Language – a specific project specification
language). These can then be reused anywhere in a specification where
they are understood. They may in time be officially adopted by some
local dialect of Planguage.

3. Parameters are not user-defined terms. User-defined terms are defined by a
project or organization, to describe the target system, organization or project.
User-defined terms are not part of the definition of a specification language.

Synonyms: Specification Language Parameter *105.
Related Concepts: Term *151; Project Language *247; User-Defined
Term *530.

380 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Past Concept *106
A Past parameter is used to specify historical experience, a ‘benchmark’.
A Past specification states a historical numeric level, on a defined Scale,
under specified conditions [time, place, event] for a scalar attribute.
Notes:
1. Past values are stated to give us some interesting benchmark levels for

our old system(s) and our competitors’ systems.
2. Even ‘current’ values should be expressed using Past, because imme-

diately they are stated, they are ‘past’ values. Qualifiers will make plain
the currency of a specification.

Rationale: If we did not take the trouble to analyze and specify the past
values then we might not set reasonable targets. Unintentionally, targets
might even be specified worse than they were in the Past.
Synonyms: Past Level *106.
Related Concepts: Benchmark *007.
Keyed Icon: < ‘‘A single arrowhead, normally on a scalar arrow (<----
<----O---<---->), pointing ‘back’ to the past. Note the ‘<’ alone in other
contexts has other meanings such as: ‘<’ less than, ‘<-’ (source arrow),
‘<--------’ (tip of scalar arrow). So either it must be used in an unambig-
uous context or manner, or there be at least one hyphen, or [qualifier], on
either side of the arrowhead to distinguish this icon.’’

PDSA Concept *168
Acronym for Plan-Do-Study-Act Cycle *168.

Percentage Impact Concept *306
A percentage impact is an incremental scale impact expressed as a
percentage of the required improvement (the required improvement
being the scalar distance between a chosen benchmark (0%) and a
chosen target (100%)).
A percentage impact is part of an impact estimate and is used in
Impact Estimation tables.
Synonyms: Incremental Percentage Impact *306; Percentage Incremental
Impact *306; %Impact *306.
Related Concepts: Incremental Scale Impact *307; Scale Impact *403.

Percentage Uncertainty Concept *383
Percentage ‘Uncertainty’ is calculated from the scale uncertainty,
baseline and target data; and stated together with the percentage
impact value.
Notes:
1. Percentage Uncertainty can be used to identify risks in using specific

design ideas: the numeric ‘best case’ and ‘worst case’ deviations from
the Percentage Impact estimate provides important pointers towards
the level of risk involved. This can lead to one or more direct actions, if
the risk level is judged too high. For example (actions):
. to specify a design better
. to change the design itself
. to get more information about the design impacts
. to write contract conditions controlling the impact expected
. to schedule this design for early evolutionary step delivery (so we can

see what it really does).

Planguage Concept Glossary 381

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
If Percentage Impact¼ 30% and Percentage Uncertainty¼� 40%,
the overall impact in percentage terms is usually stated as
30%� 40%. In other words, Percentage Impact is assessed to vary in
practice anywhere between �10% and 70%.
Dual System -> Reliability: 30� 40% <- Company Experience
ranges from –10% to 70%.

Performance Concept *434
System performance is an attribute set that describes measurably ‘how
good’ the system is at delivering effectiveness to its stakeholders. Each
individual performance attribute level has a different ‘effectiveness,’
for different stakeholders and, consequently, different value or utility.
Within Planguage, performance attributes are scalar and are of three
types:
. Quality: ‘how well’
. Resource Saving: ‘how much saved’
. Workload Capacity: ‘how much’
Other possibilities exist for defining performance. For example:

‘‘Performance. A quantitative measure characterizing a physical or func-
tional attribute relating to the execution of a mission or function. Perfor-
mance attributes include quantity (how many or how much), quality (how
well), coverage (how much area, how far), timeliness (how responsive, how
frequent), and readiness (availability, mission readiness). Performance is an
attribute for all system people, products, and processes including those for
development, production, verification, deployment, operations, support,
training, and disposal. Thus, supportability parameters, manufacturing
process variability, reliability, and so forth, are all performance measures.’’

Source: USA MIL-STD 499B Draft 1992.
Notes:
1. The system engineer or system stakeholder can select, define, invent,

tailor or develop any number of useful or interesting performance
measures, to serve the purposes of their current task, or systems
engineering process.

FunctionResource

Design

Quality

Workload Capacity

Resource Saving

Performance

Figure G12
Performance characteristics are classified into three major types within Planguage. This is
an arbitrary, but useful distinction. See also the diagram in Quality *125.

382 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. Performance is intended to cover absolutely all performance measures.
It is not limited to the narrower conventional set of performance
measures (for example, throughput speed), but explicitly includes the
qualitative measures of performance, which are so weakly represented
and too rarely quantified in conventional thinking.

3. Performance is the most general sense of how well a function is done.
Performance includes:
. quality characteristics (such as availability, usability, integrity, adapt-

ability and portability), and
. resource saving characteristics (such as cost reduction and reduced

elapse times), and
. work-capacity characteristics (such as storage capacity, maximum

number of registered users and transaction execution speed).
Related Concepts: Quality *125; Resource Saving *429; Workload Capa-
city *459; Performance Requirement (Objective) *100; Performance
Target (goal) *439; Performance Constraint *438; Benchmark *007;
Target *489; Constraint *218.
Keyed Icon: O---> or Oþ ‘‘Compare with Keyed Icon [Resource *199]:
--->O or –O and Keyed Icon [System *145 [Not Design]]: {Resource,
Function, Performance, Condition}: [--->O--->] or [–Oþ].’’

Performance Constraint Concept *438
A performance constraint specifies some upper and lower limits for an
elementary scalar performance attribute. These limits are either levels
at which failure of some kind will be experienced, or levels at which the
survival of the entire system is threatened.
Fail and Survival parameters are used to specify performance constraints.
Notes:
1. Stakeholders impose constraints. These stakeholders and their motiva-

tion should be explicitly documented together with the constraint
specification (for example using Authority, Source, Rationale or Sta-
keholder parameters).
Example:
Speed:
Scale: Time in seconds <to react>.
Survival [Public Places]: 10 seconds maximum.
Authority: Public Safety Law.
Fail [All Uses of our Product]: 5 seconds.
Authority: Our Quality Director. Rationale: Time to react to alarm light.
Goal [Public Places]: 4 seconds. <- Project Manager.

2. Performance constraint (Survival and Fail) levels usually lie ‘outside’
the performance target (Goal, Stretch, Wish) levels.

3. Why an upper constraint limit for a performance? There are many
reasons, which include:
. To avoid ‘arms race escalation’
. To avoid unnecessary costs, which would not be valued by a market
. To avoid costing yourself out of a market
. To avoid unnecessary cost – contract income is constant when you

reach such a limit
. To avoid ‘gold plating’ and over-engineering
. To avoid becoming a monopoly and provoking legal reaction
. To avoid showing your hand to the opposition.

Planguage Concept Glossary 383

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Related Concepts: Performance *434; Performance Requirement (Objec-
tive) *100; Performance Target (goal) *439; Constraint *218; Fail *098;
Survival *440.

Performance Requirement Concept *100
A performance requirement (objective) specifies the stakeholder
requirements for ‘how well’ a system should perform.
A performance requirement can be complex or elementary. It is a
scalar concept, and at elementary level is defined quantitatively by a
set of performance targets and performance constraints.
Typical examples of performance requirements include ‘Usability,’
‘Reliability’ and ‘Customer Satisfaction.’
Performance Requirements are limited to consideration of the
performance effectiveness of a system, without regard to the
efficiency of it. That is, a performance requirement describes some
aspect of the required performance; it does not describe the costs
(the resources needed) to get the performance.
Notes:
1. The distinction between use of the terms ‘objectives,’ ‘quality require-

ments’ or ‘performance requirements’ is often simply dependent on the
culture using them. Engineers are more likely to speak about ‘quality
requirements’ for a system or product. Managers (of people and organiza-
tions) are more likely to think in terms of business/technical ‘objectives.’

2. A performance requirement is a potentially complex, detailed specifi-
cation. It can consist of a whole hierarchy of performance attributes.

3. For each elementary performance attribute (distinguished by having
only one Scale), there can be many performance targets and/or perfor-
mance constraints.
(Note: this does not mean that the concept behind an elementary
performance requirement is not ‘really’ somehow complex, and that

Scalar Parameter Concepts

[] [

? + + ?

]

Resource Targets

Resource Constraints

Wish Stretch Budget Goal Stretch Wish

Performance Targets

Survival Fail Survival

Performance Constraints

Survival Fail Survival

Past Past

Resource Benchmarks Performance Benchmarks

Performance
Requirement/

Objective

Figure G13
A performance requirement (objective) is specified as a set of performance targets and
performance constraints.

384 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

it is not capable of further sub-setting. It is simply that for the given
system, further sub-concepts are not considered to be of interest or use
at the current time. So ‘complex’ means ‘complex in terms of whether
we have decided to decompose the concept in the current specification,’
not complex in terms of some constant reality.)
Example:
We can generally speak about a performance requirement, ‘Reliability’ for
a defined system. Reliability may well be specified as elementary (having
only one scale of measure). There can be several targets and constraints
specified. Here below, is an elementary Reliability performance require-
ment with a Fail level and two Goal level specifications. Qualifiers
distinguish the Goal level specifications from each other.
Reliability: ‘‘A Performance Requirement or Objective’’
Scale: MTBF.
Fail: 30,000 Hours. ‘‘Constraint 1’’
Goal [1st Release]: 40,000 Hours. ‘‘Goal 1 ’’
Goal [2nd Release]: 50,000 Hours. ‘‘Goal 2 ’’
Of course, the ‘Reliability’ performance requirement could instead be a complex
objective (that is, composed of one or more sub-objectives (elementary or
complex)). For example, we might be interested in two Scales: ‘Mean Time
Between Failure (MTBF)’ and ‘Number of Repeat Occurrences of Faults.’ We
would specify both of them as sub-requirements of the ‘Reliability’ requirement.

Example:
Reliability: {Failure Rate, Repeat Failures}.

4. Additional supporting information can be present in benchmark para-
meters (Past, Record, Trend).
Example:
Stretch [Main Markets, Within the Decade]: 99.998%.
A Performance Target.

Example:
Security [Corporate Webservers]: Elementary Performance Requirement.
Version: 3.1. Owner: Tom. Sponsor: Simon.
Scale: Annual Frequency of defined [Type of Penetration] using
defined [Type of Threat] used by defined [Type of Perpetrator].
Meter [Acceptance]: At least 300 representative cases of [Type of
Threat] <- Contract 2.3.5.
================== Performance Targets ==================
Goal [Security Type 1, Next Year]: <10 <- Official Project Steering
Committee Agreement.
Stretch [Security Type 1, Next Year]: 0 <- Technical Director’s
Challenge.
================= Performance Constraint ================
Survival [Security Type 1, Next Year and On]: 60 <- CEO Public
Promise of Improvement.
====================== Benchmark =====================
Past [Security Type 1, Last Year]: 66 <- Annual Executive Security
Report [Page 55].
====================== Definitions =====================
Security Type 1: Defined As: Type of Penetration¼Access, Type of
Threat¼Remote Terminal, Type of Perpetrator¼Hacker].
An Elementary Performance Requirement.

Planguage Concept Glossary 385

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Performance Requirement. ‘‘The extent to which a mission or function must
be executed, generally measured in terms of quantity, quality, coverage,
timeliness, or readiness.’’

Source: US MIL-STD 499B 1994.

Synonyms: Objective *100.
Related Concepts: Requirement *026; Performance Target (goal) *439;
Performance Constraint *438.

Performance Target Concept *439
A performance target (goal) is a stakeholder-valued, numeric level of
system performance. There are three types of performance target:
. a committed planned level (Goal),
. an uncommitted motivating level (Stretch), and
. an uncommitted valued level (Wish).
Notes:
1. The target parameters {Goal, Stretch, Wish} are used to express per-

formance targets.
Example:
Goal [Main Asian Markets, Next Quarter]: 60,000 hours.
A Performance Target.

2. A performance target is a single required level of performance (such as a
Goal specification).
Example:
Goal [USA, Next Release]: 99.50%.

3. In contrast, a performance requirement includes both performance
targets and performance constraints.

Synonyms: goal *439 (with a small ‘g’ to distinguish it from the para-
meter, ‘Goal’).
Related Concepts: Performance *434; Performance Requirement (Objec-
tive) *100; Performance Constraint *438; Target *048; Goal *109;
Stretch *404; Wish *244.

Performance to Cost Ratio Concept *010
For a design idea (or set of design ideas or an Evo step), the ratio of the
performance improvements to the cost of the resources needed to
implement them.
For a selected set of requirements:
Performance to Cost Ratio = Sum of Performance/Sum of Costs
Rationale: Such ratios allow comparison of different design ideas to
determine which is the most cost efficient. Popularly (USA), ‘‘Bang for
the buck’’.
Notes:
1. Provided Sum of Costs is used, costs are any idea of resources, and are not

limited to financial costs. This is possible because it is the percentage costs
that are being summed. Any useful set of cost attributes may be used.

2. An alternative way to calculate the Performance to Cost Ratio is to use
the sum of the absolute financial costs, rather than Sum of Costs. This
can be a simpler solution as it avoids some arithmetic. It also gives the
actual financial costs more prominence.

3. Keep in mind the essential distinctions between achieving the perfor-
mance requirements, the consequent value to given stakeholders under

386 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

given circumstances of reaching those target levels, and the actual
benefits that the stakeholders obtain. A ‘value to cost’ ratio calculation
or a ‘benefit to cost’ ratio calculation, while more demanding, might
give a more realistic evaluation.

A performance to cost ratio is a simpler measure: the amount of require-
ments satisfied to the cost incurred. It could be considered as ‘how far a
project is going towards meeting all its goals for what level of cost’.
Related Concepts: Sum of Performance *008; Sum of Costs *128; Value
*269; Value to Cost Ratio *635; Benefit *009.

Place Concept *107
‘Place’ defines ‘where’. It relates to any notion of place, such as
geographic location, stakeholder role, customer market or system
component.
Place is used both as a parameter and in a qualifier condition.
Example:
Place [Person Type]: {Buddhist, Korean, Teenager}.
‘Place’ used as a parameter.
Goal [Place¼ {USA, CAN, MEX}, Date¼Ten Years Time, Software
Sub-system]: 60% <- North America Marketing Plan.
‘Place’ defined as a set of acronyms for countries.
Notes:
1. Place refers to the set of possible scope dimensions that are neither

temporal, nor event dependent.
2. Place refers to notions such as:

. geography (for example, a city, a country)

. organizational (for example, IBM, Nokia, US Government, UK
MoD)

. types of people, including groups (for example, novice, teenager,
pensioners)

. system components (for example, hardware, radio transmitter, soft-
ware, database, user terminals, chips)

. role (manager, operator, trainee).
3. There can be any useful number of place dimensions in a single

qualifier expression.
Synonyms: Space *107.
Related Concepts: Time *153; Event *062; Qualifier *124; Scope *419.

