
Document Inspection: An Agent Of Change

Dick Holland
Primark Investment Management Services Limited

27 September 1996

A Vision of the Future

This is the story of a journey; or, rather, the beginning of a journey. It’s a journey that we have
embarked upon whilst its destination is but a vision - a vision of the future in which our product is
recognised clearly as the best of its kind on every measurable scale.

We have already caught a glimpse of this future; every month a little more of the vision becomes real
to us because our journey is one of continuous improvement . It is also one of constant discovery, of
new insights and continuous learning from our own experiences. We have started by focusing on the
quality of our software but ultimately our travels will take us into every corner of our business.

Part of this paper describes the lessons we learned from Tom Gilb at the end of 1994; it also describes
how we’ve put that learning into practice, and how we’ve developed and discovered new insights
beyond it. The essence of the Gilb “method” is that quality measurement and improvement are
embedded in the production processes (those that actually make your product). “Quality” thus requires
no external agencies because it’s in-process. You define the quality goals for your system, product or
service by means of Quantified Objectives, stating their current and target values and how they are to
be measured, and the method provides a number of strategies by which those goals might be reached.

The method is firmly rooted in a strong process orientation: it requires that the production processes be
identified, and process ownership be recognised and assigned. Thereafter product and process quality,
as measured by the values held by the quantified objectives, is raised continuously by means of
techniques which include Defect Detection by Document Inspection and Defect Prevention by
Continuous Process Improvement.

It follows, therefore, that the first steps to take must include setting the quantified objectives and
identifying the processes. This may (and we found that it did) require the redesign of existing processes
and the recognition of hitherto undiscovered ones. It means that the supporting information systems
needed to measure, record, track and report improvements in the objectives require redesign (as we
also found), and it may also require organisational change (as we are now finding).

Petrozzo and Stepper in Successful Reengineering [Petrozzo94]1 define Business Process
Reengineering as “the concurrent redesign of processes, organisations, and their supporting
information systems to achieve radical improvement in time, cost, quality, and customers’ regard for
the company’s products and services”.

That’s a very good definition of what we’re now doing; the difference in our case perhaps being that it
is not a one-off exercise, for we are continuing to develop and improve the infrastructure, and the tools
and techniques and, above all, to change our culture so that we are ready and able to redesign our
processes, organisation and systems continuously.

It is in this way that we are using the powerful leverage effect of Document Inspection as an agent of
change and we now know that we can realise our vision and reach our goal of owning a product that is
recognised as the best of its kind on every measurable scale.

1 A list of references can be found on page 35.

Measures of Software Quality

There have been, and continue to be, many attempts to define software quality. Some have
concentrated on measuring the delivered software itself, while others, such as ISO9000/BS5750, have
focused exclusively on the development process presumably on the premise that if the process is of
good quality so will be the software it produces.

Perhaps the most interesting example of the latter is the Capability Maturity Model (CMM) developed
by the Software Engineering Institute of Carnegie Mellon University in the USA [Paulk93]. This has
come about from the pioneering work undertaken by, among others, Watts Humphrey while at IBM. It
defines a set of criteria against which an organisation can be measured to determine the quality of its
development process and the software produced thereby. A software development organisation is
measured by the CMM according to the characteristics exhibited by its processes.

Figure 1 illustrates the five levels of capability defined by the CMM and the criteria that apply to each.

1

2

3

4

5

Initial

Repeatable

Defined

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking & oversight
Software project planning
Requirements management

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organisation process definition
Organisation process focus

Software quality management

Quantitative process management

Process change management
Technology change management
Defect prevention

Managed

Continuously

improving

process

Predictable

process

Standard,

consistent

process

Disciplined

process

Optimising

Figure 1: SEI Capability Maturity Model

Although the CMM defines “software quality management” as a characteristic of a Level 4
organisation, it does not prescribe what qualities are to be measured and managed. It does say,
however, that Levels 4 and 5 characteristics are based on the concepts of statistical process control as
described by J.M. Juran in Juran on Planning for Quality [Juran88].

The Juran Trilogy Diagram, illustrated in Figure 2, depicts quality management as three basic
processes: quality planning, quality control and quality improvement.

Quality Planning

Lessons learned

Quality Control (during operations)

Cost

of

poor

quality

Quality Improvement

Chronic waste
New zone of

quality control

Sporadic
spike

Original zone of
quality control

Figure 2: Juran trilogy diagram

The sporadic spike in Figure 2 represents what Juran calls fire fighting activities - a term with which all
those concerned with software development are familiar. The Trilogy Diagram shows how the chronic
waste caused by not managing quality can be reduced by introducing quality improvement and feeding
back the lessons learned thereby into the quality planning process.

Michael Fagan, also at IBM, developed in the early 1970s a method of formal inspection, against
documented criteria, of program code as a means of improving software quality by removal of defects
before test [Fagan76]. This work was extended by Tom Gilb, as described in Software Inspection
[Gilb93], into a method for formally inspecting any type of document. Gilb placed additional emphasis
upon inspecting documents upstream of code in the development process on the basis that the earlier
any defects are found the cheaper they are to fix.

