26) Best Practices for Software Reusability

There are at least 15 different software artifacts that lend themselves to reusability. Unfortunately, much of the literature on software reuse has concentrated only on reusing source code, with a few sparse and intermittent articles devoted to other topics such as reusable design.

The state of the art of developing nominal 10,000 function point projects includes substantial volumes of reusable materials. Following are the 15 artifacts that are potentially reusable for software projects:

1. Reusable architecture

2. Reusable requirements

3. Reusable source code (zero defects)

4. Reusable designs

5. Reusable HELP information

6. Reusable data

7. Reusable training materials

8. Reusable cost estimates

9. Reusable screens

10. Reusable project plans

11. Reusable test plans

12. Reusable test cases

13. Reusable test scripts

14. Reusable user documents

15. Reusable human interfaces

Not only are there many reusable artifacts, but in addition quite a lot of information needs to be recorded in order for reuse to be both a technical and business success:

1. Recording all customers or users in case of a recall

2. Recording all bugs or defects in reusable artifacts

3. Recording all releases of reusable artifacts

4. Recording results of certification of reusable materials

5. Recording all updates or changes

Also buggy materials cannot safely be reused. Therefore extensive quality control measures are needed for successful reuse, including but not limited to:

1. Inspections of reusable text documents

2. Inspections of reusable code segments

3. Static analysis of reusable code segments

4. Testing of reusable code segments

5. Publication of certification certificates for reusable materials

Successful software reuse involves much more than simply copying a code segment and plugging it in to a new application.

One of the common advantages of using an outsource vendor is that these vendors are often very sophisticated in reuse and have many reusable artifacts available. However, reuse is most often encountered in areas where the outsource vendor is a recognized expert. For example, an outsource vendor that specializes in insurance applications and has worked with a dozen property and casualty insurance companies probably has accumulated enough reusable materials to build any arbitrary insurance application with at least 50% reusable components.

Software reuse is a key factor in reducing costs and schedules and improving quality. However, reuse is a two-edged sword. If the quality levels of the reusable materials are good, then reusability has one of the highest returns on investment of any known software technology. But if the reused materials are filled with bugs or error, the ROI can become very negative. In fact, reuse of high quality or poor quality materials tends to produce the greatest extreme range of ROI of any known technology: plus or minus 300% have been observed.

Software reusability is often cited as a panacea that will solve software’s sluggish schedules and high costs. This may be true theoretically, but reuse will have no practical value unless the quality levels of the reusable materials approach zero defects.

A newer form of reuse termed “service oriented architecture” or SOA has appeared within the past few years. The SOA approach deals with reuse by attempting to link fairly large independent functions or “services” into a cohesive application. The functions themselves can also operate in a stand-alone mode, and do not require modification. SOA is an intriguing concept that shows great promise, but as of 2007 the concepts are more theoretical than real. In any event, empirical data on SOA costs, quality, and effectiveness have not yet become available.

Software reusability to date has not yet truly fulfilled the high expectations and claims made for it. Neither object-oriented class libraries nor other forms of reuse (such as commercial enterprise resource planning (ERP packages) have been totally successful.

In order to advance reuse to the status of really favorable economics, better quality for reusable materials and better security control for reusable materials need to be more widely achieved. The technologies for accomplishing this appear to be ready, so perhaps within a few years reuse will finally achieve its past promise of success.

In order to put software on a sound economic basis, the paradigm for software needs to switch from software development using custom code to software construction using standard reusable components. In 2009 very few applications are constructed from standard reusable components. Part of the reason is that software quality control is not good enough for many components to be used safely. Another part of the reason is the lack of standard architectures for common application types and lack of standard interfaces for connecting components. The average volume of high-quality reusable material in typical applications today is less than 25%. What is needed is a step-by-step plan that will raise the volume of high-quality reusable material up to more than 85% on average, and more than 95% for common applications types.