Plan-Do-Study-Act Cycle Concept *168
The Plan-Do-Study-Act Cycle (PDSA Cycle) is a process cycle. It is a
method for changing a defined work process to reflect measurably
better process. The concept was developed by Walter Shewhart and
taught byW. Edwards Deming (Delavigne and Robertson 1994; Deming
1986; 1993).
Notes:
1. The PDSA Cycle involves the following:

. Decide on an improvement and how to accomplish it. (‘Plan’)

. Carry out the improvement as planned (‘Do’)

. Gather data about costs and resulting improvements and side effects,
analyze the data and decide what it means (‘Study’, sometimes called
‘Check’)

. Adopt the change as is, or try again in a better way (‘Act’)

Planguage Concept Glossary 387

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

The ‘Plan’ phase involves specifying a theory or hypothesis, including a
procedure for testing it. It sets out the order and timing of tasks and
events that need to occur to achieve the ‘Do’ phase. In addition, ‘Plan’
specifies the entry and exit conditions for the ‘Do’ phase, including the
criteria for terminating it early (prior to required results being
achieved) and the testing procedures. It also plans the resources
required. In Evo, ‘Plan’ is the planning for the delivery of the step that
has just been selected.
The ‘Do’ phase involves implementing (Do . . . ing) what you have
planned, that is, carrying out the ‘experiment’ to see how your plan
measures up to reality. In Evo, ‘Do’ is the step implementation.
The ‘Study’ phase observes and gathers data concerning the results of
the ‘Do’ phase. It is basically concerned with ‘What happened?’ It can
involve highly varied analysis activities, depending on the activity being
controlled, such as obtaining feedback data, carrying out specification
quality control (SQC) and testing. It is a preparation for drawing
conclusions and taking action in the ‘Act’ phase. In Evo, ‘Study’ is
the phase where we analyze all the feedback from the last step, in
relation to requirements and external impulses (like change of market
or law).
The ‘Act’ phase decides on what course of action should be taken
based on the information supplied by the ‘Study’ phase. It is to
standardize the process at a new level, or to draw new conclusions
about our original theory or to determine and select new theories (to
design or modify processes). In Evo, ‘Act’ means reviewing the Evo
plan, determining the gap priorities, finding alternative steps and
deciding on the next step from the various alternatives. If the results
of the last step are not satisfactory, a course of action to correct it
might be decided upon.

2. A PDSA Cycle is enabled by standardizing and stabilizing its target
process (meaning: ‘wherever you carry out the improvement’), so that
the effects of any process changes can be credibly observed.

*Act. Adopt the change or Abandon it or Run through the cycle again,
possibly under different conditions.

The Shewhart Cycle for Learning and Improvement
The PDSA Cycle

Act*

Study the results.

Plan a change or a test,
aimed at improvement.

(Do) Carry out the change
or the test (preferably on a
small scale)

A P

S D

Figure G14
Reproduction from a letter to Tom Gilb from W. Edwards Deming, May 18, 1991.

388 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Acronyms: PDSA Cycle *168; PDSA *168.
Related Concepts: Plan [PDSA] *169; Do [PDSA] *170; Study [PDSA]
*171; Act [PDSA] *172; Evolutionary Project Management *355; Sta-
tistical Process Control (SPC) *466.
Historical Note: The Study phase has sometimes been called ‘Check’. For
example, Deming used Plan-Do-Check-Act (PDCA) in his book, Out of the
Crisis (Deming 1986). However, in a letter to me (Tom Gilb) in May 1991,
he said he strongly preferred the initial Walter Shewhart usage, PDSA, due to
the word ‘check’ having other interpretations, such as ‘stop.’

Planguage � Tom Gilb Concept *030
Planguage is a specification language and a set of relatedmethods for
systems engineering.
Notes:
1. Planguage specifically supports all aspects of systems engineering includ-

ing requirement specification, design specification, design impact ana-
lysis, specification quality control and evolutionary project management.

2. Planguage can, however, be used much more generally; it has been
used successfully to plan such diverse things as family holidays and
multinational charity aid project plans.
Planguage is designed to express ideas about any requirements, designs
and plans.

3. Planguage is intended for use throughout a project lifecycle: for plan-
ning, problem-solving, specification quality control and result delivery
to stakeholders.

4. Planguage has been developed by Tom Gilb, and is defined in this
book. There has been lots of feedback from clients and professional
friends. Its general content is described more fully in both the Intro-
duction and Chapter 1 of this book.

5. The purpose of the copyright is to avoid being prevented later from
using this term by others. Permission to use the term freely is granted
by Tom Gilb when � is acknowledged.

6. If any reader finds the term ‘Planguage’ too ‘cute,’ they may use the
more directly descriptive ‘Planning Language.’ I (Tom Gilb) often
refer to ‘Planning Language’ before I introduce the term ‘Planguage.’

Synonyms: Planning Language *030.

Priority Concept *112
A ‘priority’ is the determination of a relative claim on limited resources.
Priority is the relative right of a competing requirement to the budgeted
resources. If resources were unlimited, there would be no need to
prioritize things. You could ‘have it all.’
An explicit Priority parameter can be used to specify any direct priority
relationships.
Notes:
1. The specified, qualified, stakeholder requirements (the targets and

constraints stated in the requirements) provide ‘natural’ (requirement
related), and dynamically computable, priority information. The gaps
remaining until the goals are met, and budgets used up, can be
measured and computed. In general, the largest gap to a performance
target will have the highest priority, and the largest gap to using up a
budgeted resource will indicate the safest resource opportunity.

Planguage Concept Glossary 389

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

However, to determine your priorities in specific cases, the degrees of
risk and uncertainties, and/or knowledge of the effort (the resources)
needed to close the individual gaps to meet each of the function and
performance targets, and the likely resulting stakeholder values on
delivery, all need to be taken into account (see below for a more
complete list).

2. Priority is not a constant. It cannot and should not be determined
and specified in the form of static priority weighting numbers (for
example, ‘25%,’ or third on the priority list) or words (for exam-
ple, ‘High’). Current priority depends on how well satisfied the
competing performance targets are and how ‘used up’ the budgeted
resources are at any given time. Current priority also depends on
the more fundamental changes that can occur in requirements
themselves, as stakeholders modify their requirements, and as the
external business environment alters – to demand requirement
changes.
Example:
Consider your priorities for food and air. If you are hungry, then you
give priority to eating. However, as soon as air is in short supply, your
priorities change. Your body gives priority to breathing.
Your body knows your food and air requirements, both targets and
constraints. Your body knows the current supply levels of these
resources. When changes in the body resource levels dictate change in
our priorities, this knowledge triggers the body to appropriate action.
The body, as a system, acts in order to ensure our comfort and survival.
Priority is dynamic.

3. Priority is decided by a wide variety of factors, which include but are
not limited to:
. qualifier conditions (factors such as timescales and location)
. stakeholder authority
. stakeholder influence
. consequences of failure (not meeting Fail constraint levels)
. consequences of catastrophe (not meeting Survival constraint levels)
. previous experience of meeting similar requirements (including no

experience!)
. complexity of meeting the requirements
. consequences of success (primarily meeting the performance targets,

the Goal levels: the system improvements delivered, and the benefits
likely to be experienced)

. resource availability (or maybe more significantly, resource unavail-
ability)

. dependencies.
Within Planguage, the relative priority of a requirement depends on a
combination of the elements of the specification. These elements
include target levels (for example, Goal and Budget), constraint levels
(for example, Fail and Survival), its qualifier conditions [time, place,
event], and its authority level.
If you consider only the different requirement level parameters as a
class: first priority is satisfaction of all the constraints; the Survival
levels, then the Fail levels. Then next priority becomes satisfaction of
targets; the Goal levels, after that any Stretch goals are considered, and
finally perhaps some Wish levels.

390 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

However, you have also to consider the qualifier conditions as well, for
all these levels, as qualifiers bring into play additional factors, like the
timescales for the requirements to be met, and the events under which
the requirements actually exist.
No priority exists until the qualifier conditions [time, place, event] warn
us of potentially unfulfilled requirements. Targets and constraints are not
finally effective until their qualifier conditions are true, but the designer,
the architect and the project manager have to prioritize their contribution
in advance of deadlines, and other conditions, becoming ‘true.’

4. Stakeholders’ needs will ultimately decide the relative priorities. There will
be trade-offs to consider when there are conflicts between requirements.
System designers should evaluate priorities and then present the results
for confirmation, selection or conflict resolution to the stakeholders
themselves. Stakeholders, as a result of seeing the cost and feasibility of
design options, may then choose to change some of their priority
specifications.

5. The Priority parameter can be used to help people to more directly
understand the priorities (or to confirm the derived priorities with
stakeholders). Alternatively, it can be used to specify priorities that
differ from what would otherwise be expected or evaluated.

6. Rationale and Source parameters should ideally support Priority para-
meter specifications.
Example:
Usability:
Scale: <Speed of mastering> defined [Tasks] by defined [Staff Type].
Fail [USA, Task¼Query Handling, Staff Type¼Customer Service]:
35 hours.
Fail [Europe, Task¼Query Handling, Staff Type¼ Junior Manage-
ment]: 25 hours.
Goal [Australia, Task¼Query Handling, Staff Type¼Customer Ser-
vice]: 30 hours.
Priority [Usability]: Australia Before Europe Before USA <- Market-
ing Plan 6.5.
Rationale: Past bad experiences with current system.
Source: Technical Director.
Without the explicit ‘Priority’ statement we would normally prior-
itize the Fail levels. However, the Priority specification means we
should use scarce resources on the Australia Goal before we use them
on the two Fail levels. We should then use resource on Europe before
the USA.

Related Concepts: Level *337; Risk *309; Gap *359; Dependency *189.

Procedure Concept *115
A procedure is a repeatable description to instruct people as to the
best-known practice, or recommended way, to carry out the task of a
defined process. A procedure is part of a process description.

‘‘No matter how many theorists have advocated a procedure, if the proce-
dure has been given a thorough trial and then abandoned, there is a strong
presumption that it is unsound.’’
<-(Mintzberg 1994 Page 135, quoting R. N. Anthony, 1965, Page166, in
Planning and Control Systems, Graduate School of Business Administration,

Harvard University).

Planguage Concept Glossary 391

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. The procedure description can be kept and presented in various forms

including {forms, guidelines, diagrams, video and audio; even unwrit-
ten, but understood procedures}.

2. A procedure describes a task that there is benefit in standardizing
(usually, because it is carried out so often, to ensure best practice and
to prevent error).

Related Concepts: Task *149; Process *113.

Process Concept *113
A process is a work activity consisting of:
. an entry process, which examines entry conditions
. a task process, which follows a procedure defining the task. There
might also be an associated verification process, such as test or
quality control

. an exit process, which examines exit conditions.
Processes transform inputs to outputs, using resources, and display their
own performance and resource (cost) characteristics.

Notes:
1. A process is a set of actions, carried out by people, nature or machines

(agents), which can be defined by inputs, outputs, a sequenced set of
actions and its performance, and resource attributes.

2. Processes can only be fully understood by including information about
the agent who executes the process (their work environment, compe-
tence, experience, training).

Process: ‘‘A system of activities that use resources to transform inputs to
outputs.’’

Source: ISO 9000, 2000.

Synonyms: Work Process *113.
Drawn Icon: A rectangle with up arrow on left side.
Related Concepts: Task *149.

Task Process
Entry

Process
Exit

Process

Figure G15
A process with its three main component sub-processes.

Figure G16
The drawn icon for Process *113.

392 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Process Improvement Concept *114
Process improvement is systematic activity, which consists of:
. determining the root systemic causes of human work process problems,
then

. changing defined and stable work processes, with the intention of
eliminating, or reducing, the human tendency to commit errors, and
therefore improving productivity or costs.

‘Root causes’ are the earliest defect causes in the chain of all causes and
effects. It pays to remove the source of a problem. ‘Systemic causes’ are
those that are built into the process, and bound to cause a problem
regularly if not improved. The proof of improvement lies in the results
from a changed process.
Related Concepts: Root Cause *263; Systemic *262.

Qualifier Concept *124
A qualifier is a defined set of conditions embedded in, or referenced by,
a specification. All of its conditionsmust be ‘true,’ for that specification to
apply. A qualifier defines any interesting set of specific time, location and
event conditions (also known as qualifier conditions). These are
sometimes called ‘when,’ ‘where’ and ‘if’ conditions.
Square brackets around the qualifier conditions are used to denote a
qualifier. An alternative is to use the Qualifier parameter (which also
happens to use square brackets!).
Example:
Goal [Germany, Teachers]: 65%.
Where ‘Germany’ and ‘Teachers’ are each qualifier conditions (defined
elsewhere). The set of qualifier conditions, and the square brackets, form
the qualifier.

Example:
Goal [German School]: 65%.
German School: Qualifier: [Country¼Germany, User¼Teachers].
Where ‘German School’ is a defined reusable qualifier. Tagging a ‘Qualifier’
parameter or statement allows us to simplify a large set of qualifier condi-
tions, and perhaps to describe or summarize them at the same time. ‘German
School: [Country¼Germany, User¼Teachers].’ would be the logical
equivalent to the ‘Qualifier:’ statement above. You can tag a qualifier
directly.
Notes:
1. Qualifiers can be present in any specification (for example, a system

attribute specification, a requirement specification, a design idea spe-
cification or an Evo step specification). Most Planguage parameter
specifications are subject to qualifiers (either explicit, implied or
inherited).

2. Any number of qualifier conditions can apply to a given specification,
expression or statement. There can be multiple instances of any one class of
qualifier conditions. There is no sequence requirement for the conditions.

3. Qualifiers are always specified as sets within square brackets, ‘[]’, even
when a ‘Qualifier’ parameter is used.

4. Qualifiers have to be evaluated to see if they are ‘true’ in any given instance.
In the case of evaluating an Evo step, this may be done in real time.

Planguage Concept Glossary 393

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

5. Qualifiers have the effect of ‘dividing up’ a system into separate, maybe
overlapping, system dimensions or ‘views.’ This has many uses. One
use is to divide up a system into smaller distinct areas for delivery of
Evo steps.

6. A qualifier is a substantial contribution to understanding the priority of
a specification.
Example:
Project Manager Attendance:
Goal [By¼Next Year, Market¼London, Activity¼Customer Meet-
ings, Event Condition¼ If Sale Agreed]: 90%.
The qualifier conditions specify when, where, during which activity, and
after which event – the Goal has validity – and thus has priority over any
specification that is not yet valid.
MOP:
Scale: % Uptime.
Goal [QQ]: 99.5%.
Stretch [QQ]: 99.9%
QQ: Qualifier [By End of Year, Home Market, Consumer Goods, If
Fierce Competition on Price].
Authority [MOP]: Product Planning.
The MOP requirement has two distinct priority mechanisms. The MOP
Goal statement has priority over a corresponding (‘has same qualifier’)
Stretch statement. Secondly, the QQ tagged qualifier has a number of
qualifier conditions that must all be true for either of the target levels to be
in force. The Authority statement gives additional prioritization informa-
tion for MOP, in relation to other requirements with different powers
behind them.

7. A qualifier defines the set of conditions, which together enable, or
‘activate’, a related statement. The potential qualifier conditions can be
roughly classified as:
. time conditions: ‘when’: Dates, deadlines, relative times to events,

weekdays, hours (time spans or precise hour)
. place conditions: any notion of ‘where’: Geographical location; type

of person, group or role (like trainee, teenager, teacher); system
component (like module, program, laptop screen, software, con-
tracts, standards)

. event conditions: any notions of ‘if ’: Any occurrence conditions such as:
– activity commenced or terminated (like project started, policy

issued)
– activity in progress (like testing being carried out, parliament in

session, voting in progress)
– specific indicator set (like red light is on)
– specific status attained (like Approved, Checked).