What Gilb also did beyond Fagan was to build into his method a mechanism by which the process that
created a document could also be examined to determine whether any systemic defects were being
caused by the process itself. This introduced the element of process improvement into the method and
resulted in a single technique that could be used for defect detection (a CMM Level 3 criterion) and
defect prevention by process improvement (a CMM Level 5 criterion).

Gilb had also been involved for many years in the field of software metrics and it is from this work that
the notion of Quantified System Attributes came, described in his book Principles of Software
Engineering Management [Gilb88]. These provide a means of defining attributes or objectives for a
system which are measurable and hence quantifiable.

Attributes can be chosen that refer to any aspect of a software system that will, if improved, contribute
to an improvement in the overall “quality” of the software as perceived by its users. Thus they provide
a very direct way of measuring improvement in software quality.

What do we want to measure?

Quality can be measured along many dimensions. Some of the more interesting questions we might
want to ask about a software system include: how many defects does it have? how easy is it to use?
how easy is it to learn? how easy is it to install and upgrade? how well does it perform?

These qualities or attributes are important to a greater or lesser degree to all users of the software and it
is therefore worthwhile to measure them to determine which ones require improving and to what
extent.

We can define as an attribute anything that can be measured numerically; Principles of Software
Engineering Management [Gilb88] provides a “starter set” of such attributes.

What about productivity?

We’ve so far described the measures that we want to apply to the delivered software system, but what
about development productivity?

We were sufficiently concerned about what we perceived to be a productivity problem that we
presented Tom Gilb in November 1994 with our main objective (which became known as our “time to
market” objective):

His response to this was a high-level definition of the quality of the software and our success at
developing, installing, maintaining and supporting it:

Clearly by this definition, quality and productivity are two halves of an indivisible whole, because the
“time to market” objective includes delivering what the customer wants when he wants it. It also
embraces all the necessary support activities and therefore addresses in a single definition many aspects
of our business.

Four main strategies were proposed to help us meet this objective:

• Defining Quantified System Attributes to set the quality standards for the software
• Document Inspection to detect and remove defects
• Continuous Process Improvement to prevent defects appearing by changing the development

processes
• Evolutionary Result Delivery to deliver incrementally the required functionality in a timely and

controlled fashion

We’re now going to examine each of the first three of these strategies.

“To improve time to market for new Icon developments and enhancements”

“To reduce the calendar time needed to deliver what customers really want. This is defined
as:

Productivity
Our ability to deliver customer needs in relation to cost of delivery including training,
installation, help service and maintenance

Reliability
The degree to which the delivered functionality and quality of our total product and
service meet the defined and real expectations and needs of our customers and
prospects”

Quantified System Attributes

As we have noted, Quantified System Attributes set the standards by which we wish to measure the
software system, and an attribute can be anything that is directly measurable by some means. We look
at attributes in two basic ways: those that are directly visible to the user of the delivered software
system; and those that are not. This gives us a first-level classification of attributes into externally- and
internally-focused ones, and we place each attribute that we want to define into one of these two
classes.

A list of interesting externally-focused attributes, those that users of the system see, could include the
following:

• How frequently does it fail to produce correct results? (which we shall call Reliability)
• How easy is it to use? (Facility)
• How easy is it to install and upgrade? (Installability)
• Does it do everything that I want? (Functionality)
• Does it do it quickly enough? (Performance)

We classify these as External Attributes of our system: those which directly affect the customers of the
delivered software.

A list of internally-focused attributes, those which the developers, maintainers and supporters see,
could include:

• How easy is it to fix things when they break? (Serviceability)
• How easy is it to test and prove that a change works? (Testability)
• How easy is it to diagnose errors and find their causes? (Diagnosability)

We classify these as Internal Attributes which are those that directly affect the vendors of the product
and indirectly affect its customers. It is these which are also related to the productivity aspect of our
“time to market” objective.

We believe that it is imperative to publish the attributes, both within and without our own organisation.
Doing this has a number of aims:

• To impress customers and prospects with the numbers themselves (always assuming that they are
good!) and our willingness to share them publicly

• To demonstrate to customers and prospects that we have a mission to improve continuously
• To stimulate us to reach and maintain ever higher standards (and thus to improve continuously!)
• To put pressure on our competitors

Attributes can therefore be used as very powerful marketing weapons, especially if competitors are less
open about such things (as is indeed the case with our competitors). They can make a very confident
and positive statement about us as a vendor, and they are also powerful agents of change for our own
processes.

What Do We Mean By Process?

Of the proposed strategies two, Document Inspection
and Continuous Process Improvement, are predicated
on the existence of processes. So what are processes
and how do we define them?

In Reengineering the Corporation Hammer and Champy provide an excellent definition of a process:
“a collection of activities that takes one or more kinds of input and creates an output that is of value to
the customer” [Hammer93, p.35]. So, simply put, a process is anything we do to inputs to create
outputs which are of value to our product or service.

We extend the definition of customer in that we describe a process as creating an output that is also of
value to another, downstream, process. This may be a process within our organisation or in a
customer’s organisation.

We describe all of our processes in this way. We also define a taxonomy which contains two classes of
process:

• A production process is one whose results are used directly by the product or service we are
supplying to customers

• A meta process is one which is concerned with the ulterior or underlying principles of the
production processes

Furthermore, by our definition a meta process is also one whose results are used to monitor, measure
and improve the production processes and hence one or more attributes of the product or service we are
supplying. Therefore, all processes such as Defect Detection, Defect Prevention, Process Ownership
and Process Change Management are to be found in the meta process class.

