
 

 

Niels Malotaux 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 www.malotaux.nl 1 

Niels Malotaux 
 
 
 
 

1 The problem 

I got a phone call from a R&D manager: “We have a QA problem! Can you help?” In most cases this means 
that they think they have a testing problem and this case was not different: One senior tester just had left 
the company because he had complained about his salary and the remaining senior tester was starting to 
complain as well. This may be difficult for others to understand, but engineers in general like their work 
and if they start complaining about the salary, something is very wrong in the organisation. The senior 
tester, with only one junior tester to assist, was paralysed by the pile of work in front of him. Some 15 
developers producing hardware, firmware and software caused the pile to grow faster than the remaining 
testers could handle. Customers were waiting too long for solutions to their problems, becoming really 
impatient, and getting in the process of abandoning this supplier in favour of the competition. As often is 
the case, the testers were blamed for the delay in deliveries to the customers. 

1.1 What did we do about it 

Switching on the lcd projector, using Excel as a structured notepad, we started analyzing the extent of the 
problem, listing the work-packages waiting in the pile. I asked the senior tester to estimate the number of 
days he would need to complete all the required testing of all the packages in the pile, focusing on his part 
of the work being the bottleneck. We added up all his estimations and arrived at 106 days of work (Table 1). 

Line Activity Estim Altern
ative 

Junior
tester

Devel
op 

Custo
mer 

Will be done 
(now=22Feb) 

1 Package 1 17 2 17 4 HT  
2 Package 2 8 5   10 Chrt  
3 Package 3 14 7 5 4 BMC  
4 Package 4 (wait for feedback) 11       McC?  
5 Package 5 9 3   5 Ast  
6 Package 6 17 3  10 10  ?  
7 Package 7 4 1    3  Cli  
8 Package 8.1 1 1    Sev  
9 Package 8.2 1 1    ?  
10 Package 8.3 1 1    Chrt 24 Feb 
11 Package 8.4 1 1    Chrt  
12 Package 8.5 1.1 1.1   Yet 28 Feb 
13 Package 8.6 3 3   Yet 24 Mar 
14 Package 8.7 0.1 0.1   Cli After 8.5 OK 
15 Package 8.8 18 18   Ast  

 totals 106 47 32 36   

Table 1: Slightly simplified and anonymised image of the spreadsheet how we dealt with the „QA problem“. 
Objectifying and quantifying the problem is a fist step to the solution. 

This would mean that some customers would have to wait for about half a year before getting the solution 
to their problem, while during this time the developers would produce an even bigger pile, worsening the 
situation even further. This was clearly unacceptable. Indeed there was a problem! The tester was sitting 



 

Niels Malotaux - Help! We have a QA Problem! 2

there, feeling not happy at all. In stead of complaining about a problem, we’d better do something about 
it. So, this is what we did: 
• We made it clear to the Senior tester that he still had the responsibility to sign-off for delivery to a 

customer only if he was sure that the customer would be made happy with the delivery. No dilution of 
quality! 

• We decided that the developers were to stop developing and that “the whole company”, especially 
the developers would be at the tester’s disposal, as necessary. If he’d need the CEO to do anything for 
him, we would make the CEO available. 

• We asked the senior tester to imagine what the developers could do for him, like test automation, 
making test scripts, testing or whatever. The aim was to relieve the senior tester, being the bottleneck, 
from as much work as possible. He would still have to oversee the work of the others, making sure that 
they would be doing the right things and checking their results. 

• We now asked him to estimate again: how much time would he need for the various packages and how 
much time did he estimate the developers would need (not to make the developers a bottleneck). 

Adding up his estimates showed that he still would need 47 days, or about 10 weeks. 

1.2 Some refinement 

Until now, we had only worked with work-packages of about 10 days each. As an example for more 
detailed planning, I asked which package had the most pressing customers waiting. We split this package 
into smaller elements, estimated these elements and listed which customer was waiting for which 
components of this package (Table 1, Package 8). 

The table shows the (slightly simplified) spreadsheet that emerged, the numbers being real, but the actual 
names of the packages and of the customers anonymised. Note that, strange as it may sound, the 
exactness and even the correctness of all of the numbers is not so important at this stage: Adding numbers 
averages out variance and 0th order approximation (ballpark figures) is usually sufficient for decision 
making. If more detail or “exactness” doesn’t yield a better decision, we shouldn’t waste time on the extra 
detail. The actualisation of the numbers happened in the subsequent weekly plannings. 