. We can optionally preface event conditions with the logical ‘If’
parameter in order to emphasize that we must analyze the status of
the event to determine if the qualifier condition is ‘true’.

Example:
Fail [Europe, Year¼After Ten Years, Peace]: 60%� 20% <- Annual
Plan Section 6.4.5.
The three qualifier conditions must all be ‘true’ for the ‘60%’ requirement
level to be a valid requirement. ‘Peace’ is an example of an event condition.
Europe is a place condition.

394 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

8. The implication of the qualifier definition, that all qualifier conditions
must be ‘true’ to have effect, is that in a qualifier like [A, B, C], ‘A and B
and C’ must be valid for the qualifier to ‘enable’ its related statement.

9. Here are some notes on how the concepts of qualifier, qualifier con-
dition and scale qualifier relate to each other.
Qualifier¼ [qualifier condition 1, qualifier condition 2, . . . qualifier
condition n]
Scale Qualifier¼ [sets up a need for one qualifier condition to be
specified on use of the Scale]
Scale Variable¼ a value for a qualifier condition satisfying a scale
qualifier in a statement referring to the defined Scale..
Scale: [scale qualifier 1] [scale qualifier 2] [scale
qualifier n].
Parameter [Qualifier]: assigned numeric value.
Remember a Qualifier is a set of qualifier conditions:
Parameter [{qualifier conditions}]: assigned numeric value.
Qualifier¼ [qualifier condition 1¼ scale qualifier 1¼ scale variable 1,

qualifier condition 2¼ scale qualifier 2¼ scale variable 2,
. . . ,
qualifier condition n¼ scale qualifier n¼ scale variable n,
other qualifier conditions as needed not related to the Scale].

Scale: [scale qualifier n: Default¼ scale variable n].
Related Concepts: View *484; Time *153; Place *107; Event *062;
Condition *024; Scale Qualifier *381; Indicator*195; Status *174.
Keyed Icon: [] ‘‘Square brackets around any set of qualifiers.’’

Quality Concept *125
A quality is a scalar attribute reflecting ‘how well’ a system functions.
Example:
Quality: Includes: {Availability, Usability, Integrity, Adaptability, and
many others}.
Notes:
1. A quality is a system performance attribute. All systems have a large

number of quality attributes in practice. In a given situation, only the
relevant quality attributes will be specified: these are the qualities
specifically valued by the stakeholders.

2. All qualities can be described numerically using a defined Scale, or
set of Scales. Existing quality levels can be specified as benchmarks,
and needed future quality levels can be specified as targets and
constraints.

Performance
*434

Quality
*125

Workload Capacity
*459

Resource Saving
*429

Figure G17
Quality viewed in the context of Performance.

Planguage Concept Glossary 395

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

3. Quality is distinct from the other performance attributes: Work Capa-
city and Resource Saving.

4. Quality is characterized by these traits:
. Quality describes ’how well’ a function is done
. Quality is valued to some degree by some stakeholders of the system
. More quality is generally valued by stakeholders; especially if the

increase is free, or at lower cost, than the value of the increase
. Quality attributes can be articulated independently of the specific

means (designs) used for reaching a specific quality level – even
though all quality levels depend on the particular designs used to
achieve them

. A specific quality can be a described in terms of a complex
concept, consisting of multiple complex and/or elementary quality
concepts

. Quality is variable (along a definable scale of measure: as are all
scalar attributes)

. Quality levels are capable of being specified quantitatively (as are all
scalar attributes)

. Quality levels can be measured in practice

. Quality levels can be traded off to some degree; with other system
attributes valued more by stakeholders

. Quality can never be perfect in the real world

. There are some levels of a specific quality that may be outside the
state of the art at a defined time and under defined circumstances

. When quality levels increase towards perfection, the resources
needed to support those levels tend towards infinity

Related Concepts: Performance *434; Resource Saving *429; Workload
Capacity *459; Quality Requirement *453.

Quality Level Concept *360
The quality level of a specification is a measure of its conformance to
any specified relevant standards.
The Quality Level parameter is used to specify the estimated defect
density for a specification: in other words, the number of estimated
remaining major defects/(logical) page.
Synonyms: Major Defect Density *360; Specification Quality Level *360.
Related Concepts: Status *174; Remaining Major Defects/Page *060;
Specification Defect *043; Major Defect *091; Logical Page *103.

Quantify, To Concept *385
To quantify is to specify numerically.
Notes:
1. To articulate a variable attribute using a defined scale of measure and

specifying one or more numeric levels on the Scale. The resulting
specification is ‘quantified.’

2. In particular, we need to be clear that ‘to quantify’ is not identical to
the concept of ‘to measure.’ Measuring is the act of determining where
we are, on a defined scale of measure, in practice by using a Meter.
Quantification is a type of specification that is a prerequisite for other
processes, such as Estimation, Measurement, Testing, and Feedback Control.

396 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

3. Quantification must not be confused with estimation, either. You can
quantify without estimation and without measurement! Estimation is
to determine a particular (qualifier specified) past or future number,
on a defined scale of measure.

4. In Planguage, quantification begins with the definition of a Scale.
Quantification continues, and takes on more specific meaning by using
benchmarks, targets, assumptions and the many other specification
parameters that relate to the defined scale of measure.

Dictionary Definition of ‘Quantify’:

‘‘1. To determine or express the quantity of; indicate the extent of; measure
2. To express in quantitative terms, or as a numerical equivalent logic

to make the quantity or extension of a term or symbol clear and
explicit by the use of a quantifier, as all, none, or some.’’

<- Webster’s New WorldTM College Dictionary (Third Edition).

The Planguage definition of quantify (identical to variant 2 above) does not
admit to the term ‘measure’ which is contained in variant 1 of this definition,
and in common use of the word. In Planguage, ‘measurement’ (as in variant 1)
is a quite distinct activity, based on the quantification (but not identical to it).
Related Concepts: Scale *132; Meter *093; Measure, To *386; Estimate,
To *059.

Range Concept *552
A range is the extent between and including two defined numeric
levels on a scale of measure.
Notes:
1. Range captures a snapshot of some common scalar attribute ranges

(using the target and constraint levels). Some examples of different
range classifications include:
. Success Range – project or product success
. Acceptable Range – not success, but not failure
. Failure Range – some degree of problems or failure
. Catastrophe Range – forget it! No use and no hope!

2. A range is usually implied by specification of the relevant levels. For
example, a performance success range goes from the applicable Goal
level in the direction of ‘better’ forever, unless bounded by an upper
Survival level.

3. Range, like a level, is interpreted with regard to any specified qualifier
conditions. In other words if a scalar level qualifier, for example for a Goal
level, is not valid, the range implied by that Goal level is not valid either.

4. Different stakeholders can specify levels with implied ranges that over-
lap with each other. ‘One man’s meat is another man’s poison,’ as the

Specification Quantification
Estimation

Measurement

Figure G18

Planguage Concept Glossary 397

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

saying goes. Designers need to consider the set of overlapping ranges in
an attempt to maximize design efficiency. This is complex, but the
problem can at least be clearly seen.

5. A range can include the idea of a set of benchmark levels over time
and/or space. For example, a quality level range in a defined market for
defined types of people for a defined task during annual periods.

6. A range can describe a gap between a benchmark and a target (the gap
is the unfulfilled requirement).

7. A range can describe the change in attribute level as a result of carrying
out an Evo step.

Related Concepts: Landing Zone *605; Gap *359; Success Range;
Acceptable Range; Failure Range; Catastrophe Range.

Rationale Concept *259
A rationale is the reasoning or principle that explains and thus seeks to
justify a specification. ‘Rationale’ is a parameter for declaring
information that justifies a specification.
Notes:
1. The information can concern the logic, the politics, the economics or

whatever is of interest to declare in order to explain and justify a
specification.

2. The purposes of a rationale are:
. to answer questions that readers would ask of a specification
. to motivate and convince readers about a specification
. to set up information for risk analysis (is the given rationale true, and

will it be later?)

Survival
Level

Survival
Level

Survival
Level

Survival
Level

Fail
Level

Fail
Level

Goal
Level

Budget
Level

Catastrophe
Range

]]!!> > >+ >?>? >+

Failure
Range

Failure
Range

Acceptable
Range

Acceptable
Range

Success
Range

Success
Range

Numerous
Stretch, Wish
And Budget

Levels

Numerous
Stretch, Wish

And Goal
Levels

Resource Performance

[[

Figure G19
The ‘doughnut’ diagram indicating different range concepts.

398 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
PGB: Goal [UK]: 99.9% <- Annual Plan.
Authority: Board of Directors, Jan 25th.
Rationale [PGB]: Competition in UK prior to new EU Laws about
competition.
Basis: Our long-range plan to be the <biggest> in all European
countries.
In the example above, the PGB tag is inserted to show how to tie any
Rationale statement to another specific statement or statements. This for-
mat can be used irrespective of where you specify the Rationale statement. It
does not have to be just below or in the immediate vicinity. The Authority
and Basis statements are implied to be related, because they are just below
the PGB statement.
Note. ‘Basis’ is quite different from Rationale. Rationale is a set of
conditions leading to a desire to make a specification. It explains how we
got to that specification. Basis is a specified set of assumptions that underlie
a specification. If the basis conditions are changed, then the specification
may no longer be valid.

‘‘Theirs is but to reason why: The value of recording rationale.’’
<-(Hooks and Farry 2000 Chapter 8)

Synonyms: Justification *259; Reason *259.
Related Concepts: Basis *006.
Historical Note: ‘Rationale’ is a term I found used by Synopsys, CA USA
1996.

Readership Concept *295
The readership (or intended readership) of a specification is all the
‘types of people’ we intend shall read or use the specification.
Notes:
1. The ‘readership’ should be explicitly stated within document header

information or other appropriate place. Experience has shown that
allowing people to guess what the intended readership is will lead
directly to not satisfying some important types of readers.

Rationale:
. It helps authors decide on document content and what terminology to

use. For example, which abbreviations and terms might be understood
or misunderstood.

. It also helps checkers decide if the writer has communicated clearly and
unambiguously with their intended audience.

Example:
Readership: {All Employees, Customers, Suppliers, Contractors, Audi-
tors}.
Synonyms: Intended Readership *295.

Record Concept *127
A Record parameter is used to inform us about an interesting extreme
of achievement. A Record specification states a benchmark level on a
defined Scale under specified conditions [time, place, event] for a
scalar attribute that represents an impressively good level, or state-of-
the-art.

Planguage Concept Glossary 399

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
Usability:
Ambition: More user-friendly than <competitors’ products>.
Scale: Average Learning Time for Slowest Learners in User Population.
Trend [Main Competitor, Next Year]: 1 minute.
Record [Last Year, UK]: 2 minutes <- Industry Statistics [Last Year].
Fail [New Product, Next Year]: 50 seconds.
Goal [New Product, Anytime]: 20 seconds.
It is good practice to indicate the source (<-) of Record information (as with
all scalar level specifications).
Rationale: Record is usually specified to demonstrate that such a level is
technically possible under certain specified conditions, and to challenge us
to strive to avoid, approach, meet or beat that level, as appropriate.
Levels approaching state-of-the-art are useful to specify, because they tend
to be costly and high risk.
Synonyms: Record Level *127.
Related Concepts: Benchmark *007.
Keyed Icon: <<
‘‘The arrow points towards the ‘past’ as in the Past benchmark, ‘<’ but
doubled for emphasis to show that this is an extreme benchmark. Usually
used in the context of a scalar arrow (<---<<---O---<<--->).’’

Relationship Concept *142
A relationship is a connection between objects.
Related Concepts: Object *099; Interface *194; Hierarchical *083;
High-Level *082; Supra *264; Downstream *052; Upstream *291; Set
*133; Subset *222; Is Part of *621; Consists Of *616; Includes *391; Kin
*353; Sibling *265; Kid *266; Parent *267; Dependency *189: Syno-
nym is Depends On; Impacts *334; Is Impacted By *412; Is Supported
By *414; Supports *415.

Requirement Concept *026
A requirement is a stakeholder-desired, or needed, target or constraint.
Within Planguage, requirements specifically consist of vision, function
requirements, performance requirements, resource requirements,
condition constraints and design constraints.
Given below are some IEEE definitions:

Requirement: ‘‘a condition or capability needed by a user to solve a problem
or achieve an objective.’’

<- IEEE 610.12-1990.

Example of an IEEE definition of ‘requirement’: the term ‘user’ is probably not
broad enough to capture the scope of all stakeholders. Another danger of this
definition is that it inadvertently includes all designs, and so does not successfully
made a sufficiently clear distinction between requirement and design.

Requirements: ‘‘Statements, which identify the essential needs for a system in
order for it to have value and utility. Requirements may be derived or based
upon interpretation of stated requirements to assist in providing a common
understanding of the desired operational characteristics of a system.’’

<- IEEE P1220. IEEE Standard for Systems Engineering, Preliminary, 1993
in (SEI CMMI 1995).

400 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example of an IEEE definition of ‘requirements’: better than the previous
1990 standard, as all designs are no longer ‘in the picture.’
Notes:
1. Stakeholders should determine their own requirements; they certainly

should be involved in discussions about the relative values, costs and
priorities of their requirements.
A systems engineer may be needed to specify the requirements in a
suitable way for use by systems engineering projects. Also, there may be
a need for building, aggregating and analyzing a set of project require-
ments across a range of disparate stakeholders.

2. Not all requirements initially specified are necessarily accepted for
actual delivery: some requirements may not ultimately be feasible or
economic. The key practical idea is to try to identify, and give priority
to, the most critical or most profitable stakeholder requirements.

3. A requirement is an input to a design process. Requirements give
information to the designer about the necessary nature of their design.
A design, whether a specification or an actual implementation, can be
judged (using such means as Specification Quality Control (SQC),
test, Impact Estimation tables, evolutionary step feedback, or opera-
tional use) in terms of how well it satisfies the requirements.

4. Requirements, at different levels of abstraction, can be viewed as inputs
to a defined level of design process. In a series of systems engineering
processes, one engineer’s output (‘design,’ ‘architecture’) may become
another engineer’s inputs or ‘requirements’. The conclusion of this is
that specifications, no matter what we name them, are requirements
only when they are used as input to such a systems engineering process.

Goal
*109

Budget
*480

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Requirement *026

Vision
*422

Function
Requirement

*074

Performance
Requirement

*100 (objective)

Resource
Requirement

*431

Design
Constraint

*181

Condition
Constraint

*498

Function
Target
*420

Function
Constraint

*469

Performance
Constraint

*438

Performance
Target

*439 (goal)

Resource
Target

*436 (budget)

Resource
Constraint

*478

Mission
*097

Quality
 Requirement *453

Resource Saving
Requirement *622

Workload Capacity
Requirement *544

Figure G20
Requirement Concepts.

Planguage Concept Glossary 401

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

So, we need to explain a particular concept of ‘requirement’ by first
specifying the systems engineering process type, or level at which they
apply. For example, stakeholder value analysis, product line architec-
ture or component engineering.

5. Requirements can have different levels of priority. Priority is conveyed
in a variety of ways, for example:
. for scalar attributes, by stating any relevant constraint levels using

{Fail, Survival}
. for binary attributes, by stating any relevant constraints using Con-

straint parameters
. for scalar attributes, by setting relevant target levels using {Goal/

Budget, Stretch, Wish}
. by specifying different qualifier conditions for [time, place, event]

(Alternatively known as [when, where, if])
. by specifying other parameters, like Authority, Dependency, Priority

and Risk, which provide additional information
6. Requirements are usually assumed to be written in requirement specifica-

tions. However, many documents which have ‘requirements’ in their title
may contain little or no real requirements: it is unfortunately commonplace
to find a high content of design specification for unspecified or vaguely
specified requirements. Frequently, the most important, high-level
requirements are not stated clearly at all. You must be prepared to
look for requirements in other documentation and to ask questions.