In order to aid standardisation of our definition, we adopt the notion of a “generic” process which
doesn’t describe any process in particular, but rather the shape of them all. Figure 3 illustrates this
generic process structure.

“Process is simply a way of getting smart
systematically” Tom Gilb

Transform

Exit

Lorem ipsum

Delor sit amet
consecteteur

adipiscing elit sed

diam

Nonummy nibh
euismod

Tincidunt ut

Lorem ipsum

Delor sit amet
consecteteur

adipiscing elit sed

diam

Nonummy nibh
euismod

Tincidunt ut

Lorem ipsum

Delor sit amet

consecteteur
adipiscing elit

sed diam

Nonummy

Lorem ipsum

Delor sit amet
consecteteur

adipiscing elit

sed diam

Nonummy

Lorem ipsum

Delor sit amet
consecteteur

adipiscing elit

sed diam

Nonummy

Inspect

Entry

Verify

Exited

Product

Document

Source

Documents

Exit

Criteria

Entry

Criteria

Process
Rules

Figure 3: Generic process structure

The generic process includes the following components:

• One or more Source Documents, which are the inputs to the process
• A set of Entry Criteria against which the Source Documents are checked by an Entry sub-process

for compliance before the process is initiated
• A set of Process Rules, otherwise the Procedure, by which the process should be operated
• A Product Document, which is the output from the process
• A Transformation (shown as Transform) which converts the Source Document(s) according to the

process rules into the Product Document
• One or more Correctness Verifications (shown as Verify) which establish that the Product

Document’s technical content is correct
• One or more Document Inspections (shown as Inspect) which establish that the Product Document

meets the agreed quality standards
• A set of Exit Criteria against which the Product Document is checked by an Exit sub-process

before the process is terminated

The Transform, Verify and Inspect sub-processes are iterated until the Product Document is completed
and exited from its final Inspection.

The Verify sub-process, analogous to what is known elsewhere as a review or walkthrough, can range
from an informal exchange of views and information to a formal meeting with a variety of domain
experts present. We have quite recently bounded the Verify sub-process by means of rules or
procedures: it can either be invoked separately or by means of a formal verification role in a Document
Inspection.

The Inspect sub-process itself is always a formal event whose rules are clearly defined; the initial
reference we used being Software Inspection [Gilb93].

Each process has a written Procedure to be followed and a template Form for its Product Document.
The Exit Criteria that the Product Document must meet before the process is complete are met by those
defined for its Inspection through its Inspection Artefacts. Inspection itself being an instance of the
meta process class is defined in precisely this way.

How We Inspect Documents

The primary objective of Document Inspection is the detection and removal of defects from documents
before they are used as sources in downstream processes; for this reason it is also known as the Defect
Detection process. For a full treatment of the Inspection process the curious are directed to Software
Inspection [Gilb93].

In an Inspection, a document is checked rigorously against written rules, any breach thereof being
classed as a defect. Defects fall into two categories: major defects being those likely to cause errors
downstream; and minor defects being those unlikely to do so. The aim of any Inspection is to reduce
the number of predicted major defects remaining in the document to an agreed, and calculable, level as
defined in the Exit Criteria for Inspections. When a document reaches that point it is suitable to be
used as a source in a downstream process and, most importantly, with a known quality status. Until a
document has been Inspected its quality status is, of course, unknown and its defects undiscovered.

An Inspection is carried out by an Inspection Team created for the purpose. Within the team, there are a
number of specialist roles:

 Leader the “project team leader” of the Inspection
 Checker one who checks the Product and Source Documents against the rules and

checklists. Checkers may also assume more specialised roles, for example a
procedural role or a verification role

 Scribe one who transcribes the issues raised during the Logging Meeting for
subsequent use by the Editor while cleaning up the document

 Author/Editor the editor of the Product Document who may or may not be its original
author

The Inspection process itself, illustrated in Figure 4, has a well defined procedure:

• Ensure that the Entry Criteria are met
• Check the Product Document against written Rules
• Log the issues raised by the checking
• Edit the Product Document where defective
• Raise Document Change Requests for defects in Source Documents
• Exit the Product Document when the Exit Criteria are met

In this and other such models the parenthesised codes in the boxes describing the sub-processes are the
Process Identifiers; these will be seen again in the table following which enumerates the Product
Documents and their intended readerships.

Kickoff

 Planning

.. . . .

Source

Individual

Checking

Logging

Meeting

Edit

and
follow-up

.

Rules,

Checklists,

Procedures

Change

requests

(to source)

Product

document

Process

improvements

Entry Exit

 Figure 4: Defect detection (Inspection) process

A key feature of Inspections is the automatic feedback loop to process improvement. This means that
every Inspection carries with it the potential to invoke a change to the process.

Process Improvement Suggestions are ideas for changes to the process that produced the document
being Inspected in order to reduce systemic defect generation, and can be raised by anyone
participating in an Inspection.

Process Brainstormings are held after some or all Inspections in order to generate more improvement
ideas from all Inspection participants.