27) Best Practices for Certifying Reusable Material

Reuse of code, specifications, and other material is a two-edged sword. If the materials approach zero-defect levels and are well developed, then they offer the best ROI of any known technology. But if the reused pieces are buggy and poorly developed, they only propagate bugs through dozens or hundreds of applications. In this case software reuse has the worst negative ROI of any known technology.

Since reusable material is available from hundreds of sources of unknown reliability, it is not yet safe to make software reuse a mainstream development practice. Further, reusable material or at least source code may have security flaws or even deliberate “back doors” inserted by hackers, who then offer the materials as a temptation to the unwary.

This brings up an important point: what must happen for software reuse to become safe, cost effective, and valuable to the industry?

The first need is a central certification facility or multiple certification facilities that can demonstrate convincingly that candidates for software reuse are substantially bug free and also free from viruses, spyware, and keystroke loggers. Probably an industry-funded non-profit organization would be a good choice for handling certification. An organization similar to Underwriters Laboratory or Consumer Reports comes to mind.

But more than just certification of source code is needed. Among the other topics that are precursors to successful reuse would be:

· A formal taxonomy of reusable objects and their purposes

· Standard interface definitions for linking reusable objects

· User information and HELP text for all reusable objects

· Test cases and test scripts associated with all reusable objects

· A repository of all bug reports against reusable objects

· Identification of the sources of reusable objects

· Records of all changes made to reusable objects

· Records of all variations of reusable objects

· Records of all distributions of reusable objects in case of recalls

· A charging method for reusable material that is not distributed for free

· Warranties for reusable material against copyright and patent violations

In other words if reuse is going to become a major factor for software it needs to be elevated from informal and uncontrolled status to formal and controlled status. Until this can occur reuse will be of some value, but hazardous in the long run. It would benefit the industry to have some form of non-profit organization serve as a central repository and source of reusable material.

Table 2.5 shows the approximate development economic value of high-quality reusable materials that have been certified and approach zero-defect levels. The table assumes reuse not only of code, but also architecture, requirements, design, test materials, and documentation. The example in table 2.5 is a fairly large system of 10,000 function points in size. This is the size where normally failures top 50%, productivity sags, and quality is embarrassingly bad. As can be seen, as the percentage of reuse increases both productivity and quality levels improve rapidly, as do development schedules. Following is table 2.5 for development:

	Table 2.5 Development Value of High-Quality Reusable Materials
	
	

	
	
	
	
	
	
	
	
	

	Application size =
	10,000
	
	
	
	
	
	

	(function points)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Reuse
	Staff
	Effort
	Prod.
	Schedule
	Defect
	Removal
	Delivered
	

	Percent
	
	(months)
	(FP/Mon.)
	(months)
	Potential
	Efficiency
	Defects
	

	
	
	
	
	
	
	
	
	

	0.00%
	67
	2,654
	3.77
	39.81
	63,096
	80.00%
	12,619
	

	
	
	
	
	
	
	
	
	

	10.00%
	60
	2,290
	4.37
	38.17
	55,602
	83.00%
	9,452
	

	
	
	
	
	
	
	
	
	

	20.00%
	53
	1,942
	5.15
	36.41
	48,273
	87.00%
	6,276
	

	
	
	
	
	
	
	
	
	

	30.00%
	47
	1,611
	6.21
	34.52
	41,126
	90.00%
	4,113
	

	
	
	
	
	
	
	
	
	

	40.00%
	40
	1,298
	7.70
	32.45
	34,181
	93.00%
	2,393
	

	
	
	
	
	
	
	
	
	

	50.00%
	33
	1,006
	9.94
	30.17
	27,464
	95.00%
	1,373
	

	
	
	
	
	
	
	
	
	

	60.00%
	27
	736
	13.59
	27.59
	21,012
	97.00%
	630
	

	
	
	
	
	
	
	
	
	

	70.00%
	20
	492
	20.33
	24.60
	14,878
	98.00%
	298
	

	
	