7. A design idea is not usually a requirement at the same systems devel-
opment process level as the requirements it was designed to satisfy.
However, once a design idea is ‘fixed’ at a project development process
level, it becomes a ‘design constraint’ (which is a requirement type) for
the next level. In other words, a design idea usually becomes ‘valid as a
requirement’ at the next level of the development process, after the
level it was ‘designed.’ It is then a valid ‘requirement’ for all future
‘lower’ levels.
Example:
Usability:
Type: Quality Requirement.
Scale: Time to learn [defined Task].
Goal [By Initial Delivery, CW-Task]: 30 minutes. ‘‘A simple require-
ment goal.’’
CW-Task: Defined As: <mastering> <frequent tasks> at the
<standard workstation>.
Interface:
Type: Design Idea.
Specification: The computer terminal interface must look exactly like
our old one.
Impacts: Usability. ‘‘A design to meet the Usability requirement.’’
Usability is a strategic requirement. Interface is a design idea that we
hope will satisfy the planned level for Usability. Once adopted, Inter-
face is handed to others in the development process, such as estimators,
constructors and testers, and is then classed as a design constraint, at
this lower level.

Related Concepts: Requirement Specification *508; Need *599; Problem
Definition *598; Problem *270; Target *048; Constraint *218; Stake-
holder *233; Objective *100.

402 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Requirements Engineering Concept *614
Requirements Engineering is a requirements process carried out with an
engineering level of rigor. Requirements Engineering includes all
aspects of requirements gathering and maintenance, including but
not limited to:
. requirements solicitation (including stakeholder analysis)
. requirements analysis
. requirements quality control
. requirements review
. requirements change management
. requirements specification (the process)
. contracting and bidding requirements
. requirements risk analysis
. requirements priority analysis.
Synonyms: Requirement Engineering *614.
Related Concepts: Requirement *026; Requirement Specification
[Process] *634.

Requirement Specification [Specification] Concept *508
A requirement specification is a defined a set of requirements. It also
includes any relevant requirement background, such as benchmarks,
and also any appropriate commentary.
Note:
1. A requirement specification is the output of a requirement specifica-

tion process, which is a subset of a requirement engineering process.
Template: Requirement Specification Template.
Synonyms: Requirements Specification *508.
Related Concepts: Requirements Engineering *614; Requirement Speci-
fication [Process] *634; Requirement *026; Specification *137; Com-
mentary *632; Background *507; Core Specification *633.

Resource Concept *199
A resource is any potential system input. A resource is any kind of input
‘fuel’ necessary for building, operating or maintaining a given system.
A resource is an asset or a supply that can be used to produce the
functionality or performance levels of a system.
A resource can be defined using a scale of measure. A requirement for
a resource can be specified by a target or a constraint level. Previous
levels of resource utilization (costs) can be specified by benchmark
levels, like Past.
We can distinguish between budgeted and unbudgeted resources.
Resource budgets are found in our formal plans.
Notes:
1. The emphasis is on the concept of ‘potential ’ resource. A potential

resource is the total resource that might theoretically be consumed,
used, applied or produced. This is in contrast to a level of that resource
that we plan to use, called a Budget (a resource target).

2. We should not plan to use more than the resource actually available at
any point in time, place or circumstances. However, when one type of
resource is unavailable, we can consider the possibility of employing
another resource to achieve our aims; this is one kind of tradeoff. The
classic example is ‘time versus money.’

Planguage Concept Glossary 403

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

3. Resources must be viewed with regard to the ‘total potential resource
available – now and later,’ under the defined conditions. For example:
‘in our divisional budget,’ ‘within the market window’ or ‘by the
contract handover deadline.’

4. When you plan to limit the use of specific resources, you do so by
setting a resource target (for example, ‘Budget: 62 million.’) or a
resource constraint (for example, ‘Survival: 62.2 million.’).
You might also specify a global or policy constraint (see example below).
Example:
Innovation Constraint [Division A]:
Type: Constraint [Financial Resource].
Scale: % of the annual research budget.
Goal: 20%.
Authority: Divisional Manager.

5. Resources that are input to a system differ from resource savings.
Resources consumed are the costs of developing and operating a
system. A resource saving is a relative reduction in consumption of a
resource once a system is operational. For example, systems engineer-
ing effort as an input resource can be applied to save system user
learning time (a resource saving).

6. Common usage of the term ‘resource’ in the United States (USA) is to
mean ‘people.’ The Planguage definition is far wider than this.

Related Concepts: Resource Requirement *431; Resource Target *436;
Resource Constraint *478; Benchmark *007; Target *489; Constraint
*218; Cost *033; Resource Saving *429.
Keyed Icon: --->O ‘‘A scalar attribute arrow into a function oval. A
simplified alternative is ‘–O’.’’

Resource Constraint Concept *478
A resource constraint is a resource requirement, which specifically
restricts, or serves as a warning about, the level that can be used of a
resource.

Function

Resource
Time

Effort

Money

Space

Other

Data

Figure G21
Arbitrary examples of some system resources.

404 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

A resource constraint is specified as a scalar resource attribute level. It
signals the level at which some degree of system failure will be
experienced or the level at which the entire system becomes
threatened.
Two main parameters can be used to specify these constraint levels:
Fail (Fail and worse might be recoverable) and Survival (worse is
unrecoverable).
Notes:
1. Resource constraints are imposed or suggested by defined stakeholders.

These stakeholders and their reasons should be explicitly documented
with the constraint level, for example, by using Authority, Source,
Rationale or Stakeholder parameters.

2. The Fail and Survival concepts are adequate for most scalar constraint
purposes. However, Catastrophe is also available for use. It is a matter
of taste.

Related Concepts: Constraint *218; Performance Constraint *438;
Resource Target *436; Fail *098; Survival *440; Catastrophe *602;
Range *552: See Failure Range and Catastrophe Range.
Example:
Memory Space:
Type: Resource.
Scale: Gigabytes of defined [Memory Component].
======================== Targets =======================
Wish [Memory Component¼Online Backup]: 1,000 Gb <- Design
Team.
Rationale: Improves Recovery Speed.
Stretch [Memory Component¼Online Storage, US Market]: 500 Gb?
<- Marketing.
Budget [Memory Component¼Primary]: 100 Gb <- Initial Software
Size Estimates.
=======================Constraints ======================
Fail [Memory Component¼Online Storage, US Market]: 250 Gb Or
Less? <- Marketing.
Rationale: Large Scale Users must have this level <- US Sales.
Survival [Memory Component¼Online Storage, US Market]: 100 Gb?
<- Marketing.
Rationale: Nobody would even consider our system with less <- US
Sales.
Some examples of Resource Constraint specification.

Resource Requirement Concept *431
A resource requirement specifies how much of a resource should be
made available for later consumption. A resource requirement is a
scalar attribute with one or more resource targets and/or resource
constraints specified.
Example:
Maintenance Expenditure:
Scale: Million 6 annually.
Budget [First Four Years Average]: 3 million 6.
Fail [Any Single Operational Year]: 4 million 6 <- Client limit in
contract §6.8.

Planguage Concept Glossary 405

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
Development Effort:
Scale: Engineering Hours applied to the contract.
Wish [Europe Release]: 10,000 hours <- Project Manager.
Survival [All Releases]: 30,000 hours <- Maximum corporate availabil-
ity by deadline.
An example showing a resource target and a resource constraint specified for
each resource requirement.
Related Concepts: Resource *199; Resource Target *436; Resource Con-
straint *478.

Resource Saving Concept *429
A resource saving is a performance attribute of a system. It expresses
‘how much’ better the system currently performs in terms of resources
than it did at some previous benchmark time.
For example, a resource saving can express how much less resource in
training effort or maintenance cost is needed in one system compared
to another. This measure can be used for benchmarking or for setting
requirements, or even for reporting on progress in design or actual
measured implementation of new systems.
Synonyms: Saving *429.
Related Concepts: Performance *434; Quality *125; Workload Capacity
*459; Resource Saving Requirement *622.

Resource Target Concept *436
A resource target is a budget. It is a scalar requirement; a resource level
we aim, or might possibly aim, towards keeping within while working
towards achieving the other requirements.
Three parameters are used to specify resource targets {Budget, Stretch
and Wish}. A Budget level is the primary resource target type. A Stretch
level represents a resource target that is not committed, but is a level for
challenge andmotivation. TheWish level represents a resource level that
would have value to some stakeholder, but again is not committed.
Resource targets represent the reasonable, perhaps profitable, levels of
cost, we must expect to pay to reach our performance and function
targets within any constraints. They differ from resource constraints,
which are the levels that signal problems, danger or lack of
profitability. We do not plan and design to merely stay within resource
constraints, but to avoid going anywhere near them at all!
Example:
Memory Space:
Scale: Gigabytes of defined [Memory Component].
Wish [Memory Component¼Online Backup]: 1,000 Gb <- Design
Team.
Rationale: Improves Recovery Speed.
Stretch [Memory Component¼Online Storage, US Market]: 500 Gb?
<- Marketing.
Budget [Memory Component¼Primary]: 100 Gb <- Initial Software
Size Estimates.
Synonyms: budget *436 (with a small ‘b’ to distinguish it from the
parameter, ‘Budget’).

406 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Related Concepts: Budget *480; Resource *199; Target *048; Wish
*244; Stretch *404; Resource Constraint *478; Resource Requirement
*431; Requirement *026.

Result Cycle Concept *122
Within Evo, a result cycle is an entire Evo step cycle aimed at delivering
a result that moves towards satisfying the overall requirements.
Notes:
1. A result cycle is a cycle consisting of ‘Plan-Do-Study-Act’ activities.
2. It can involve any kind of system change, small or large: for example,

factory production modification, software program alteration, organi-
zational restructure, new software product development and design of
new businesses.

3. A project using Evo will execute numerous result cycles. The emphasis
is on ‘contact with reality’ and using consequent feedback to adjust.

4. A result cycle consists of:
. a strategic management cycle: A strategic management cycle is con-

cerned with controlling and monitoring the overall change process.
Amongst other things, a strategic management cycle approves
proposed changes against strategic objectives and adopted high-level
strategies. It co-ordinates with other programs and projects. It
acquires development budgets. It analyzes feedback measurements.
It decides the next step.

. an implementation cycle: Implementation means ‘taking a plan, or
an idea, and turning it into reality.’ An implementation cycle con-
sisting of the following sub-cycles:
– a development cycle: This is an optional backroom cycle con-

cerned with acquiring/purchasing and developing, any products
required for the production and/or delivery cycles. For example,
any new systems development would be carried out within this
cycle.

– a production cycle: This is an optional backroom cycle concerned
with product integration, or manufacturing and distribution of
any products required for the delivery cycle.

– a delivery cycle: This is the actual delivery of the deliverable to the
use. In other words, a delivery cycle contains the initial opera-
tional implementation of an Evo step, and its handover to stake-
holders. It involves implementation activities such as training,
installation and field-testing. The type and size of system change
involved in a delivery cycle can vary, but is usually subject to
project-defined step constraints on resource utilization. Usually,
both financial cost and delivery frequency must be between 2%
and 5% of project total budgets for cost and time respectively.

5. Result cycles, for different steps, can be executed serially and in parallel.
The reason for this is the variable times taken for implementation
(specifically development and production cycles) and the Evo require-
ment to achieve a reasonably short delivery cycle frequency. For example,
the average delivery cycle frequency could be stipulated to be weekly or
monthly, but a specific result might take six months from initiation to
actual result delivery, due to such factors as research cycles, order cycles,
construction cycles and approval processes. These processes would nor-
mally be sought to be done in parallel with other Evo cycle activities, so

Planguage Concept Glossary 407

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

that the Evo management team and their stakeholders would still experi-
ence some result delivery within the stipulated delivery cycle time.

6. The development and production cycles are termed ‘backroom’ activ-
ities and the delivery cycle is termed a ‘frontroom’ activity. One useful
analogy is to think of the way in which a restaurant delivers to its
customers. Ideally, delivery to the table is independent of food and
drink preparation times!

Synonyms: Result Production Cycle; Step Cycle.
Related Concepts: Delivery Cycle *049; Development Cycle *413;
Implementation Cycle *123; Production Cycle *407; Strategic Manage-
ment Cycle *408.

Review Concept *197
A review is any process of human examination of ideas with a defined
purpose and defined standards of inquiry.
Notes:
1. A ‘go/no-go review’ is a particular type of review for giving approval,

or not, to a particular plan or idea.
2. Reviews should always have the benefit of the specification under

review having successfully exited SQC processes using both
Specification Rules and Specification Review Rules. Such SQC
processes determine a specification’s objective craftsmanship quality
(conformance to standards). For example, a major review with

Result Cycle

Strategic
Management

Cycle

Development
Cycle

Production
Cycle

Delivery
Cycle

Implementation Cycle

Figure G22
Diagram shows the component cycles of a Result Cycle.

Self-Check or
Buddy Check of
Specification [1]

Review
[4]

SQC using
Specification

Review Rules [3]

SQC using
Specification

Rules [2]

Figure G23
The diagram shows Review following SQC processes. The sequence of SQC processes
leading to review(s) is as follows:
. Before any SQC is carried out, informal checking might be carried out by the specifica-
tion writer or by a colleague [1]

. SQC (a more formal team process) is carried out by a group of people checking the
specification against specification rules [2]

. If successfully SQC exited, further SQC can be carried out using specification review
rules. This is to check the validity of entering a review process by carrying out a number of
pre-checks using the relevant review criteria (types of review include Architecture
Review and Business Review.) [3]

. If successfully SQC exited, a review can be carried out to decide on future actions [4].

408 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

financial consequences should not proceed if the estimated remaining
major defects/page for a specification are, at entry, any greater than
1.0.

Related Concepts: Specification Quality Control (SQC) *051; Specifica-
tion Rules *129; Specification Review Rules *543.

Risk Concept *309
A risk is any factor that could result in a future negative consequence.
A Risk parameter can be used to specify known risks.
Notes:
1. Negative results are results that are worse than required, planned, or

expected.
2. Examples of risk factors include:

. lack of information about a design idea

. inappropriate information about a design idea.
Source: See Bernstein’s book on the history of risk (Bernstein 1996). One
prominent economist (Knight) wanted to distinguish risk from uncer-
tainty, in the sense that risk was measurable (Bernstein 1996, Page 219).
Knight was also skeptical as to whether past data was sufficiently like a
specific unique instance, and sufficiently detailed, to tell us what the
probability of a future event would be.
Synonyms: Threat *309.
Related Concepts: Uncertainty *310; Safety Factor *131.

Role Concept *253
A role is a defined responsibility, interest or scope for people.
Related Concepts: Role [SQC] *411; Stakeholder *233.

Rule Concept *333
A rule is any statement of a standard on how to write or carry out some
part of a systems engineering or business process.

Standards

Glossary
Concepts Policies

Other
Specification

Rules

Evo
Specification

Rules
(Rules.Evo)

Design
Specification

Rules
(Rules.DS)

Requirement
Specification

Rules
(Rules.RS)

Generic
Specification

Rules
(Rules.GS)

Rules Processes Templates Other
Standards

Specification Rules Specification Review Rules Other
Rules

Figure G24
Rules as standards. Some of the different types of Specification Rules are shown.