The results from both Process Improvement Suggestions and Process Brainstormings are fed out of
Inspections to the Process Owner, who then decides whether to incorporate them into the process. This
is depicted in Figure 3 on page 8 by the arrow from Inspect to Process Rules. The implication here, of
course, is that every process which has Product Documents that are to be Inspected must have a
Process Owner to implement the improvements.

The Document Inspection process, like all others, is defined by a number of artefacts:

 Rules specify the criteria against which a Product Document is to be Inspected. They
include such attributes as form and content

 Checklists provide additional help and guidance to Checkers during Inspections
 Procedures define the procedures for each of the different participant roles of the Inspection

Team members
 Forms contain the templates for the Inspection Artefacts, the documents used in the

Inspection process
 Entry Criteria define the criteria that must be met (unless specifically waived) before a Product

Document can be Inspected
 Exit Criteria specify the criteria that must be met before a Product Document can exit an

Inspection

Table 1 shows the Product Documents and their intended readership for each sub-process of
Inspection.

Table 1: Defect detection processes & product documents

Table 1 also illustrates how we document every process we have defined: by recording its unique
process identifier; its name or description; its Product Document(s); and their intended readership.

The sub-processes of an Inspection as illustrated in Figure 4 are:

 Planning & Entry in which the Inspection Leader establishes that the Product Document meets
the Entry Criteria and then forms the Inspection Team

 Kickoff in which the Inspection Team meet, the Leader allocates any specialist roles
and completes the Inspection Master Plan

 Checking in which the Inspection Team check the Product Document against the
Source Documents, Rules and Checklists

 Logging in which the Team log the issues raised by the Checking on the Author
Advice Log and the Leader completes the Inspection Data Summary

 Edit & Follow-up in which the Editor, who may or may not be the document’s original author
but is its current owner, cleans up the Product Document and raises any
necessary Document Change Requests for Source Documents and Process
Improvement Suggestions

 Exit in which the Leader checks that all the logged issues have been addressed
by the Editor, calculates the predicted remaining defects in the Product
Document and exits it if it now meets the Exit Criteria

 Process Brainstorming in which the Inspection Team brainstorm to discover if any systemic defects
are being caused by process deficiencies

Process Product Documents Intended Readership
DD1 Planning & entry check
DD2.1 Kickoff - Leader Master Plan Checkers
DD2.2 Kickoff - Checker
DD3.1 Checking - Leader
DD3.2 Checking - Checker
DD4.1 Logging - Leader Data Summary Inspection Leader
DD4.2 Logging - Checker
DD4.3 Logging - Scribe Author Advice Log Editor
DD4.4 Logging - Author
DD5.1 Process Brainstorming - Leader Process Brainstorming Log Process Owner
DD5.2 Process Brainstorming - Checker
DD6.1 Editing - Leader
DD6.2 Editing - Editor Document Change Request Source Document Editor
DD7 Follow-up
DD8 Exit Check
DD9 Product Release

How To Prevent Defects

As we have seen, Gilb incorporates process improvement into his method by means of a feedback loop
from Inspections to process change, implemented partly by Process Improvement Suggestions
(illustrated in Figure 4 on page 11) emanating directly from Inspections and partly by Process
Brainstormings (illustrated in Figure 6 on page 14).

Thus is the fundamental principle established of enabling the customers, practitioners and owners of
processes to change them as they determine from their real-world experience of process usage. It is
continuous, occurring as part of every Inspection that takes place, and requires no periodic review
process because it’s built in to the way everything is done as a matter of course.

This feedback is based on the principle of the control cycle , long used in manufacturing industries for
quality control and improvement. Figure 5 illustrates the Shewhart/Deming Cycle, which defines a
simple framework for continuous process improvement. This was first described as a control cycle by
Dr. Walter Shewhart and developed by W. Edwards Deming in his seminal work on quality, Out of the
Crisis [Deming86].

The cycle defines four stages:

• Plan to do something;
• Do it;
• Study the results;
• Act to improve the process for the next time.

This cycle can also be clearly seen in the Juran Trilogy
Diagram in Figure 2 on page 4 as the Lessons Learned
loop from Quality Improvement to Quality Planning.

In our context, the Plan and Do phases are those of the
production process itself whilst the Study phase is
represented by Process Improvement Suggestions from
Inspections and Process Brainstormings, and the Act
phase by any resultant process change effected by the
Process Owners.

Thus it can be seen that process ownership is a key element: for without process owners, processes
cannot be improved.

Continuous Process Improvement, as we shall see shortly, is at the very heart of the method and is
more than any other element what gives it such leverage. Because Document Inspection and Process
Improvement feed each other and are built right into the production processes themselves, we are
automatically in a virtuous cycle of change and improvement fuelling further change and improvement.

Act

Plan

Study

Do

Figure 5: Shewhart/Deming cycle

Synthesis

It is from all of these strands that we have woven our strategy for software quality improvement.

Bringing together Process Ownership, Document Inspection and the overarching Continuous Process
Improvement yields the “big picture” shown in Figure 6.

We have seen how defining the production processes and their Product Documents allows us to embed
Document Inspections into those processes, and how the feedback mechanisms inherent in Inspection
together with Process Ownership provide the defect prevention framework of Continuous Process
Improvement.