1.3 Planning and result 

Now we could start planning what to do in which order, systematically making customers happy, one by 
one. Note that we don’t have to provide every customer with his full solution immediately, because 
customers need time to digest what they get, so we could plan to dose component by component to 
selected customers in a regular fashion, based on customer’s real needs. 

The basic plan, with bi-weekly deliveries looked as shown in Figure 1. Within two weeks, one customer 
would be made happy. Two weeks later, two more customers, and so on. In practice, customers were 
made happy more often, because useful test results came out much more often. Based on our planning, 
we would send any customer a message: “We’ll have your solution at that date. Will you be ready?”, 
checking the eagerness and preparedness of the customer for the delivery. We were optimising our 
delivery process, and if customers were not activated appropriately at the same time, our improvements 
would not make much sense. 

The senior tester started to plan all the other packages in some more detail in a similar fashion as we did in 
the example, putting them on the timeline while synchronising with the developers for their share, and 
customers for their acceptance ability, aiming at optimum customer satisfaction. They started based on 
this plan and 9 weeks later the pile was gone. Customers were amazed about the change, got more 

 

start delivery 
cust  a 

delivery
cust  b,c

delivery
cust  a,d

delivery
cust c,e

(all
done)

week 
9 11 10 12 13 14 15 16 17 18

Figure 1: Basic idea of the TimeLine plan, later detailed into more Deliveries 



 

 www.malotaux.nl 3 

confident of our capabilities and started ordering more products. One year later people told me that sales 
had increased by 70%. 

The senior tester felt empowered and revived. He kept planning the testing activities in the same fashion 
ever since, now making sure that the testers kept up with development. Today, two years later, he is 
promoted to the position of product manager, still coaching his successors in the planning technique. An 
interesting by-product of the exercise was that the developers, having actually been involved with testing, 
now were much more aware to improve the testability of their fruits of work. 

2 What did we do? 

In order to achieve the result described we used what we call Evolutionary Planning techniques. The 
Evolutionary technique is based on constant improvement of whatever we do using the Plan-Do-Check-Act 
or Deming cycle. In the Plan phase we decide what we should achieve and how we most efficiently and 
effectively will achieve it. In the Do phase we follow the plan. In the Check phase we check whether the 
result was as planned and whether the way we achieved the result was as planned. If yes, we think how we 
can do it better the next time. If no, we think how we can do it better the next time. The Act phase is the 
crucial, and mostly forgotten one: deciding what to do differently the next time, because if we keep doing 
things the same way, the result will not be different, let alone better. By creating mutations in how we do 
things, we provoke evolution and because as humans we can imagine the impact of the changes we 
introduce, we can move the evolution quickly to improvement rather than random change. In Evolutionary 
Planning, we currently use (note that the process is also evolutionary, so it may change based on evolving 
experience!) [Mal04], [Mal09]: 
• TaskCycles to organize the work and to continuously improve the way we spend our time. 
• DeliveryCycles to deliver to stakeholders either to make them happy early, or to find out what will 

make them happy. This is to check the (perceived) requirements and the assumptions, many of which 
are often wrong. In the DeliveryCycle we aim to get feedback to find out whether we are on the right 
track to success and to find out as quickly as possible when we are not on the right track. This way, we 
have to redo as little as possible, wasting as little time as possible. 

• TimeLine to get and keep control over longer periods of time: predicting what will happen if we don’t 
change our ways and to find alternative strategies to do better things and to do things better.  

2.1 TimeLine 

In the case of the “QA problem” we started doing a Check phase, first studying the current situation and 
what would happen if we just would continue unaltered. We made a list of what we thought we had to do, 
and made rough estimations (in this case activities between 5 to 15 days). Before we started, the testers 
and their manager had a feeling that there was a lot of work to do, more than they could handle in an 
acceptable period of time. Once we quantified the problem, we knew (sufficiently accurately) how much 
work there was, showing the nature and the size of the bottleneck and not liking what we saw. We realised 
that going on unaltered was an unacceptable option, so we had do something differently, in this case using 
the developers as a temporary extension of the testing department. We quantified this scenario and 
arrived at a much more acceptable strategy. 