Planguage Concept Glossary 409

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. Numerous different types of rule exist, including business rules, system

rules and design rules.
Related Concepts: Standard *138; Specification Rule *129; Specification
Review Rule *543.

Safety Deviation Concept *405
A safety deviation is a measure of the estimated-or-observed
difference between a required safety margin, and the estimated or
actual system attribute level. ‘How safe?’ or ‘How safe compared to
plan?’
Notes:
1. Each scalar attribute target (performance goals and resource

budgets) will potentially have its own computable value for safety
deviation.

2. Safety deviation expresses how far away the current design proposal, or
Evo step implementation, is estimated to be from the desired safety
level. The higher the negative deviation is, the greater the ‘risk of
failure’ to deliver the target level of the attribute.

3. The safety deviation can be use by technical management to monitor the
progress of a design or a real evolving project delivery. Management will
need some policy regarding setting and respecting safety factors. They will
need to set some standards regarding the degree to which designs include
planned safety factors. This is a specific tactic for risk management.

4. When using the Impact Estimation method and a spreadsheet model,
the safety deviation computations can normally be done automatically
using the values of the requirements and the design impacts. Auto-
matic warning of insufficient safety is a possibility.

Related Concepts: Safety Factor *131; Safety Margin *637.

Performance
Attribute

Scale

Scale Impact

Worst Case Impact Best Case Impact

Negative Uncertainty Positive Uncertainty

Baseline
0%

Target
100%

Required Safety Margin 50%
(Required Safety Factor of 1.5)

2x x

Safety Deviation

60 – 150 = –90%

Percentage
Impact 60%

Safety Level

Actual Safety Margin –40%
(Actual Safety Factor 0.6)

Figure G25
Diagram showing calculation of Safety Deviation for a quality objective. The safety margin
is relative to the target level and the distance between the baseline and the target. In this
example, as the required safety margin is 50%, it must be 50% beyond the target level. The
distance (x) is worked out from the distance between the target and the baseline (2x).

410 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Safety Factor Concept *131
A safety factor is the dimensionless ratio of ‘conscious over-design’ that
is either required, or actually applied to some part of a system.
Notes:
1. A safety factor is used to communicate about risk. It is used to ensure

that the design compensates adequately for both systems engineering
and operational uncertainties.

2. Historically, safety factors were applied to mechanical loads. We are
using it here to describe the amount of safety margin we wish to have
designed into the system. The target and constraint levels are specified
at the required levels and then the safety factor is applied to allow
safety margins. (An assumption is being made here that there is only
one safety factor involved; there could be several.)

3. A safety factor is either prescribed by standards, such as engineering
rules or policy, or it is specified at project level.

4. A safety factor is a dimensionless ratio. Compare to a safety margin,
which is either expressed using units of measure (as it is the difference
between two levels on a Scale), or as a percentage value based on the
required target or constraint level being 100%.
Example:

This example assumes no specific safety factor has been set. It calculates the
estimated/actual safety factor and safety margin based on the required level
being 100%.

5. If we want to explicitly specify a safety factor, we can do so in a variety
of ways using the Safety Factor parameter.
Synonyms: Safety *131.
Related Concepts: Safety Deviation *405; Safety Margin *637.
Keyed Icon: nX ‘‘Where n is the numeric safety factor.’’

Example:
Safety Factor: 3X.

Safety Margin Concept *637
A required safety margin is a scalar difference between a required
defined target or constraint level, and its calculated safety level
derived using the appropriate safety factor.
Notes:
1. An estimated or actual safety margin can also be calculated. If no

specific required safety factor is specified then the safety margin can
be calculated relative to the (estimated or actual) target or constraint
level (100%, equivalent to a safety factor of 1).

2. A safety margin can also be expressed as a percentage based on the
target or constraint level being 100%, and the baseline being 0%.

Required Level Estimated/Actual
Level

Estimated/Actual
Safety Factor

Estimated/Actual
Safety Margin

100% 100% 1 0%

100% 50% 0.5 �50%

100% 200% 2 100%

Planguage Concept Glossary 411

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

3. A ‘safety factor’, by comparison, is a dimensionless ratio.
Related Concepts: Safety Factor *131; Safety Deviation *405.

Scalar Concept *198
Scalar is an adjective used to describe objects, which possess or are
measured using at least one scale of measure.
Notes:
1. Performance and resource attributes are scalar.
2. Scalar attributes, provided they are not elementary (one Scale only),

can have numerous scales of measure (A complex scalar attribute will
possess more than one elementary attribute.)

3. All numeric levels on scales of measure can be described as scalar
values.

4. A scalar object can be contrasted to a binary object, which is not
scalar, but is in one of two states (commonly, either present or
absent).

Related Concepts: Scale *132; Binary *249.

Scale Concept *132
A ‘Scale’ parameter is used to define a scale of measure. All
elementary scalar attribute definitions require a defined Scale.
A Scale states the fundamental and precise operational definition for a
specific scalar attribute. It is used as the basis for expressing many of the
parameters within the scalar attribute definition (for example, Meter,
Goal and Budget): all scalar estimates or measurements are made with
reference to the Scale. The Scale states the units of measurement, and
any required scalar qualifiers.
Notes:
1. A Scale is not a numeric level along the defined Scale (it is not a

benchmark, target or constraint).
2. A Scale is not the measuring instrument (that is specified by the Meter

parameter).
A Scale describes something, which is variable, trackable, observable
and countable in nature. A Meter specification is the definition of the

Past
Baseline

0%
B

Impact
Estimate

E

Actual
Measure

A

Required
Level

(Target or
Constraint)

100%
R

Safety
Level

S

Gap to Required Level
(Estimated)

Actual Change in Scalar Level

Estimated Change
 in Scalar Level

Required Change in Scalar Level Required Safety Margin
(Calculated using Safety Factor

set by policy/rules)

Planned Change in Scalar Level used for Design Purposes

Actual Gap (Measured)

412 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

means of measuring the ‘level of capability’ expressed by a Scale. For
example, a Meter is the ‘voltmeter’ for measuring on a Scale of ‘volts.’
A Scale is abstract, while a Meter is a real-world, practical means of
obtaining measurements. A specific Meter itself has multiple perform-
ance and cost attributes. These are the basis for selecting a particular
Meter.
There is a big distinction between units of measure (Scale) and a
measuring tool (Meter or Test). Units of measure can be used to
express clear ideas, like requirements, quite independently of the
possibilities and problems of measurement itself. I can express a clear
idea, ‘‘I want to get to the moon and back in one second,’’ quite clearly.
The fact that I cannot really do it, or measure it, is beside the point. I
stress this because I have discovered that many people waste their
energy arguing against a particular quantification, when all their argu-
ments are only related to the difficulty of its accurate measurement.

3. Many Scales are specified as ‘generic scales.’ A generic scale is a Scale
that requires final specification of ‘scale qualifiers’ (in the Scale defin-
ition) by means of ‘scale variables’ (in a target or constraint specifica-
tion), in order to have an operationally precise definition.
Example:
Scale: Time to Master defined [Tasks] by defined [Learner Type].
There are two scale qualifiers in the above generic scale definition, which
require definition by scale variables. For example, ‘Goal [Tasks¼Update,
Learner Type¼Novice]: 30%’.

‘‘To leave [soft considerations] out of the analysis simply because they are
not readily quantifiable or to avoid introducing ‘personal judgments,’
clearly biases decisions against investments that are likely to have a sig-
nificant impact on considerations as the quality of one’s product, delivery
speed and reliability, and the rapidity with which new products can be
introduced.’’
<- R. H. Hayes et al. Dynamic Manufacturing, Free Press 1988 NY Page 77,

quoted in Mintzberg (1994 Page 124)
‘‘Aligning Rewards with Measurements ‘You have to get this one right. . . . a
universal problem: What you measure is what you get – what you reward is
what you get. Static measurements get stale. Market conditions change,
new businesses develop, new competitors show up. I always pounded home
the question ‘Are we measuring and rewarding the specific behavior we
want?’’’

<- Jack Welch, former CEO General Electric (Welch 2001 Page 387)

Synonyms: Scale of Measure *132.
Related Concepts: Scale Qualifier *381; Scale Variable *446; Meter *094.
Keyed Icon: -|-|-

Scale Impact Concept *403
For a scalar requirement, a scale impact is an absolute numeric value on
the scale of measure. It can be an estimated value, or actually
achieved, measured value. It is the level estimated or achieved if a
specified design idea (or set of design ideas or Evo step) is implemented.
Notes:
1. In an Impact Estimation table, Scale Impact is customarily used together

with Percentage Impact, as alternative views of the impact estimate. We
use Scale Impact when we just want to know the real final result, which

Planguage Concept Glossary 413

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

includes the effects of implementing all previous designs. We use Per-
centage Impact when we want to understand the effect in relation to
moving from the baseline towards the goal. In other words, Scale Impact
is an absolute numeric value, while Percentage Impact is a relative value
dependent on the Scale Impact, and the Baseline to Target Pair.

2. Care has to be taken, as the impact of a design idea varies, depending
on the system technology it is added to and used in. In other words,
the impact of a design idea is not a constant, irrespective of the
circumstances it is implemented in. There can be dependencies and
interactions. Altering the order of implementing design ideas could
affect the immediate level of impact of any specific design idea.
However, given that the choice is usually just ‘what shall we implement
next on a specific system?’ it is not necessary to assess the impacts of all
the valid design idea combinations.

Synonyms: Absolute Impact *403.
Related Concepts: Incremental Scale Impact *307; Percentage Impact *306.

Scale Qualifier Concept *381
A scale qualifier is a term within the definition of a Scale parameter. It
specifies the need for a qualifier condition with an assigned scale
variable to be specified when referencing or applying the Scale in
another statement. For a given Scale, any useful number of scale
qualifiers can be defined.

Example:
Scale: Time to learn a defined [Task]. ‘‘Task is a scale qualifier.’’
Scale qualifiers are generic; each scale qualifier needs to be explicitly assigned a
corresponding ‘scale variable’ (unless a default is being used) when the Scale is
used in other parameter statements (such as any benchmarks or targets).

Example:
Goal [Task¼ Setup]: 10 minutes. ‘‘Setup is a scale variable defining the
scale qualifier, Task that was defined in the previous example.’’
The purpose of scale qualifiers is to allow a scale specification to be more
generalized and flexible; this consequently makes a scale specification
more reusable.
Notes:
1. A scale qualifier is expressed and specified by enclosing the qualifier

condition in square qualifier brackets. The word ‘defined’ is optionally

Incremental
Scale Impact Objective

Scale

Absolute
Values

Percentage
Values

0% Percentage Impact (%) 100%

Scale ImpactBaseline Target

Figure G26

414 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

specified immediately prior to the square brackets, to help emphasize
that a more specific definition needs to be provided when the Scale is
referenced, for example by a Goal statement.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].

2. A default option can be specified in order to make explicit specification
unnecessary.
Example:
Scale: The defined [Time Units: Default¼Hours] needed to do a
defined [Task] by a defined [Employee Type].

3. The scale qualifier parameter can also be ‘referenced’ by using the same
sequence as used in the scale definition: Note in this example, an
additional qualifier condition, not in the original scale definition, has
been added. This is OK. You can add any number of additional
conditions that you want.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].
Goal [Hours, Answering Help Desk Queries, Experienced, Country¼
Finland]: 60 Hours.
Or, an explicit reference to the scale qualifier tag (‘Time Units¼
Hours’) may be made, for increased clarity.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].
Past [Time Units¼Months, Task¼Complaint Handling, Employee
Type¼ Supervisor]: 6 Months.

4. The sequencing of scale qualifiers and scale variables is not
critical as long as the parameters are unambiguous to the specifi-
cation user.

Synonyms: Scale Parameter *381; Embedded Scale Qualifier *381.
Related Concepts: Qualifier *124; Scale Variable *446.

Scale Uncertainty Concept *143
A scale uncertainty is an estimate of the error margins for a specific scale
impact (that is, it provides information about the plus-and-minus range
on the scale of measure over which an estimate for a scale impact can
possibly vary). It allows calculation of the best and worst case borders.
Notes:
1. Experience data should be used for guidance, and specified as evidence

together with its source(s).
2. In some cases, the error margins may not be symmetrical about the

main estimate. It may be appropriate to use only the more extreme
uncertainty value, or to specify the asymmetry directly using the two
different numbers (for example, þ30% and �40%).

Related Concepts: Scale Impact *403.

Scale Variable Concept *446
A scale variable is the specific term assigned to ‘finally’ define a
qualifier condition for a scale qualifier.

Planguage Concept Glossary 415

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

If we fail to explicitly define a scale variable in a particular statement
and there is a defined default scale variable, then the defined default
(. . . for defined [Tasks: Default¼Update] . . .) will be assumed to be the
intended scale variable for that statement. If there is no default
defined, then the statement, in this instance, is defective.
Example:
Responsiveness:
Scale: Number of Days after a defined [Day] until enquiries answered.
Goal [Day¼Monday]: 3.
‘Day’ is the scale qualifier. Monday is a constant, assigned as the relevant
scale variable, out of the set of the possible days of the week.

Example:
Excess Speed:
Scale: Kilometers per hour in excess of the defined [Maximum Speed:
Default¼ Posted Legal Limit Speed].
Fail [Maximum Speed¼ 80]: 0 Kilometers per hour.
You would have to finally determine the definition in real driving condi-
tions.

Example:
Scale: The time needed for a defined [Task] by defined [People] in
defined [Places].
Goal [Update, Naval Officer, At Sea]: 20 minutes.
Or, alternatively, using explicit references to the scale qualifiers,
(Task¼ . . .).
Goal [Task¼Update, People¼Naval Officer, Places¼At Sea]: 20 minutes.
‘Update’, ‘Naval Officer’, and ‘At Sea’ are scale variables, defining one of the
three scale qualifiers (Task, People and Places). The scale variables are also
specification variables because we don’t really know what they mean until we
look at their definition. For example, what if ‘At Sea: Defined As: In any craft
which floats on any type of water’? Does that include wooden model boats in a
small pond?
Related Concepts: Scale Qualifier *381; Specification Variable *456.

Scope Concept *419
A ‘Scope’ describes the extent of influence of something. Scope can
apply to anything, like a specification, or a specified system or project.
The ‘extent of influence’ can be described in any useful terms. This
includes using any Planguage expressions or parameters. For
example, any [time, place, event] qualifier conditions, and any other
parameters, such as ‘Stakeholders’, can define the extent of influence
of a specific specification within the system scope.
Notes:
1. There are two especially useful notions of scope:

. Global Scope: global scope specifications (potentially) influence or dic-
tate something (like a constraint) to all areas of a defined system, unless
some overriding or higher-priority specification cancels its influence. For
example, ‘Project Scope’ (Hooks and Farry 2000 Pages 43–58).

. Local Scope: a local specification is unable and unwilling to influ-
ence or determine specifications (such as requirements and designs)
beyond a defined sub-system area.

416 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Related Concepts: View *484; Context *483; Qualifier *124; Time
*153; Place *107; Event *062.
Example:
Scope [Project X]: USA Parent Market only.
An example of an explicit Scope specification: Scope can otherwise be
indicated by a qualifier and by many other parameters (such as Authority
for example).