Defining Quantified System Attributes for our software and processes is also a vital part of this picture,
and in some senses is the well-spring from which everything else flows. Remember that the attributes
describe the targets or goals that we wish to aspire to; everything else in Figure 6 can be viewed as a
set of strategies to enable us to attain those goals.

 Processes

Inspection

Logging

Meetings

Process Owners

Process Change Management

Quantified

System

Attributes

Process

Brainstormings

Process

improvements

Figure 6: Continuous process improvement framework

In Figure 1 on page 3 we depicted the SEI Capability Maturity Model as an interesting, and industry-
recognised, model of software development capability. Everything that we have described since then is
intended to take us towards CMM Level 5, and thus become an organisation which possesses a
“continuously improving software development process”.

We’re now going to look at what we have done since December 1994 as we set out on the long journey
to CMM Level 5.

How Did We Get Started?

Our start-up comprised a number of parallel activities:

• Identifying and defining the Quantified System Attributes that we wish to have for the system that
we deliver to customers

• Identifying and defining our business processes and their inputs and outputs and relationships with
each other

• Learning about and practising Document Inspection
• Setting up a support infrastructure for recording and logging all defect control activities - Defect

Detection and Defect Prevention. This is our QA Database
• Initiating the necessary change in mindset and attitudes towards work and fellow workers. This is

often referred to elsewhere as culture change

Defining Quantified System Attributes

Principles of Software Engineering Management [Gilb88] defines attributes as being of the software
system shipped to its users. We extend that to include other measures that we believe are important not
just to the delivered software but also to the processes by which we develop and support it. Examples
of these are such attributes as Enhancement Completeness and Correctness which measure how well
we’ve understood a user’s requirements and translated those into system functionality (Completeness)
and how right our solution is (Correctness).

Each Attribute is chosen to measure a single aspect of the system or a process and classified into either
externally-focused (External Attribute) or internally-focused (Internal Attribute).

Figure 7 shows the External Attributes we have defined. In this figure, as in the Internal Attributes on
page 17, the darker boxes are “molecular” attributes which are broken down into the “atomic” ones
shown in the lighter boxes. It is the “atomic” attributes for which definitions are made.

Usability

Flexibility

Errors

Regressions

Tailorability

Installability

Security

Performance

Availability

Reliability

Adaptability

Connectivity

Learnability

Facility

Functionality

Correctness

Completeness

Timeliness

Planning Accuracy

Enhancement

Responsiveness

 Figure 7: External system attributes

This is the meaning of each of them:

 Availability the percentage of scheduled time the software is available for customers to
use

 Completeness the degree to which the development process delivers complete new
functionality to customers

 Connectivity the degree to which the software can be connected to and integrated with
other systems, services and technologies that customers require for efficient
running of their businesses.

 Correctness the degree to which the development process delivers correct new
functionality to customers

 Facility the ease with which a trained user can operate the system
 Flexibility the degree to which existing functionality can be adapted to customers’

needs by on-site configuration without requiring software changes
 Functionality the degree to which the software provides the functionality requested by

customers and agreed by us
 Installability the degree of disruption required to users’ normal business for the

installation or version upgrade of the software
 Learnability the speed at which a feature of the system new to the user can be learnt to be

operated with proficiency
 Performance the degree to which the software facilities which are part of customers’

critical business processes enable those processes to meet their business
deadlines successfully

 Planning Accuracy the degree to which the planning process accurately plans and forecasts
changes to the system

 Reliability the degree to which the software delivers error-free running for customers
 Security the degree to which the software detects and rejects intruders
 Tailorability the degree to which house style requirements for such as report templates

can be met by on-site configuration without requiring software changes
 Timeliness the degree to which the problem management process meets its required fix

times

Figure 8 shows the Internal Attributes that we have defined.

Customisability

Extensibility

Localisability

Portability

Maintainability

Credibility

Adaptability

Serviceability

Diagnosability

Testability

Intelligibility

Correctness

Auditability

Document Quality

Figure 8: Internal system attributes

This is the meaning of each of them:

 Auditability the degree to which the system maintains an audit trail of its activities
 Correctness the degree to which the system behaves correctly in response to user actions
 Customisability the ease with which customer-specific functionality can be added to the

system
 Diagnosability the ease with which a problem can be identified and its cause isolated
 Document Quality the permitted defect rate of all software engineering documents
 Extensibility the ease with which new functionality can be added to the system
 Intelligibility the ease with which the system, or parts thereof, can be understood to a

sufficient degree to apply changes to it
 Localisability the ease with which the system can be configured for each target locale
 Portability the degree to which the system can be proven to operate with identical

results in all of the target hardware and software environments
 Serviceability the ease with which changes can be applied to the software
 Testability the degree to which the system, or parts thereof, can be rigorously tested

We have defined each attribute in the following terms:

 Gist describes informally the essence of the attribute (in the Attribute lists above, it is the Gist of
each that is shown)

 Scale specifies the scale upon which it is measured
 Meter describes how it is to be measured
 Past states the value that the attribute held in the recent past
 Record states any known industry or world best for this attribute (the ceiling to which we can aspire)
 Must states the value to which we believe we must take the attribute in the short term in order to

achieve an acceptable level
 Plan describes a timed plan for longer term improvement of the attribute

Of the numeric values shown for an Attribute (Past, Record, Must and Plan), Record perhaps requires
some further explanation. The purpose of showing the “world record” for an Attribute is to act as a
reality check on our own aspirations to improve it - such records are typically set by organisations with
considerable resources and are usually very costly to achieve. So the Record is there to stop us
“chasing rainbows” when we know there’s no point in trying to beat, for example, an IBM or an
AT&T.