Summarizing the TimeLine technique: 
• Cutting what we think we have to do into up to 20 chunks (packages, activities) and estimating these 

chunks. Adding up the estimates usually provides sufficient evidence that we need more time than we 
have available. At this point, most projects decide that they simply need more time, or complain that 
management is imposing impossible deadlines. 

• With Evolutionary Planning, however, we don’t stop here, but think of alternative strategies of doing 
things, doing different things or doing things differently. We estimate the impact on the result and 
choose the optimum strategy. Now we have well-founded arguments to explain management why 
things will take as much as they still will do.  



 

Niels Malotaux - Help! We have a QA Problem! 4

• Now the chosen strategy is planned focused on the optimum order of implementing the optimum 
solution, still being aware that “optimum” gradually may change by advancing understanding. It’s of 
no use continuing an initial plan once we see that it should be changed. That’s why we have to 
continuously keep using the Plan-Do-Check-Act technique, with the Business Case as a reference.  

• Now we can start predicting what will be done when, based on the estimations and subsequent 
calibration to reality. This provides the business with quite reliable predictions, allowing them to 
provide reliable predictions to their customers. 

Table 2 shows a simplified example of a TimeLine table, stating the Activity-description, the estimate, the 
time already spent and the time still to spend, the ratio of real and estimated time, the calibration factor 
(ratio of total real time and estimated time during a past period), the resulting calibrated (“real”) time still 
to spend and the resulting dates. If in this example the project has to be concluded on 5 June, we now can 
say that Activities 17 and 18 won’t be done at that deadline, unless we do something differently. This way, 
we can very early in a project predict what will be done when and take the consequence of the prediction, 
rather than sticking our head in the sand until reality hits us somewhere. 

 
Line Activity Estim Spent Still to

spend
Ratio 
real/e

s 

Calibr
factor

Calibr
still to 

Date 
done 

1 Activity 1 2 2 0 1.0    
2 Activity 2 5 5 1 1.2 1.0 1 30 Mar 2009 
3 Activity 3 1 3 0 3.0     
4 Activity 4 2 3 2 3.5 1.0 2 1 Apr 2009 
5 Activity 5 5 4 1 1.0 1.0 1 2 Apr 2009 
6 Activity 6 3       1.4 4.2 9 Apr 2009 
7 Activity 7 1       1.4 1.4 10 Apr 2009 
8 Activity 8 3       1.4 4.2 16 Apr 2009 
↓  ↓        
16 Activity 16 4       1.4 5.6 2 Jun 2009 
17 Activity 17 5       1.4 7.0 11 Jun 2009 
18 Activity 18 7       1.4 9.8 25 Jun 2009 

   
   

Table 2: Simplified TimeLine sheet, indicating what will be done when based on estimations and a calibrated 
future. It also shows what will not be done at a certain date, giving us early warnings. The earlier we get a 

warning, the more time we’ll have to do something about it. Some notes: In this table we don’t calibrate „Still 
to Spend“ (using calibration factor 1.0), because of assumed  improved insight. Activities not yet started are 

calibrated by the ratio of Spent plus Still to Spend and the original estimates. 
Apparently, this is a snapshot of 29 March. 

3 What does all this have to do with Testing or QA? 

Just like development, testing can also improve productivity enormously by using Evolutionary Planning 
techniques. Testers often complain that at the end of the project they don’t get enough time to do proper 
testing, the developers always being late and the end-date never being adjusted, squeezing the remaining 
time available for testing. Just like in the above example, testers shouldn’t complain about this, but rather 
think what they can do about it. The solution is simple: don’t wait until the end of the project to start with 
testing, but start testing right from the start. Review the business case, review the requirements, review 
the architecture and design, review whatever code is being produced as the project progresses, all the 
time providing quick feedback to the developers, so that the developers can repair the mistakes already 
made and learn from them to prevent making these and similar mistakes any more, saving a lot of time. 



 

 www.malotaux.nl 5 

This way, testing needs hardly any extra time after the developers have finished, minimizing the delay of 
the project because of testing. 