Side Effect Concept *273
An impact by a design idea, on any requirement attribute, other than
the direct impact(s) we primarily intended.
Notes:
1. Side effects can be evaluated at a design stage and/or observed at an

implementation stage, or even operational or decommissioning stage.
Conventional usage of ‘side effect’ implies ‘negative effects,’ but posi-
tive side effects can be just as likely, and just as interesting!

2. Side effects can be of the following categories:
. ‘Intended or unintended’: ‘Intended’ means that we have chosen the

design because we knew about and valued those particular side effects;
. ‘Known or unknown’: ‘Known’ means we were aware of the exist-

ence and possibly the levels of the side effects. ‘Unknown’ means we
were not initially aware of the side effects, but may have become
aware of them at some later stage of considering the design (such as
in testing, in a review or in operation);

. ‘Negative, neutral or positive’.
Related Concepts: Impacts *334: This parameter is used to specify side
effects.

Software Engineering Concept *572
Software engineering is the discipline of making software systems
deliver the required value to all stakeholders.
Notes:
1. Software engineering includes determining stakeholder requirements,

designing new systems, adapting older systems, subcontracting for
components (including services), interfacing with systems architecture,
testing, measurement and other disciplines. It needs to control com-
puter programming and other software related sub-processes (like
quality assurance, requirements elicitation, requirement specification),
but it is not necessary that these sub-disciplines be carried out by the
software engineering process itself. The emphasis should be on control
of the outcome – the value delivered to stakeholders, not of the
performance of a craft.

2. The concept ‘required value’ (above) is used to emphasize the obliga-
tion of the software engineer to determine the value or results truly
needed by the stakeholders, and not to be fooled by omissions,
corruptions and misunderstandings of the real-world value.

3. The concept ‘all stakeholders’ (above) is used to emphasize the broad
range of internal stakeholders (like the development project and the
producing organization), and external stakeholders (such as users,

Planguage Concept Glossary 417

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

customers, governments, add-on suppliers) that the software engineer-
ing process must be obliged to deal with. We are consciously trying to
break away from older, narrower notions that software engineering is
all about satisfying users or customers alone.

Related Concepts: Software *570; Engineering *224; Systems Engineer-
ing *223; Stakeholder *233; Value *269.

Source Concept *135
‘Source’ is a synonym for process input information (as opposed to
process input materials).
Notes:
1. Source specifications used in SQC, are contained in documents that

are usually of earlier production, and probably at higher levels of
authority, global scope and abstraction. For example: contracts
are sources for requirements. Requirements are a source for
design. Requirements and design are sources for Impact Estimation.
Design is source for planning and construction or programming.
Older specifications and change requests are sources for updated
specifications.

Related Concepts: Evidence *063.
Keyed Icon:

Specification Concept *137
A ‘specification’ communicates one or more system ideas and/or
descriptions to an intended audience. A specification is usually a
formal, written means for communicating information.
Notes:
1. A specification is usually written, but it could be oral.
2. The term ‘specification’ can refer to a single element of a larger

specification or to a larger set of specifications. It includes the entire
set of parameters and lines of text needed to specify an idea.

3. The specification concept can deal with past, present and future; it is
not confined to requirement or design specification.

4. There are many classes of ‘specification’ including {requirements,
design analysis (such as Impact Estimation tables), and project plans
(such as Evo plans)}.

5. ‘Specification’ can be described as a class of document that is used to
control the outcome of a project.

6. The term ‘specification’ is often specifically intended to refer to project
specifications, sometimes popularly called ‘specs.’

7. Specification can be categorized as Commentary or Non-Commen-
tary. Non-Commentary consists of Core Specification and Back-
ground Specification. This categorization recognizes the significance
of the specification content. For SQC purposes, it is important to
make this distinction, as finding major defects in the Core Specifica-
tion is the key task.

Abbreviations: Spec.
Related Concepts: Definition *044; Description *416; Documentation
*579; Document *180; Planguage Concept *188; Commentary *632;
Non-Commentary *294; Background *507; Core Specification *633.

418 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Specification Quality Control Concept *051
Specification Quality Control (SQC) is a rigorous specification quality
control discipline. SQC is concerned with defect detection, defect
measurement, defect removal, process improvement and entry/exit
controls. It is based on evaluating specification conformance to
specification rules.
Notes:
1. During SQC, specifications are checked against their relevant rules, sources

and kin documents for validity. Any rule violations are defects. The density
of defects is used to judge the ‘quality’ of craftsmanship of the specification.

2. SQC includes the Defect Detection Process (DDP) and the Defect
Prevention Process (DPP). Both are defined in detail in (Gilb and
Graham 1993). When the DPP (process improvement) is used the
scope goes beyond quality control and extends to quality assurance.

3. Traditionally, SQC does not pretend to judge the specifications in
terms of their relevance or profitability in the real world. It is
primarily concerned with making sure that the specifications are
clear, complete and consistent by checking a specification and any
of its source and kin documents against Specification Rules. It judges
whether the specification is suitable to be used in subsequent engi-
neering or management processes. However, by using a different
type of rules, Specification Review Rules, it is possible to extend
the SQC process to checking the readiness of specifications for
review. This could be for a business review or a technical review.
See Review *197.

Specification
*137

Requirement
Specification

*508

Design
Specification

*586

Problem
Definition

*598

Evo Plan
*322

Problem
*270

Need
*599

Target
*048

Constraint
*218

Evo
Step
*141

Impact
Estimate

*433

Gap
*359

Benchmark
*007

Design
Idea
*047

Impact
Estimation
Table *638

Documentation

‘Design Concepts’
and Measures

Impact
*087

Evo Step
Specification

*370

Iteration

Figure G27
Different kinds of specification.

Planguage Concept Glossary 419

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Description: Chapter 8, ‘‘Specification Quality Control: How to Know
How Well You Specified.’’
Acronym: SQC *051.
Synonyms: Inspection *051; Peer Review *051; ‘‘For additional specia-
lized synonyms, see (Wheeler, Brykcznski and Meeson 1996).’’
Related Concepts: Quality Control *279; Specification Defect *043;
Specification Rule *129; Specification Review Rule *543;
Review *197.

SQC Concept *051
Acronym for ‘Specification Quality Control’.

Stakeholder Concept *233
A stakeholder is any person, group or object, which has some direct or
indirect interest in a system. Stakeholders can exercise control over both
the immediate system operational characteristics, as well as over long-
term system lifecycle considerations (such as portability, lifecycle costs,
environmental considerations and decommissioning of the system).
The parameter ‘Stakeholder’ can be used to specify one or more
stakeholders explicitly. We can attach stakeholder information to any
elementary specification, or to a set of specifications, as appropriate.

‘‘4.16 Stakeholder: An interested party having a right, share or claim in the
system or in its possession of qualities that meet their needs.’’

Draft Standard ISO/IEC 15288 (ISO/IEC 1999)

People and Technology Management Process

T
ec

hn
ol

og
y,

 P
ro

ce
ss

an
d

P
eo

pl
e

ro
ad

m
ap

s

Product Creation Process

Customer

Customer Oriented Process
Policy and

Planning Process

presales sales logistics production service
material

B
ud

ge
ts

C
us

to
m

er
R

oa
dm

ap

B
us

in
es

s
D

riv
er

s
P

ro
du

ct
ro

ad
m

ap

B
ud

ge
t,

pl
an

P
ro

du
ct

 R
eq

ui
re

m
en

ts
an

d
fe

ed
ba

ck

R
eq

ui
re

m
en

ts
an

d
F

ee
db

ac
k

T
ec

hn
ic

al
P

ro
du

ct
D

oc
um

en
ta

tio
n

P
ro

du
ct

 r
el

at
ed

pr
oc

es
se

s

In
fo

rm
at

io
n

O
rd

er

P
ro

du
ct

S
up

po
rt

P
eo

pl
e

T
ec

hn
ol

og
y

P
ro

ce
ss

P
eo

pl
e

T
ec

hn
ol

og
y

P
ro

ce
ss

$$

$$

• •

Figure G28
Some stakeholder concepts. Courtesy Gerrit Muller, Philips, Eindhoven, NL. (Muller 1999).

420 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. The views and needs of stakeholders have to be sought and listened to.

For example, stakeholders might have an interest in:
. setting the requirements for a process, project or product
. evaluating the quality of a product
. using the product or system, even indirectly
. avoiding problems themselves as a result of our product or system
. the system or product being compatible with another machine or

software component
. determining the constraints on development, operation or retire-

ment of the system or product
2. Stakeholders specify requirements, directly or indirectly, for the system

attributes (function, performance, resource, design constraints, and
condition constraints). They determine the degree of product or
system success or failure.

3. Systems engineers should determine which requirements the stake-
holders need, and which requirements they can afford. Even if the
stakeholders are not currently conscious of those needs and limitations!
Example:
Goal [Stakeholders¼ {Installers, Service People}, End This Year]:
60 hours <- Marketing Authority.
Marketing Authority: Stakeholder: Our Service Organization.
The Goal requirement applies to a set of defined stakeholders. The
requirement authority (the one who has requested this Goal level) is
defined as another stakeholder.

4. Stakeholders can be internal or external to a system – it depends on the
context. Internal stakeholders are typically in our development orga-
nization. External stakeholders might be the users and customers of the
developed system. Often very external stakeholders are instances like
laws and government organizations that can impose requirements on
our system. This distinction is useful:
. to help us develop better lists of stakeholders
. so we don’t get fixated on the ‘customer/user’ as the only require-

ments source
. to give us a systematic set of (internal) stakeholders to deliver to, as we

evolve the system, even when it is not ready for external stakeholders.
Related Concepts: Owner *102; Client *235; Sponsor *396; Decision-
Maker *237; Consumer *038; User *234; Designer *190.

Standards Concept *138
A standard is an official, written specification that guides a defined
group of people in doing a process. It is a best-known practice.

‘‘A thing serving as a recognized example or principle to which others
conform or should conform or by which the accuracy or quality of
others is judged.’’

Oxford Dictionary3

3 The New Shorter Oxford English Dictionary, 1993. Oxford: Oxford University Press.

ISBN 0-19-861134-X.

Planguage Concept Glossary 421

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Standards include: {rule, policy, process, entry condition, procedure, exit
condition, form, template}.
Synonyms: Work Process Standards *138.
Related Concepts: Rule *129; Policy *111; Process *113; Form *068;
Template *254.

Status Concept *174
Status is the outcome of an evaluation of a defined condition (or set of
conditions). Status can be a matter of establishing true/false or it can
be a set of different indicators (status settings). Status determines
whether a specification or system component applies/is usable or not.
Notes:
1. For a specification, an evaluation of its status is done whenever a

qualifier or a conditional statement is evaluated. Status is implied.
Example:
Goal [By End of Year, USA, Manager, Product X, If Customer Y
Signed]: 500 Items.
The Goal only applies (500 Items is a Goal) if all the qualifying [time,
place and event] conditions are met (Status¼ true).

2. An explicit Status specification can also be made.
Example:
Safe: Status: {A, B, C, Not D, Weekday}.
A: Condition: Everybody feels good and no one panics.
B: Event Condition: No official alarm is raised by Building Safety, or
on public address.
C: Indicator Condition: No red light flashing on your workstation to
warn of unsafe air conditions.
D: Sign Condition: Lobby Sign says ‘‘No Smog.’’

Standards
*138

Procedure
*115

Entry Condition
*056Process Rule

Others
(For example:

Interface)

Specification
*137

Process
*113

Policy
*111

Rule
*609

Exit Condition
*064

Template
*254

Form
*068

Specification Rule

Concept
*595

Concept Rule

Policy Rule

Other Rules

Process Structure

Generic Specification Rule

Other

Figure G29
Shows a variety of work process standards provided by Planguage to help define work
processes.

422 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Different types of Condition are examined. Status is used to collect the
results of the condition set. The reason you might organize things this way
is to provide clarity of specification and to enable reuse of specifications. For
example ‘No Alarms: Status: {B, C}.’

3. Status is commonly explicitly used as a parameter for classifying
specification status.
(The underlying conditions are usually not explicitly specified with a
specification status.)
Example:
Document XYZ: Version: February 22, 2005. Status: Draft.
This can be used for a document, or any defined specification, includ-
ing a single requirement or design specification. Suggested status set-
tings (indicators) include:
. Undetermined
. Under Revision
. Exited
. Approved
. Validated
. Verified (proven to be present and correct by some form or test or

observation)
. ‘Initial, Defined, Agreed Upon, Released’ for ‘working state’ (as used

by Daimler Chrysler, 2002 [Personal Communication 2002]).
Rationale:
. to clearly warn specification readers when a specification is not really

approved for certain uses.
. to allow even small subsets of a larger specification document to be

independently upgraded or downgraded in status.
. to help control the evolution of any technical specification.

4. Status can also be used for system component control. For example, at the
beginning and end of a process, the relevant entry and exit conditions
respectively are usually status-checked. Each entry/exit condition could
have a true or false status.

Synonyms: State *174.
Related Concepts: Condition *024.

Stretch Concept *404
A Stretch parameter is used to define a somewhat more ambitious
target level than the committed Goal or Budget levels.
A Stretch level is specified on a defined Scale, under specified
conditions [time, place, event]. There is no commitment to deliver a
Stretch level. Stretch announces that there is some stakeholder value
at that level, if we can find a practical or economic solution for
delivering it.
Notes:
1. The intention is that a Stretch target is challenging, even quite difficult

to attain.
It is used in an attempt to inspire and motivate people to do their very
best and to do something more than they would otherwise dare to do.

2. There is not a project commitment to attain a Stretch target. The
technology to reach it may be unknown or unavailable. The techno-
logy could be too expensive at present to make it profitable to make

Planguage Concept Glossary 423

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

this level the Goal or Budget level. However, if without using any extra
resources, the project could reach a Stretch level, it would be wel-
comed. It would have some potential stakeholder value as a result.

3. A Stretch level specification can be a resource target or a performance
target.

‘‘Stretch is reaching for more than what you thought possible. . . . In a
stretch environment, the same field team is asked to come in with ‘operat-
ing plans’ that reflect their dreams – the highest number they think they
had a shot at: their ‘stretch’. The discussion revolves around new directions
and growth, energizing stuff. . . . We’ll never stop ‘stretching’.’’

Jack Welch former CEO General Electric, in Jack: Straight from the Gut
(Welch 2001 Pages 385–6)

Synonyms: Stretch Target *404; Stretch Level *404 (see Level *337).
Related Concepts: Need *599; Target *048; Goal *109; Budget *480;
Wish *244.
Keyed Icon: >þ In context: --->þ--->O--->þ--->
Historical Note: The Stretch concept was first used in Planguage by Pete
Fuenfhausen, then at Nokia, Dallas, TX, September 1999.

Supports Concept *415
‘Supports’ is used to indicate what an attribute is mainly intended to
support. It differs from ‘Impacts,’ which can include information about
all the negative unintended side effects. ‘Supports’ only lists selected
intended main supporting impacts.
Example:
Low RF Power Output [Radio Heads]:
Supports: {Availability, Co-existing, Robustness, Others} <- Marketing
Specification 4.2.1.8.
Related Concepts: Impacts *334; Is Supported By *414.