To illustrate an Attribute, this is how we have defined Reliability.

GIST The degree to which the software delivers error-free running for customers

SCALE Two numbers: reported errors per customer per year which require and those
which do not require Local Fix Releases

METER Sum error Software Change Requests (SCRs) raised in previous year by
customers, grouped by Problem Severity Level(PSL): PSL 1-3 and PSL 4-6

Critical Reliability = ∑ (error SCRs of PSL (1-3) in year)
∑(customers)

Non-critical Reliability = ∑ (error SCRs of PSL (4-6) in year)
∑(customers)

PAST 56 : 58 [May94 - Apr95] fl Analysis of historical CR figures.

RECORD 0. Space shuttle. fl IBM Systems Journal Sep94.

MUST 24 : 60 [End 1995]

PLAN 18 : 45 [End 1996] 12 : 30 [End 1997] 6 : 15 [End 1998]

The Problem Severity Levels in this example are those defined in the Problem Resolution Service
section of our standard Support Services Description, wherein Severity Levels 1 through 3 refer to
problems experienced with processes that are critical to the customers’ business and Levels 4 through 6
refer to those problems with processes that aren’t. So the measures will be meaningful to customers in
terms of the reliability of the system facilities that support their critical business processes. This is a
good example of customer orientation of an attribute, and how we have approached the definition of all
of them.

Pursuant to our goal of publishing openly all the key performance measures and indicators for the
system, at the time of writing the first version of the External Attributes, containing the Gist, Scale and
Meter for each, is with the representatives of the our product’ User Group to share with them what we
intend to measure and how. We are also interested in their feedback - they may have some ideas that
had not occurred to us!

Defining Processes

We started by identifying the processes that are used to develop the software. This was a relatively easy
start point since the processes are, or should be, well understood. For each process thus identified, we
enumerated all of its sources of input and its outputs or Product Documents, and to each Product
Document was ascribed a readership. The inputs helped us define the procedure to be used to transform
the sources into the Product Documents. The outputs helped us define the rules for the Product
Document, particularly the specific rules of content.

As part of this exercise we also defined the nomenclature to be used for document tags and the library
(directory) structure into which all such documents shall be placed for subsequent access. This
information is published in a navigational compendium, which is itself, of course, available publicly.
The whole collection represents our Document Repository.

We saw earlier that each process must have an owner or owning group whose responsibilities include
maintaining the process definition artefacts for subsequent use by process operators. This is illustrated
in Figure 6 on page 14. We have found a good choice to be one person who performs the process and
one who is a customer of the process - a recipient of the Product Document. Our Process Owners are
also published in our compendium.

We developed the first cut of the Inspection Artefacts using Software Inspection [Gilb93] as a source;
these are now owned by the process owners who amend them and publish new versions in the
Document Repository as part of the Continuous Process Improvement program.

The Meta Processes

We identified earlier the meta processes as those outside the production processes - primarily the
Defect Detection and Defect Prevention Processes. These are well defined by Gilb in Software
Inspection [Gilb93] and we have used, without embellishment, the definitions to be found there.

There are other identified meta processes which we are still defining: for example Process Ownership
Processes and Process Definition Processes. Beyond those, there are certainly yet more processes,
unidentified and even undreamt of.

The Process Owners of the meta processes are, by default the Process Change Management Team
(PCMT). The PCMT also has a broader responsibility to oversee all process change as illustrated in
Figure 6 on page 14.

Training

Training for Document Inspection fell into two categories: that required for Inspection Leaders; and
that for other participants on Inspections. The more important of the two is the former - well-trained
Leaders can perform very satisfactory On-The-Job training for the other participants. It is also vital that
every Inspection is led by an accredited Leader if time is not to be wasted and the real benefits are to be
seen.

We were very fortunate in that we received Tom Gilb’s own Inspection Leader course; he packed a
five-day course into three days by extending the hours and at the end we had eight accredited
Inspection Leaders. We also had an Inspection Overview Briefing for most of the other people in
development which gave them an insight into what the process is all about and, most importantly,
explained the terminology that would be used. This clearly has helped everyone to feel positive about
the process from the very beginning.

Training Inspection Checkers, Scribes and Editors has continued ever since; every Inspection is a
learning experience for everyone concerned, and we have found that new starters have taken readily to
the process even as Authors once their initial fears have been overcome. In this respect, the positive
and supportive attitude of their fellow inspectors has proved to be of immense benefit.

Training in Inspection is never finished: we are continuously learning more about how to run better
Inspections, how to do smarter checking and how to improve the efficiency and effectiveness of defect
discovery and removal.

Setting up the Support Systems

We realised that it was very important to begin recording the results of Inspections right from the start,
so we set up our QA Database at the outset - it is very simple but very effective for our current needs.
As our process matures, we shall enhance the database to cater for changes in our requirements; as we
shall see later it is already providing us with invaluable information about our progress.