3.1 Who is the customer of Testing and QA? 
Dr. Deming [Dem86] explained (slightly modified for testing): “Quality comes not from testing, but from 
improvement of the development process. Testing does not improve quality, nor guarantee quality. It’s too 
late. The quality, good or bad, is already in the product. You cannot test quality into a product.” Once we 
understand this, it’s inevitable to recognize that the main customer of QA and of the testers is 
development. For most testers, this is quite a paradigm shift! 

The developers are to put the right quality into the product. If the developers are humble enough to admit 
that they make mistakes, like other normal people, they can ask the testers to help them finding out where 
they are still making mistakes, in order to learn how to prevent making these mistakes ever more. The 
testers of course keep trying to find the remaining mistakes, because feeding these back to development 
leads to even better results. 
If we recognize that testing is a project that should run along with the development project, where the 
developers are the customer, and the customer has to be supplied with what he needs, at the time he needs 
it, to be satisfied and to be more successful than without us as testers, the testing project can also use all 
the Evolutionary Project Planning techniques that development is already using. TaskCycles to organize 
and optimize the work, DeliveryCycles to see whether testing is doing the right job and TimeLine to check 
that we are keeping in sync with development, not to unnecessarily delay the project. If testing isn’t well 
aware of their actual customer, they are probably doing some things not right. 

Looking at the developers’ weekly (TaskCycle) planning, the testers know exactly what the developers will 
have done at the end of any week, so during that week they can plan exactly what and how to test in the 
following week, immediately upon delivery by the developers, not wasting any time. More can be read in 
[Mal05]. 

3.2 Evolutionary project management  

Evolutionary Planning is part of the Evolutionary Project Management techniques which evolutionarily 
have evolved based on actively and very frequently using the Plan-Do-Check-Act or Deming cycle, which is 
actually a continuous root-cause-analysis-plus-consequence (Act!) technique. Some people fear that these 
techniques will cost a lot of extra time. Recently a Project Manager said: “Do I have to do root-cause-
analysis on all defects found? I can’t spend that amount of time!” Apparently he thought he did have 
enough time to repair all the repeated defects that kept coming in, rather than avoiding most of them. 
Experience in numerous projects proves that using these techniques, projects can quickly learn to conclude 
projects more successful in significantly shorter time. A lot of time can be saved, both in development and 
testing, but we have to actively start looking for it. The Evolutionary Project Management techniques help 
people doing this. 
Elements of these techniques are: 
• Plan-Do-Check-Act - the powerful ingredient for continuous learning and success  
• Zero-Defects as an attitude - preventing half of the defects overnight [Cro84] 
• Business Case - to define why we are doing the project 
• Requirements Engineering - to define what we are supposed to achieve and what not, and using 

quantification to define how much better performance we are supposed to achieve [Gil88], [Gil05] 
• Architecture and Design - selecting the optimum compromise for the conflicting requirements 

(requirements are always conflicting: e.g. performance <> budget) 
• Early Review & Inspection - measuring quality while doing, quickly learning to prevent injecting defects 
• Weekly TaskCycle - short term planning, optimizing estimation, promising what we can achieve and 

then living up to our promises 
• Bi-weekly DeliveryCycle - optimizing the requirements and checking the assumptions, soliciting 

feedback by delivering real results to eagerly waiting stakeholders 



 

Niels Malotaux - Help! We have a QA Problem! 6

• TimeLine - getting and keeping control of Time: predicting the future, doing something with that 
knowledge, and feeding program/portfolio/resource management with quite reliable results 

More details can be read in [Gil88], [Gil05], [Mal04] and [Mal09]. With this paper I hope to have shown 
that testing can be planned just as any other project, using the same Evolutionary techniques we 
developed for development, to improve the performance of the tester’s contributions to the success of 
the project, resulting in happy customers and hence in better revenues for the organization, ultimately for 
all people involved. 