Survival Concept *440
Survival is a state where the system can exist. Outside the survival
range is a ‘dead’ system caused by a specific attribute level being
outside the survival range. For example, ‘frozen to death’ or
‘suffocated.’
A Survival parameter specifies the upper or lower acceptable limits
under specified conditions [time, place, event], for a scalar attribute.
It is a constraint notion used to express the attribute levels, which define
the survival of the entire system.
For example, a system violating a Survival limit becomes illegal, or
totally unprofitable, or in strong violation of a contract. Survival limits
are typically derived from laws, regulations and contractual
specifications.
Each survival specification should always have a clearly stated
Authority or Source specified.
Notes:
1. Survival is used to clearly state the nearby existence of a strong ‘sudden

death’ borderline for an entire system. Worse than a Survival level is a
‘catastrophe.’

424 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. One elementary scalar requirement can have several simultaneous
Survival specifications. This is because there can be different qualifiers
for each Survival level (that is, different times, places and events can
apply). For example, different stakeholders can set different criteria.

3. Survival can be used to set resource limits or performance limits, at
both extremes (---[--- and ---]--->O---[--- and ---]--->).

4. Survival implies strong authority behind it (like a Law or Corporate
Policy). You should always document the exact source of this author-
ity, using Source and/or Authority. You should also include any other
information, which that would help the specification reader to under-
stand why this requirement has been classified as a Survival Limit (such
as Rationale).

5. A Survival Limit violation will not necessarily lead to real catastrophic
failure. The failure degree depends on discovery and reaction from the
Authority behind it at the time and place of violation. For example, just
because the heart stops does not mean the person is finally dead. However,
the heart cannot be expected to start up on its own: death may well result.
Example:
Financial Cost Budget:
Scale: Cost in $ for Total Project.
Budget [Lifetime Warranty]: $9.5 million. Rationale: To allow for
risks and any lawsuits.
Fail [By Contract Completion]: $9 million. Rationale: To ensure
Profit Level.
Survival [By Contract Completion]: $10 million <- Contract 5.4.3.
Budget, Fail and Survival specify requirements with varying priority.
Budget implies ‘get to this level for success.’ Fail specifies ‘must reach this
to avoid any failure (disappointment in the results).’ Survival sets the
upper financial limit to avoid disaster.

Synonyms: Survival Level (see Level *337); Survival Limit (see Limit
*606).
Related Concepts: Fail *098; Limit *606.
Keyed Icon: [and/or] ‘‘The ‘[’ being a lower limit and the ‘]’ being an
upper limit.’’

Systecture � Concept *564
See Systems Architecture *564. Systecture is a conjunction of the terms
‘systems’ and ‘architecture’.
Historical Note: In July 2002, in connection with a book manuscript on
systems architecture, I needed a catchy term for the book title. In my 1988
book, Principles of Software Engineering Management, I had coined the
terms ‘softecture’ and ‘softect’. So, it seemed natural to extend this to the system
engineering area. A web search turned up www.systect.com (Systect, Inc.
‘The system architects’) a systems architecture company, but no use of Systecture
at all. � Tom@Gilb.com 2002. Permission is granted to use the term as a
generic word. I felt there was a need to get away from the ‘architecture’ term.
Architect is from ‘Archi-Tecton,’ which means ‘Master Builder.’ ‘Archi’ is not
from ‘Arch’, but from ‘Arche’: primitive, original, primary.4

4 Contributed by Niels Malotaux.

Planguage Concept Glossary 425

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

System [Planguage] Concept *145
A system is any useful subset of the universe that we choose to specify. It
can be conceptual or real. In Planguage, a system can be described
fundamentally by a set of attributes. The attributes are of the following
types:
. function: ‘what’ the system does
. performance: ‘how good’ (quality, resource saving, workload
capacity)

. resource: ‘at what cost’ (resource expenditure)

. design: ‘by what means.’
In addition, other factors describing various aspects of the system can
be specified. These include:
. requirements
. dependencies
. risks
. priorities.
All these specifications (the attributes and the additional factors) are
qualified by time, place and event conditions.
Notes:
1. There are specific Planguage parameters for capturing all the system

information, including: Function, Performance, Resource, Design,
Requirement, Dependency, Risk and Priority.

2. A Norwegian professor client of mine said (about 1969) that he
detested the word ‘system’ because it ‘‘had the precision of the word
‘thing’.’’ I have ever since then been careful using it, and hope the
Planguage definition limits the scope somewhat.

3. Here are some standard definitions of ‘system’:
Standard Definition [System, ISO 9000, 2000]:

‘‘An object consisting of interrelated or interacting elements.’’

Note, this ISO 9000 definition emphasizes the internal relationship
or interaction of system elements. This has limited interest. The
most central aspect of systems is how they are externally experienced
and perceived by other systems, so the Planguage definition empha-
sizes the attributes and admits the possibility of all manner of
description, including the ‘interacting elements’ – but chooses to
emphasize real-world ‘interaction’ (between any one system and all
others).
Standard Definition [System, EIA/IS-731.1, 1996 Interim Standard]:

‘‘system: The aggregation of end products and enabling products that
achieves a given purpose.’’

Note in this EIA/IS-731.1 system definition, the concept of ‘purpose’
comes in. However, lost is the possibility of multiple stakeholders and
multiple purposes through time.
Standard Definition [System, ISO/IEC 15288, preliminary version
2000]:

‘‘4.17 System An object consisting of interrelated or interacting elements
(ISO 9000: 2000).
NOTE: In practice, a system is ‘in the eye of the beholder’ and the inter-
pretation of its meaning is frequently clarified by the use of an associative
noun, e.g. product system, aircraft system. Alternatively the word system may

426 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

be substituted simply by a context dependent synonym, e.g. product, aircraft,
though this may then obscure a system principles perspective.’’

Note in this ISO/IEC 15288 definition, the authors seem to see a
problem with the concept, but try to solve it by encouraging specific
adjectives to describe it. They stick to the official version [ISO] but do not
mention attributes or purposes. A hint about systems principles is given.
Standard Definition [MIL-STD 499B]:

‘‘System: An integrated composite of people, products, and processes that
provide a capability to satisfy a stated need or objective.’’

Note this MIL-STD 499B definition is unnecessarily narrow (it does
not include the Planetary system, or the molecular system, J) and
unnecessarily broad (a people or product or process would be suffi-
ciently narrow for many systems engineering purposes). It is good that
it mentions the capability to satisfy requirements, but some systems
have capabilities that satisfy nobody’s requirements (like faults and side
effects). Systems are as they are, whether we like it or not. We have to
be able to understand and describe their attributes realistically, like
them or not.

4. When defining a system, it is important to decide the relationship
between the system being observed and changed, and the system of the
people (the project) bringing about any change. Numerous different
relationships can exist. At one extreme, a project can be completely
within the system being modified. At another extreme, a project might
be developing a product system to be sold into various, as yet
unknown, target systems.

Synonyms: System *145; Object *099: A separate concept number has
been allocated as the two terms tend to be used distinctly.
Related Concepts: Attribute *003.

Systems Architecture Concept *564
Systems Architecture is the set of artifacts produced by Architecture
Engineering. A systems architecture is a strategic framework and
consists of models, standards and design constraints specifying
mandatory and recommended best practice for implementing and
maintaining systems.
Notes:
1. A systems architecture usually applies across a division or an entire

organization.
2. A systems architecture varies in its level of detail depending on its

maturity and what is required of it. Different organizational cultures
will require different things. The main point is that a systems archi-
tecture should be cost-effective.

3. The aims of a systems architecture could include:
. imparting technical strategy
. sharing best practices
. ensuring specific standards are adhered to (for example, security)
. avoiding duplication of effort
. reducing risk by promoting tried and trusted information
. encouraging recognition and use of standard interfaces
. promoting reuse

Planguage Concept Glossary 427

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

. ensuring compatibility of data structures amongst systems

. achieving economies of scale through standard platforms (especially
for training, support and maintenance).

4. Individual systems will have their own architecture (Architecture *192),
which will adhere to any relevant mandatory systems architecture.

Synonyms: Systecture *564.
Related Concepts: Architecture Engineering *499; Architecture Specifi-
cation *617; Standards*138; Architecture *192.

Systems Engineering Concept *223
Systems Engineering (SE) is an engineering process encompassing and
managing all relevant system stakeholders requirements, as well as all
design solutions, andnecessary technology,economicandpoliticalareas.
The fundamental purposes of systems engineering are to:
. optimize the system solution at the highest level of stakeholder concerns,
. synchronize all contributing disciplines to contribute efficiently to the
final system characteristics,

. consider the entire system life cycle needs,

. manage risks for the entire system and the entire system life.
An INCOSE Definition:

‘‘Systems Engineering integrates all the disciplines and specialty groups into
a team effort forming a structured development process that proceeds from
concept to production to operation. Systems Engineering considers both
the business and the technical needs of all customers with the goal of
providing a quality product that meets the user needs.’’

(http://www.incose.org/whatis.html)

Blanchard’s Department of Defence (DoD) Definition:

Systems Engineering is the ‘‘process that shall:
1. Transform operational needs and requirements into an integrated sys-

tem design solution through concurrent consideration of all life-cycle
needs (i.e., development, manufacturing, test and evaluation, verifica-
tion, deployment, operations, support, training and disposal);

2. Ensure the compatibility, interoperability, and integration of all func-
tional and physical interfaces and ensure that system definition and
design reflect the requirements for all system elements (i.e., hardware,
software, facilities, people, data); and

3. Characterize and manage technical risks.’’

(Blanchard 1997)
An FAA (the USA Federal Aviation Authority) Definition:

Systems Engineering is: ‘‘A hybrid methodology that combines policy,
analysis, design, and management. It ensures that a complex man-made
system or product, selected from the range of options available, is the one
most likely to satisfy the customer’s objectives in the context of long-term
future operation or market environments.
Systems engineering is applied throughout the system or product life cycle as a
comprehensive, possibly iterative, interleaved, or recursive, technical process to:
a. Translate an operational need into a configured system or product

meeting the operational need
b. Integrate the technical contributions of all available development

resources, including all technical disciplines into a coordinated effort
that meets established program cost, schedule and performance objec-
tives. This involves a ‘holistic view’ (the design of the whole as

428 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

distinguished from the design of the parts). Such a view is multi-
disciplinary in nature, rather than disciplinary or interdisciplinary;

c. Ensure the compatibility of all function and physical interfaces (internal
and external)

d. Ensure that system or product definition and design reflect the require-
ments in system or product elements (outcome, hardware, software,
facilities, people, and data).

e. Characterize [identify, define, and classify] technical risks, develop risk
abatement approaches, and reduce technical risks by prevention and
mitigation of impacts when risks are realized.’’

Source: FAA-iCMM Appraisal Method Version 1.0 A-19, INCOSE Confer-
ence CD, June 1999, Brighton UK (FAA 1998).

Notes:
1. The Systems Engineering process is a conscious attempt to avoid

sub-optimal engineering. Without Systems Engineering, the success
of the resulting system is more accidental than predictable. Systems
engineering is necessary because there are so many possible places
for product development to go wrong. For example, sub-optimal
results might be caused by setting requirements for too narrow a list
of stakeholders, or by using too narrow a set of design ideas to solve
the problem of satisfying all project requirements. Another frequent
problem, especially in well-established large companies, is for groups
to produce optimal components yet produce a very sub-optimal
complete system.

Systems
Architecture

*564

Platform Strategy

Standards
Development

Program Management
Systems Architecture

Management

Other EngineeringSystems Engineering *223

Engineering *224

Data Structures Strategy

Application Portfolio
Strategy

Methods
Strategy

Project

Requirement
Specification

*508

Design
Specification

*586

Impact
Estimation

Table
*638

Standards
*138
-Security
-Interface
-Requirement
Specification
-Other

Evo Step
Specification

*370

Evo
Plan
*322

Architecture
Specification

*617

Design Engineering
*501

Requirements Engineering
*614 Evolutionary

Project
Management
(Evo) *355

Architecture Engineering
*499

Systems Engineering Hierarchy

Specifications

Processes

Concepts

Impact Estimation
*283

Requirement Specification
(Process) *612

Architecture
Specification

*617

Figure G30
Shows the relationship for systems engineering amongst concepts, processes and specifi-
cations.

Planguage Concept Glossary 429

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

2. Systems engineering includes a broad application of disciplines such as
requirements engineering, quality control, project management, test
engineering and any of the many other disciplines that might be found
useful for satisfying stakeholders. Architecture Engineering, a subset of
systems engineering, is by contrast, directed only towards the design
aspects.

Synonyms: System Engineering *223.
Related Concepts: Engineering *224; Architecture Engineering *499;
Requirement Engineering *614; Design Engineering *501; Evolutionary
Project Management *355.

Tag Concept *146
A term that serves to identify a statement, or set of statements,
unambiguously.
Notes:
1. A local tag name is declared for any set of specification statements

which needs a ‘unique identity’ to enable local cross-referencing. It is a
direct reference to the specific set of specification statements. For
example, ‘Local Tag 3.’ A local tag must be unique within the speci-
fication it is declared in, without needing hierarchical tag references or
any other device to locate it.

2. Hierarchical tags help people navigate, and understand the context of a
specification. A hierarchical tag identifies a local tag name in some larger
context. It can also be used to resolve ambiguity amongst two or more
identical, local tags. For example, A.B.Button.XY and C.D. Button.XY.
A hierarchical tag has a structure of Tag 1.Tag 2.Tag 3.Local Tag N.
Meaning Tag 3 is a subset of Tag 2. Tag 2 is a subset of Tag 1 – and
that Local Tag N will be found in Tag 1’s location.
Hierarchical tags can have any useful number of levels, no matter how
many levels are defined in total in a specification. You do not have to
repeat the entire formal sequence of hierarchical tags – just specify
enough to help find the local tag you are referring to, unambiguously.

3. One use for hierarchical tagging is to identify a specific Planguage
statement. For example, Usability.Fail and Usability.Goal refer to the
parameters under the Usability tag.

4. [Qualifier] conditions can be used to differentiate amongst several
equal terms. The qualifier conditions act as an extension to the normal
tag helping us to distinguish amongst different spaces within the scope
of the same tag name.
Example:
Reliability [USA, Retail Dealers].
Project Oasis.Requirements.Usability.Fail [USA, Retail Dealers].

Synonyms: Identifier *146; Tag Name *146.

Target Concept *048
A target is a specified stakeholder-valued requirement, which you are
aiming to deliver under specified conditions. There are two kinds of
target: ‘scalar’ and ‘binary.’ Scalar targets are specified using the
parameters {Goal, Budget, Stretch, Wish}. A performance target is
known as a ‘goal’ and a resource target is known as a ‘budget.’
Binary targets are function targets.

430 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Notes:
1. A target is not a constraint. Targets specify the success levels for scalar

requirements, and any stakeholder-desired binary requirements.
Constraints by contrast specify any failure and/or survival levels for scalar
requirements, and any mandatory requirements for binary requirements.

2. Function targets, valued functions, are subtly different from function
constraints. Function constraints are mandatory. If a function con-
straint is not met, then some degree of failure will occur, or even total
system catastrophe. Function targets do not have implied penalties,
they are considered required by some stakeholder.

3. A scalar target specification consists of a numeric value (its target level)
and its relevant [qualifiers]. As well as Goal, Budget, Stretch and Wish,
‘Ideal’ is a target parameter, but it is rarely used.

4. Target can also be used as a collective noun, applied to a set of
function targets and variable scalar targets with their individual
qualified levels.

Related Concepts: Goal *439: a performance target; Budget *421: a
resource target; Benchmark *007; Constraint *218; Function Target *420.
Keyed Icon: @

Task Concept *149
A task is a defined and limited piece of work. A task may be defined
formally by a procedure and other standards (how to carry out a task).
A process is characterized by the repetition of a task.
Notes:
1. A task may be a complex activity. It can be defined using a set of

process standards, such as procedures, rules, forms, rates, best practice
models, checklists, and guidelines.