To provide for the introduction of Document Inspection into our development process, we have
enhanced our Change Management System so that we can record the Quality Status for software
changes whose code is to be Inspected.

We have set up a Document Repository on our file server for all documents whether part of the
production processes or the meta processes and we are working on some navigation aids to help people
find what they want. (Our first foray into the production of our navigational compendium has resulted
in a document that is so complex as to require its own navigational aid!)

To enable unambiguous identification of statements in documents, especially important in Inspections
and in citing them as sources in downstream documents, Gilb recommends that atomic statements be
tagged. To assist with the tagging of documents and importantly to help authors meet the Generic
Rules, we have developed a Word For Windows document template which provides a number of
facilities. The use of this template has the additional benefit of giving authors a framework within
which to write their documents and ensures that all documents so produced have a standardised look
and feel.

What Have We Achieved (And Learned) So Far?

The main achievements we set out to attain have been:

• Improvements in software quality as a result of detecting and removing defects
• Improvements in document quality as a result of having better Product Document definitions and

templates
• Improvements in the production processes themselves

We have made measurable gains in all of these areas which we will now examine; there have, in
addition, been many other smaller wins too, some of which we will describe on the way.

Improvements in software quality

We now have no doubt that software quality is
improving, and improving at a spectacular rate.
History will be the judge as the results filter into
installed products and get used by customers. The
Scientific Method would have us conduct a control
experiment: we are, however, unable to do this and so
the savings in downstream costs are simply predicted.
As we shall see later we are also tracking the defects
removed as a result of Inspections against the error rate reported in usage of the system.

We have been collecting the statistics from all Document Inspections since the very beginning last
December. It is worth noting that all the time spent by all participants in every sub-process of
Inspections is logged and accumulated; thus we track very accurately the true cost of the process.

From the number of major defects found in an
Inspection, we predict the hours saved downstream by
their not being translated into errors discovered in test
and field usage. This prediction is based on a
conservative industry norm recommended by Tom
Gilb of eight hours saved downstream for every major
defect found in Inspection; although Trevor Reeve of
Thorn-EMI has actually measured nine hours saved
[Gilb93, p.20], and IBM have reported over a long period a ratio of one hour spent in Inspection having
saved 20 hours test and 82 hours should a defect get into field use.

The Inspection metrics are, like everything else, made very public to help us feel good about our
achievements and to spur us on to even greater things in the future!

Figure 9 illustrates some of the results achieved from all the Inspections we have conducted to date.
We show the number of major and minor defects together with the process improvement suggestions
and change requests for upstream documents (“Document CRs”) that are logged in Inspections.

“There is no doubt that the amount of code re-
writes have decreased since last November.
This is because most of the work is done on
paper and coding becomes a clean
implementation aspect” Hemant Mistry -
Developer

“The experience gained and the standards I
have had to apply as a checker, has made me
more aware of quality in my own work. A
major benefit of this is that I spend less time
and effort wastefully revisiting past work”
Iozeph Okosieme - Developer

Dec-94Feb-95Apr-95Jun-95Aug-95Oct-95Dec-95Feb-96Apr-96Jun-96Aug-96

0

200

400

600

800

1000

1200

1400

1600

1800

Dec-94Feb-95Apr-95Jun-95Aug-95Oct-95Dec-95Feb-96Apr-96Jun-96Aug-96

Major Defects Minor Defects Process Improvements Document CRs

Figure 9: Cumulative inspection results

Figure 10 shows the cumulative amount of time spent in Inspections since we started in December
1994, together with the predicted time saved.

Dec-94Feb-95Apr-95Jun-95Aug-95Oct-95Dec-95Feb-96Apr-96Jun-96Aug-96

0

2000

4000

6000

8000

10000

12000

14000

Dec-94Feb-95Apr-95Jun-95Aug-95Oct-95Dec-95Feb-96Apr-96Jun-96Aug-96

Hours Spent Hours Saved

Figure 10: Cumulative time spent in and & saved by inspections

We have long recorded metrics on the changes requested to the software through our Change
Management System - one of the things we measure is the arrival rate of error reports from all quarters
(customers as well as our own in-house testing and usage of the system).

Now that we are also measuring defects found by Inspections, we can compare the two sets of figures
as in the graph in Figure 11 which shows, on a monthly basis, the arrival rate of Error Change Requests
(CRs) into our Change Management System (shown as “Total Count” since it includes those found
both externally by customers and internally by ourselves) and the number of Major Defects found in
Inspections since they started.

May-94Jul-94
Sep-94Nov-94Jan-95Mar-95

May-95Jul-95
Sep-95

Nov-95 Jan-96 Mar-96
May-96 Jul-96

Total Count

Major Defects

0

20

40

60

80

100

120

140

160

Figure 11: Inspection defects vs downstream errors

There will, of course, be a time lag between the major defect removal rate and the reduction in error
arrival rate from the field since it takes time for the improved software to get into field usage, but we
are going to track these two key indicators from now on and expect to see reliability improve (the
software error totals to fall) as the number of major defects removed continues to rise.