References 

[Cro84] P.B. Crosby: Quality Without Tears, McGraw-Hill, 1984, ISBN 0070145113 
[Dem86] W.E. Deming: Out of the Crisis, MIT, 1986, ISBN 0911379010 
[Gil88] T. Gilb: Principles of Software Engineering Management, Addison-Wesley, 1988, 

ISBN 0201192462 
[Gil05] T. Gilb: Competitive Engineering, Elsevier, 2005, ISBN 0750665076 
[Mal04] N.R. Malotaux: How Quality is Assured by Evolutionary Methods, 2004 

www.malotaux.nl/nrm/pdf/Booklet2.pdf 
[Mal05] N.R. Malotaux: Optimizing the Contribution of Testing to Project Success, 2005, 

www.malotaux.nl/nrm/pdf/EvoTesting.pdf 
[Mal09] N.R. Malotaux: Evolutionary Planning or How to Achieve the Most Important Requirement, 2009 

www.malotaux.nl/nrm/pdf/EvoPlanning.pdf 
 



 

 

Niels Malotaux 
 
 
 
 
 
This is about a real case of too many developers feeding too few testers, causing a testing backlog of half a 
year, with many angry customers waiting for too long for solutions to their problems. One senior tester 
just had left the company. There was only one senior and one junior tester left. They were facing this huge 
backlog of work and didn’t know where to start. 
We will show how empowerment of the testers, careful planning and involvement of the developers 
allowed the testers to catch up in about 9 weeks, systematically making customers happy one by one 
along the way. The senior tester learnt how to plan the work of the testers effectively and efficiently in 
sync with the developers, so that there were no backlogs ever since. Trust by customers who were in the 
process of abandoning the supplier was restored causing turnover to grow enormously since.  
We will first show how we used Evolutionary Planning techniques in this particular case. Then we will 
discuss in more general terms the elements of this planning technique. 

 
Niels Malotaux is an independent Project Coach specializing in optimizing project performance. He has over 35 
years experience in designing electronic hardware and software systems, at Delft University, in the Dutch Army, 
at Philips Electronics and 20 years leading his own systems design company. Since 1998 he devotes his expertise 
to helping projects to deliver Quality On Time: delivering what the customer needs, when he needs it, to enable 
customer success. To this effect, Niels developed an approach for effectively teaching Evolutionary Project 
Management (Evo) Methods, Requirements Engineering, and Review and Inspection techniques. Since 2001, he 
taught and coached over 100 projects in 25+ organizations in the Netherlands, Belgium, China, Germany, India, 
Ireland, Israel, Japan, Romania, South Africa and the US, which led to a wealth of experience in which 
approaches work better and which work less in the practice of real projects. He is a frequent speaker at 
conferences, see www.malotaux.nl/nrm/Conf . 

Find more at: www.malotaux.nl Evo pages are at: www.malotaux.nl/nrm/Evo 
1. Evolutionary Project Management Methods www.malotaux.nl/nrm/pdf/MxEvo.pdf 
2. How Quality is Assured by Evolutionary Methods www.malotaux.nl/nrm/pdf/Booklet2.pdf 
3. Optimizing the Contribution of Testing to Project Success www.malotaux.nl/nrm/pdf/EvoTesting.pdf 
3a. Optimizing Quality Assurance for Better Results www.malotaux.nl/nrm/pdf/EvoQA.pdf 
 (same as 3, but now for non-software projects) 
4. Controlling Project Risk by Design www.malotaux.nl/nrm/pdf/EvoRisk.pdf 
5. TimeLine: Getting and Keeping Control over your Project www.malotaux.nl/nrm/pdf/TimeLine.pdf 
6. Recognizing and Understanding Human Behaviour www.malotaux.nl/nrm/pdf/HumanBehavior.pdf 
7. Evolutionary Planning www.malotaux.nl/nrm/pdf/EvoPlanning.pdf 

(similar to TimeLine, but other order and added predictability) 
ETA: Evo Task Administration tool www.malotaux.nl/nrm/Evo/ETAF.htm 

N R Malotaux 
Consultancy 
Niels R. Malotaux 
Bongerdlaan 53 
3723 VB Bilthoven 
The Netherlands 
Phone  +31-30-228 88 68 
Fax  +31-30-228 88 69 
Mail  niels@malotaux.nl  
Web www.malotaux.nl 
Evoweb www.malotaux.nl/nrm/Evo 

Originally prepared for the Conquest 2009 Conference, Nuremberg, Germany 
Version 1.0 (text as submitted) - 19 June 2009 