	
	
	
	
	
	
	

	80.00%
	13
	279
	35.86
	20.91
	9,146
	98.50%
	137
	

	
	
	
	
	
	
	
	
	

	90.00%
	7
	106
	94.64
	15.85
	3,981
	99.00%
	40
	

	
	
	
	
	
	
	
	
	

	100.00%
	4
	48
	208.33
	12.00
	577
	99.50%
	3
	

There are no other known development technologies that can achieve such a profound change in software economics than high-quality reusable materials. This is the goal of object-oriented development and service-oriented architecture. So long as software applications are custom-coded and unique, improvement in productivity and quality will be limited to gains of perhaps 25% to 30%. For really major gains of several hundred percent, high-quality reuse appears to be the only viable option

Not only would high-quality reusable material benefit development, but maintenance and enhancement work would also improve. However there is a caveat with maintenance. Once a reusable component is installed in hundreds or thousands of applications, it is mandatory to be able to recall it, update it, or fix any latent bugs that are reported. Therefore both certification and sophisticated usage records are needed to achieve maximum economic value. In this book “maintenance” refers to defect repairs. Adding new features is called “enhancement.”

	Table 2.6 Maintenance Value of High-Quality Reusable Materials
	

	
	
	
	
	
	
	
	
	

	Application size =
	10,000
	
	
	
	
	
	

	(function points)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Reuse
	Staff
	Effort
	Prod.
	Schedule
	Defect
	Removal
	Latent
	

	Percent
	
	(months)
	(FP/Mon.)
	(months)
	Potential
	Efficiency
	Defects
	

	
	
	
	
	
	
	
	
	

	0.00%
	13
	160
	62.50
	12.00
	12,619
	80.00%
	2,524
	

	
	
	
	
	
	
	
	
	

	10.00%
	12
	144
	69.44
	12.00
	9,452
	83.00%
	1,607
	

	
	
	
	
	
	
	
	
	

	20.00%
	11
	128
	78.13
	12.00
	6,276
	87.00%
	816
	

	
	
	
	
	
	
	
	
	

	30.00%
	9
	112
	89.29
	12.00
	4,113
	90.00%
	411
	

	
	
	
	
	
	
	
	
	

	40.00%
	8
	96
	104.17
	12.00
	2,393
	93.00%
	167
	

	
	
	
	
	
	
	
	
	

	50.00%
	7
	80
	125.00
	12.00
	1,373
	95.00%
	69
	

	
	
	
	
	
	
	
	
	

	60.00%
	5
	64
	156.25
	12.00
	630
	97.00%
	19
	

	
	
	
	
	
	
	
	
	

	70.00%
	4
	48
	208.33
	12.00
	298
	98.00%
	6
	

	
	
	
	
	
	
	
	
	

	80.00%
	3
	32
	312.50
	12.00
	137
	98.50%
	2
	

	
	
	
	
	
	
	
	
	

	90.00%
	1
	16
	625.00
	12.00
	40
	99.00%
	0
	

	
	
	
	
	
	
	
	
	

	100.00%
	1
	12
	833.33
	12.00
	3
	99.50%
	0
	

.

Both development staffing and maintenance staffing have strong correlations to delivered defects, and therefore would be reduced as the volume of certified reusable materials go up.

Customer support is also impacted by delivered defects, but other factors also impact support ratios. Over and above delivered defects, customer support is affected by numbers of users and by numbers of installations of the application.

In general one customer support person is assigned for about every 1000 customers. (This is not an optimum ratio, and explains why it is so difficult to reach customer support without long holds on telephones. A ratio of one support person for about every 150 customers would reduce wait time, but of course raise costs. Because customer support is usually outsourced to countries with low labor costs, the monthly cost is assumed to be only $4,000 instead of $10,000.

Small companies with few customers tend to be better in customer than large companies with thousands of customers, because the support staffs are not saturated for small companies.