‘‘A piece of assigned work.’’
<- The American Heritage Dictionary.

2. A task is the main part of a defined process. Entry conditions are
checked before we invest time carrying out the task. We also check that
a task has met our defined exit conditions before we consider ourselves
properly done with it. This structure of a process is sometimes abbre-
viated as ‘ETX’ (Entry Task Exit).

Related Concepts: Act [PDSA] *172; Process *113; Procedure *115.

---[----->?--->+--->------!--]---->O---[--!------>--->+--->?-------]---->

Resource
Constraints:

Resource Targets:
Wish Stretch Budget

Performance
Constraints:

Performance Targets:
Goal Stretch Wish

Survival Fail Survival Survival Fail Survival

Figure G31
Shows scalar targets can be specified for both performance and resource
requirements.

Planguage Concept Glossary 431

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Test Concept *256
To test is to plan and execute an analytical process on any system,
product or process, where we attempt to understand if the system
performs as expected, or not.
A Test parameter can be used to reference specific test plans and
processes.
Notes:
1. The overall aim of testing is to determine if the requirements are met.
2. Testing is a means of understanding how something works without neces-

sarily understanding exactly why it works that way. Testing is from outside
the ‘black box.’ Only by examining actual construction, or specification can
we analyze the inner workings of the system (the design and construction).

3. We typically test by putting planned or random inputs into a system
and comparing the resulting outputs (behavior and data) with our
expectations. When the outputs deviate from expected behavior, we
must analyze the reason to see if the system is failing to meet require-
ments or if the requirements are wrongly specified. If it is economic to
do so, we will probably correct either the system itself, or the specifica-
tion, or both.

4. The term testing could be applied in a much wider sense to any form of
examination (QC, SQC, QA), but it is specifically limited in Plan-
guage to ‘input-output’ testing of the system prior to operational use.
‘Test’ is not intended to apply to conceptual models of a system, but
only to prototypes and real-world systems.

5. The Test parameter can also be used to specify, or more likely cross-
reference, already-developed test cases and test plans for reuse or
modification.
Example:
Requirement X:
Scale:
Meter [Module Level]: . . . , [Customer Acceptance]: Contract Section
6.0, [Operation]: . . .
TP XYZ: Test Plan [System XYZ]: Test Plan Document XYZ [May
This Year].
Test [Goal]: TP XYZ [Section 1.2.3, Test Cases¼ {3.4, 6.7, 9.1.4}].
Test parameter used to cross-reference test plans and test cases for
Requirement X.
Test Tag: Test [Acceptance]: Two independent observers, [Operation]:
Built-in software test.
A Test specification, which can be included with any attribute require-
ment, can be referred to via its tag (‘Test Tag’). Notice that the qualifiers
distinguish between two different stages of testing. The two suggested test
methods are very roughly specified. This is useful at early stages of specifica-
tion in order to get some idea and agreement about test costs and quality.
This does not prevent a later stage of engineering detailing this to any
interesting level of test plan.

6. Compare ‘Test’ with the parameter Meter, which is the specification of
how to measure numerically according to a defined process in the
Meter specification.

Related Concepts: Meter *093: Test differs from ‘Meter’ in that Test is
very specifically concerned with system testing, while Meter is concerned
with any form of measurement (for example, SQC).

432 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Time Concept *153
Time defines ‘when’. It relates to any notion of time: clock-time or
timescale. Time is used both as a parameter and in a qualifier
condition.
Example:
Goal [Time¼Weekends, Place¼UK]: 60%.
Fail [Opening Hours, USA]: 50%.
Opening Hours: Time: {Weekday [0800 to 2000], Weekend [0900 to
1800], Not Legal Holiday}.
Goal [Time¼By End of This Year]: 40%.
Goal [Date¼Before January 31, This Year]: 30%.
Related Concepts: Place *107; Event *062; Qualifier *124; Scope
*419.

Trend Concept *155
A Trend parameter is used to specify how we expect or estimate
attribute levels to be in the future. It is used as a benchmark.
A Trend parameter states a numeric value, on a defined Scale, under
specified conditions [time, place, event], for a scalar attribute that is
extrapolated into the future, based on current knowledge.
Rationale: The purpose of Trend is to give us a better comparison
(benchmark) for the degree of improvement or change we are planning
or achieving, than we would get by using the more static benchmark
‘Past.’ Trend makes us plan to cope with the future, not just the past. It
makes systems engineers think about the competition.
Example:
Peace:
Scale: Probability of Peacetime Situation.
Trend [Next Year, Country¼ {Gb, F, NO, DK}]: 80%? <- Marketing
Guess.
Peacetime Situation: National Military Forces are not deployed any-
where for any purpose, even NATO or UN peacekeeping.
Trend represents our expectation of what the Past levels of this attribute
will extrapolate to in the future (unless we plan to change that projected
reality . . .).

‘‘The other beauty (‘truths I’ve learned to challenge’) goes something like
this: A team comes in with a proposal to leapfrog the current position
of its leading competitor. The implicit assumption is the competition will
be sleeping. Doesn’t usually happen that way . . . It was tough, but we
tried like hell to look at every new product plan in the context of what the
smartest competitor could do to trump us. Never underestimate the other
guy.’’

Jack Welch, former CEO General Electric (Welch 2001 Page 391)

Synonyms: Trend Level *155.
Related Concepts: Benchmark *007.
Keyed Icon: ?<
‘‘Symbolizing a Past (<) with some doubt (?) about the perfect truth.
Must normally be applied on a scalar arrow, <------?<-----O----?<---->’’
Historical Note: This concept was suggested first by Kai Thomas Gilb, May
1995.

Planguage Concept Glossary 433

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Type Concept *398
Type specifies the category of a Planguage concept. Categories
for Type may be defined both by Planguage and by local
extensions.
Notes:
1. Type classifications can be explicit.

Example:
Maintaining Standards:
Type: Function. ‘‘Explicit specification of Type.’’

2. Type classifications can be implicit. Type can be implied by content
and context.
Example:
Usability: Objective. ‘‘Implicit use of Type.’’
Requirements Section. ‘‘Implicit Type given by use in a heading.’’

3. In this glossary, Type can be used explicitly to state the categories of
the Planguage concepts (to save space, these have been omitted from
this book).

4. Type can be specified as a hierarchy.
Example:
Requirements.Performance.Quality.

5. A specific specification type may demand certain rules of specification
are followed, or imply certain properties. For example, a ‘Performance’
type will always require a defined scale of measure as it is scalar, but
‘Design’ will not, as it is binary.

Uncertainty Concept *310
Uncertainty is the degree to which we are in doubt about how an
impact estimate, or measurement, of an attribute reflects reality. We
are ‘uncertain’ as to whether the current or future reality is better or
worse (than the observed or estimated value of an attribute), and by
how much it differs.
Notes:
1. The reason behind the uncertainty could be either the expected,

known variance in the results, or it could be the quality (accuracy,
reliability, precision and relevance) of the measuring or estimating
method, or both.

2. A ‘risk’ is a factor that could result in a future negative consequence. An
uncertainty becomes a ‘risk’ when it implies a potential that a future result
will be negative in relation to a planned or estimated target. (I am well
aware of the field definitions used in Economics for risk and uncertainty
(Bernstein 1996), and the history of making a distinction (for example, the
work of Frank Knight and J. M. Keynes). However, the definitions here
are tailored to system engineering purposes, rather than Economics.)

Related Concepts: Risk *309.

Until Concept *551
‘Until’ is a logical operator that is used to limit the extent of a scalar
range of values. The purpose is to explicitly map a range rather than
have it implied by a single value at one extreme (like a Fail limit).

434 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Example:
Fail [Gb, Next Version]: 60% Until Survival.
Survival [International, Next Year]: 20% Until 0%.
Fail [EU]: 80% Until 20%.
Related Concepts: Or Worse *549; Or Better *550; Range *552.

User-Defined Term Concept *530
In Planguage, a user-defined term is a definition of a term made by a
Planguage user. It is not a Planguage term (like Scale or Goal), nor a
customer-tailored Planguage term, such as a new parameter,
parameter synonym or grammatical variation.
The scope of a user-defined term is ‘local,’ and it might apply within a
specific definition, within a specific project or across an organization.
A user-defined term has a tag that it is referred to by. It may be
specified using ‘Defined’ or ‘Defined As’ or, by adding a tag to give a
tag name to any expression, statement, or term.
Example:
Address Change: Defined As: A change to an existing address.
MTBF: Scale: Mean Time Between Failure.
PB: Goal [If Peace]: 20%.
User-defined terms are Address Change, MTBF, PB, Failure and Peace.
Address Change is an example of explicit definition. MTBF and PB are
tags defined in the statements above. Failure and Peace are defined else-
where.
Notes:
1. A user-defined term is not part of a Project Language (also known as a

‘Specific Project Specification Language’ – a customized Planguage
Specification Language).

Synonyms: Project-Defined Term *530.
Related Concepts: Planguage Term *211; Project Language *247.

Value Concept *269
Value is perceived benefit: that is, the benefit we think we will get from
something.
Notes:
1. Value is the potential consequence of system attributes, for one or more

stakeholders.
2. Value is not linearly related to a system improvement: for example, a

small change in an attribute level could add immense perceived value
for one group of stakeholders for relatively low cost.

3. Value is the perceived usefulness, worth, utility or importance of a
defined system component or system state, for defined stakeholders,
under specified conditions.

‘‘One man’s meat is another man’s poison.’’ Old proverb

4. ‘Benefit’ is when some perceived value is actually produced by, a defined
system.

5. Value is relative to a stakeholder: it is not absolute. Quality, for
example, is stated in terms of the objective level of ‘how well’ a system
performs, irrespective of how this level is appreciated by any stake-
holders. Some defined levels of quality only have a value to some

Planguage Concept Glossary 435

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

stakeholders. The same is true for all attributes. There are many
Planguage ways of indicating that a stakeholder values an attribute.
These include using Value, Stakeholder, Authority, Impacts, and
Source parameters.

‘‘Nowadays, people know the cost of everything and the value of nothing.’’
Oscar Wilde.

Synonyms: Worth *269.
Related Concepts: Benefit *009; Impacts *334; Values *592.

Version Concept *332
A version is an initial or changed specification instance. A version
identifier can be made from any symbols. It is useful to indicate
unique instances of a specification, also probably the sequence of
changes, and perhaps even the exact time of change.
A version identifier is specified by the Version parameter. By default, use
the date as the version identifier.
Notes:
1. The version should be specified at the level of individual elementary

requirement and design specifications.
Rationale: This aids change control. It allows reviewers to focus mainly
on the changes themselves, rather than the entirety of large documents,
which contain perhaps only a few changes. It also enables us to treat
individual elementary specifications as relatively independent objects,
which are electronically grouped as needed into useful views, rather
than the traditional ‘documents.’
Example:
Version: January 9, 2003.
Edition: 1.02 [Feb 21 03 3:54:36 pm].

2. If a date alone is specified on the same line as a tag, and immediately
after it, then that date will be understood as the version identifier for
whatever that tag encompasses.
Example:
Usability: January 9, 2003. Scale: Time to <learn>. Goal: 6 hours or
better.
Usability: Version¼ January 9, 2003. Scale: Time to<learn>. Goal: 6
hours or better.
Usability [Version¼ January 9, 2003]: Scale: Time to <learn>. Goal:
6 hours or better.

Synonyms: Edition *332; Instance *332.

Vision Concept *422
A vision is an idea about a future state, which is very long range and
probably idealistic, maybe even unrealistic.
The future state is likely to be about the position of a corporation or
product line in relation to the market – rather than about specific
properties of a specific product or system.
Example:

‘‘I say to you today, my friends, that in spite of the difficulties and
frustrations of the moment I still have a dream. It is a dream deeply rooted
in the American dream.

436 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

I have a dream that one day this nation will rise up and live out the true
meaning of its creed — ‘We hold these truths to be self evident, that all
men are created equal’.’’

Martin Luther King Jr., Washington, DC5

Notes:
1. Top managers or leaders state a vision in order to create teamwork to

move in a required direction. A vision can be analyzed and decom-
posed into a set of requirements.

2. In the speeches and writings of senior management, the vision might
be the only defined component which is quoted. However, the
organization and management would be wise to articulate and clarify
their understanding of, and commitment to, the vision by decom-
posing it into a hierarchical set of specific objectives, including
specific goals for the elementary objectives. They should map the
path to the vision with both short-term and long-term numeric
targets. They can then begin an evolutionary process of moving
towards the specified vision.

3. A vision statement is the reference point for developing more-
detailed specifications, such as product line performance specifica-
tions, that support the achievement of the vision. A vision statement
presumes that at least an assumption is made about the mission, for
example that ‘we are in the mobile phone business,’ or ‘we make
aircraft’.

Wish Concept *244
A Wish parameter is used to specify a stakeholder-valued,
uncommitted target level for a scalar attribute. A Wish level is
specified on a defined Scale, under specified conditions [time, place,
event]. There is no commitment to deliver a Wish level. A Wish
parameter simply specifies some stakeholders’ desired level, without
considering its cost or practicality.
Notes:
1. Wish parameters can be useful for acknowledging and recording

stakeholder desires (while clearly not committing to them) until suit-
able design ideas are identified, until resources are provided for those
designs or perhaps until deadlines are adjusted.

2. Wish belongs to the set of target specifications: {Goal/Budget, Stretch,
Wish}.

3. Subject to qualifying conditions, Wish specifications have the lowest
scalar requirement priority. (The order from highest to lowest priority
is Survival, Fail, Goal, Stretch and then Wish.)

4. A Wish specification can apply to a performance or resource
requirement.

Rationale: If we did not have a Wish parameter to articulate uncommitted
stakeholder needs, then this information might never be collected, and
maintained. So, we might lose the competitive advantage of knowing
what our stakeholders desire and value, when the resources or technology
ultimately become available.

5 From: http://www.ku.edu/carrie/docs/texts/mlkdream.html/. Martin Luther King,

‘I Have a Dream’ speech on August 28, 1963, Washington, DC.

Planguage Concept Glossary 437

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
24.6.2005 10:11AM

Synonyms: Wish Target *244; Wish Level *244 (see Level *337).
Related Concepts: Need *599; Target *048; Goal *109; Budget *480;
Stretch *404; Ideal *328.
Keyed Icon: >? ‘‘A perhaps questionable goal or budget. In context:
---->?--->O--->?---> ’’
Historical Note: The Wish parameter was first suggested in December 1995
by the Scottish Widows organization, through Dorothy Graham of Grove
Consultants.

Workload Capacity Concept *459
Workload capacity is a performance attribute. It is used to express the
capacity of a system to carry out its workload, that is ‘how much’ a
system can do, did or will do.
Notes:
1. Workload capacity can be used to capture many different concepts of

workload, such as maximum number of registered users, maximum
number of concurrent users, maximum data volumes and average
transaction response times.

2. Workload capacity expresses the system capability to perform a defined
type of work.

Scale [Generic]: An amount of defined [Work Task] to be done in a
defined [Time] by a defined [Agent] in a defined [Environment] on a
defined [System].
Synonyms: Work Capacity *459; Workload Capability *459; Workload
*459; Capacity *459.
Related Concepts: Performance *434; Quality *125; Resource Saving
*429; Workload Capacity Requirement *544.

438 Competitive Engineering