Table 2.7 shows approximate values for customer support as reuse goes up. Table 2.7 assumes 500 install sites and 25,000 users:

	Table 2.7 Customer Support Value of High-Quality Reusable Materials
	

	
	
	
	
	
	
	
	

	Application size =
	10,000
	
	
	
	
	

	(function points)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Installations =
	500
	
	
	
	
	

	
	
	
	
	
	
	
	

	Application users =
	25,000
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Reuse
	Staff
	Effort
	Prod.
	Schedule
	Defect
	Removal
	Latent

	Percent
	
	(months)
	(FP/Mon.)
	(months)
	Potential
	Efficiency
	Defects

	
	
	
	
	
	
	
	

	0.00%
	25
	300
	33.33
	12.00
	12,619
	80.00%
	2,524

	
	
	
	
	
	
	
	

	10.00%
	23
	270
	37.04
	12.00
	9,452
	83.00%
	1,607

	
	
	
	
	
	
	
	

	20.00%
	20
	243
	41.15
	12.00
	6,276
	87.00%
	816

	
	
	
	
	
	
	
	

	30.00%
	18
	219
	45.72
	12.00
	4,113
	90.00%
	411

	
	
	
	
	
	
	
	

	40.00%
	16
	197
	50.81
	12.00
	2,393
	93.00%
	167

	
	
	
	
	
	
	
	

	50.00%
	15
	177
	56.45
	12.00
	1,373
	95.00%
	69

	
	
	
	
	
	
	
	

	60.00%
	13
	159
	62.72
	12.00
	630
	97.00%
	19

	
	
	
	
	
	
	
	

	70.00%
	12
	143
	69.69
	12.00
	298
	98.00%
	6

	
	
	
	
	
	
	
	

	80.00%
	11
	129
	77.44
	12.00
	137
	98.50%
	2

	
	
	
	
	
	
	
	

	90.00%
	10
	116
	86.04
	12.00
	40
	99.00%
	0

	
	
	
	
	
	
	
	

	100.00%
	9
	105
	95.60
	12.00
	3
	99.50%
	0

Because a majority of customer support calls deal with quality issues, improving quality would actually have very significant impact on support costs, and would probably improve customer satisfaction and reduce wait times as well.

Enhancements would also benefit from certified reusable materials. In general enhancements average about 8% per year; i.e. if an application is 10,000 function points at delivery, then about 800 function points would be added the next. This is not a constant value, and enhancements vary, but 8% is a useful approximation. Table 2.9 shows the effects on enhancements for various percentages of reusable material:

	Table 2.8 Enhancement Value of High-Quality Reusable Materials
	

	
	
	
	
	
	
	
	

	Application size =
	10,000
	
	
	
	
	

	(function points)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Enhancements =
	800
	
	
	
	
	

	(function points)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Years of usage =
	10
	
	
	
	
	

	
	
	
	
	
	
	
	

	Installations =
	1,000
	
	
	
	
	

	
	
	
	
	
	
	
	

	Application users =
	50,000
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Reuse
	Staff
	Effort
	Prod.
	Schedule
	Defect
	Removal
	Latent

	Percent
	
	(months)
	(FP/Mon.)
	(months)
	Potential
	Efficiency
	Defects

	
	
	
	
	
	
	
	

	0.00%
	6
	77
	130.21
	12.00
	3,046
	80.00%
	609

	
	
	
	
	
	
	
	

	10.00%
	5
	58
	173.61
	12.00
	2,741
	83.00%
	466

	
	
	
	
	
	
	
	

	20.00%
	4
	51
	195.31
	12.00
	2,437
	87.00%
	317

	
	
	
	
	
	
	
	

	30.00%
	4
	45
	223.21
	12.00
	2,132
	90.00%
	213

	
	
	
	
	
	
	
	

	40.00%
	3
	38
	260.42
	12.00
	1,828
	93.00%
	128

	
	
	
	
	
	
	
	

	50.00%
	3
	32
	312.50
	12.00
	1,523
	95.00%
	76

	
	
	
	
	
	
	
	

	60.00%
	2
	26
	390.63
	12.00
	1,218
	97.00%
	37

	
	
	
	
	
	
	
	

	70.00%
	2
	19
	520.83
	12.00
	914
	98.00%
	18

	
	
	
	
	
	
	
	

	80.00%
	1
	13
	781.25
	12.00
	609
	98.50%
	9

	
	
	
	
	
	
	
	

	90.00%
	1
	6
	1562.50
	12.00
	305
	99.00%
	3

	
	
	
	
	
	
	
	

	100.00%
	1
	4
	2500.00
	12.00
	2
	99.50%
	0

Although total cost of ownership (TCO) is largely driven by defect removal and repair costs, there are other factors too. Table 2.9 shows a hypothetical result for development plus 10 years of usage for 0% reuse and 80% reuse. Obviously table 2.9 over-simplifies TCO calculations, but the intent is to show the significant economic value of certified high-quality reusable materials.

	Table 2.9 Total Cost of Ownership of High-Quality Reusable Materials

	
	(0% and 80% reuse volumes)
	
	
	

	
	
	
	
	
	
	
	

	Application size =
	10,000
	
	
	
	
	

	(function points)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Annual
	
	
	
	
	
	
	

	Enhancements =
	800
	
	
	
	
	

	(function points)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Monthly cost =
	$10,000
	
	
	
	
	

	
	
	
	
	
	
	
	

	Support cost =
	$4,000
	
	
	
	
	

	
	
	
	
	
	
	
	

	Useful life after
	
	
	
	
	
	

	deployment =
	10 years
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	0% Reuse
	
	80% Reuse
	
	Difference
	

	
	
	
	
	
	
	
	

	Development
	$26,540,478
	
	$2,788,372
	
	-$23,752,106
	

	
	
	
	
	
	
	
	

	Enhancement
	$7,680,000
	
	$1,280,000
	
	-$6,400,000
	

	
	
	
	
	
	
	
	

	Maintenance
	$16,000,000
	
	$3,200,000
	
	-$12,800,000
	

	
	
	
	
	
	
	
	

	Customer Support
	$12,000,000
	
	$5,165,607
	
	-$6,834,393
	

	
	
	
	
	
	
	
	

	TOTAL COST
	$62,220,478
	
	$12,433,979
	
	-$49,786,499
	

	
	
	
	
	
	
	
	

	TCO cost per
	$3,456.69
	
	$690.78
	
	-$2,765.92
	

	Function Point
	
	
	
	
	
	

Constructing applications that are 100% reusable is not likely to be a common event. However experiments indicate that almost any application could achieve reuse levels of 85% to 90% if certified reusable components were available. A study done some years ago in IBM for accounting applications found that about 85% of the code in the applications was common and generic and involved the logistics of putting accounting onto a computer. About 15% of the code actually dealt with accounting per se.

Not only code but also architecture, requirements, design, test materials, user manuals and other items need to be part of the reusable package, which also has to be under strict configuration control and of course certified to zero-defect levels for optimum value. Software reuse has been a promising technology for many years but has never achieved its true potential, due primarily to mediocre quality control. If service-oriented architecture (SOA) is to fulfill its promise, then it must achieve excellent quality levels and thereby allow development to make full use of certified reusable components.

In addition to approaching zero-defect quality levels, certified components should also be designed and developed to be much more secure against hacking, viruses, botnets, and other kinds of security attacks. In fact a strong case can be made that developing reusable materials with better boundary controls and more secure programming languages such as E would add even more value to certified reusable objects.

As the global economy descends into severe recession, every company will be seeking methods to lower costs. Since software costs historically have been large and difficult to control, it may be that the recession will attract renewed interest into software reuse. Only to be successful, both quality and security certification will be a critical part of the process.