As we saw earlier, we have an External Quantified System Attribute called Reliability. This measures
the number of high- and low-severity errors per customer per year and is therefore a good indicator to a
customer (or prospective customer) of what he might expect from our software. Shown below is the
graph of that Attribute which we publish monthly to ourselves and our customers.

Apr-95May-95Jun-95Jul-95
Aug-95Sep-95Oct-95Nov-95Dec-95Jan-96Feb-96Mar-96Apr-96May-96Jun-96Jul-96

PSL
1-3

PSL
4-6

0

10

20

30

40

50

60

Figure 12: Reliability Attribute

Recall that we started doing Inspections in December 1994. The results of those Inspections would
have started to reach the field in May and June 1995. You might imagine the impact this graph has on
us, on customers and on prospects!

Improvements in document quality

We are experiencing an amazing improvement in the quantity and quality of documents produced -
people are now striving to produce better documentation because they want to.

The inculcation of everyone with improved software
engineering practice has led to a much clearer
understanding and acceptance by most of the
importance of sound documentation in support of the
development and maintenance of the system.

We are, of course, motivated very strongly by our
having taken the radical step of defining our
Quantified System Attributes, and making them
available publicly to our customers!

We are always trying to find better and smarter ways of documenting the system and our processes,
with most of the improvement suggestions originating, as expected, from Inspections.

“It has raised awareness of how important
good documentation is, and where errors
come from. It has made me more wary of
dodgy documentation, and given me a way of
dealing with it - the author can no longer
claim that a bad document is good if I can
demonstrate that it isn't!” John Connor -
Developer

Improvements in processes

Defining our processes has helped us understand what
they and the Product Documents actually are, and as a
result there is no longer any confusion about it.
Because process definition and ownership is now a
responsibility visibly shared by everyone, most people
feel that generally we have the “right” processes and,
more importantly, that together we have the ability to
change them whenever we see fit.

Process definition has obviously helped us focus on the processes we want to have and the types of
documents we want to generate in the development and support of our product. As always, the trick is
in striking the right balance between speed and safety: just like driving a car, the faster you go and the
more corners you cut, the more risk you run but the quicker you’ll arrive (assuming you survive!). But
the Process Ownership/Continuous Process Improvement framework gives us immense power to
change things very quickly if we wish.

There is nothing prescriptive or proscriptive and nothing mandatory at all about “the way we now do
things around here”. We have guidelines published as rules, procedures, checklists and entry and exit
criteria and we publish Best Practice documents for people to aspire to, and everyone has the power to
initiate any kind of change. We produce no documents simply to obtain a signature on a piece of paper,
because we don’t have any sign-offs.

Everyone now understands the penalty of not doing it right: we deliver software of unknown quality.
So we are all strongly motivated to get the defect rate down, and we now have the tools to do that:
producing documents (and code) to better those already in the best practice catalogue, and Inspecting
them!

As we shall see later, we have only just begun to understand the implications of having all this power at
our disposal. We have not yet looked beyond the development processes to the wider issues of the Icon
business as a whole. We are certain that when we do, we shall discover that further process
improvements can be wrought to the lasting benefit of the product.

What difficulties have we experienced?

One of the major difficulties we have encountered is
finding a way of giving people enough time to
conduct Inspections.

What we have done is to concentrate on selecting
critical and high risk developments and to Inspect
some or all of the Product Documents of those. We’ve
recently improved that strategy by selecting a major
new project and planning to Inspect every Product
Document we generate. We are also going to revise
our development capacity model to account better for
the time consumption of Inspections and we’re going to incorporate Inspections in everyone’s
objectives for 1996.

Allocating time to the other activities such as process ownership activities, for example artefact
definition (rules, procedures etc.) has also proved to be difficult.

“Inspection has improved not only the quality
of documents and code and forced
standardisation but also improved
communication and cohesion between
departments” Jason Da Cunha -
Developer

“What improvements have I seen from process
ownership and continuous process
improvement? I'm afraid I haven't seen any. I
have had NO feedback from document CRs
raised through inspections. Process ownership
is too obscure, and (here's a quote from
someone else) ‘There's just too many
document types’” Dominic Thomas -
Developer

We believe now that our failure to address process
ownership adequately is due to its not being part of
anyone’s objectives, so people have found it easy to
ignore.

The same goes for process change management,
where our Process Change Management Team, comprising your author and two others, has done
precisely nothing so far, although to do something would elevate us, at least on that score, to CMM
Level 5 instantly!

Changes in the way we think

One of the benefits of the new mindset is that most
people are now very keen on sharing their work with
others. We encourage people to submit documents,
either their own or those of others, to be included in
our catalogue of best practice documents which is
available for all to see. The purpose of this is to give
good guidance to authors, new and old alike, without
requiring cumbersome standards manuals to be
followed. It also enables us to change the content and
layout of documents, and even invent entirely new
document types very rapidly by simply publishing a new best practice example and exhorting people to
emulate it.

Table 2 shows an example of the best practice catalogue.

Table 2: Best practice documents

People now mostly understand that control rests with them. The majority have responded well to the
challenge of being told “it’s now up to you - there are no safe hiding places anymore - you get out what
you put in and no-one else is going to do it for you”.

Of course, with this empowerment goes real responsibility, and people are now beginning to rise to it,
exploring ways of doing things better, trying new techniques in documents, looking for ways of
improving checking on Inspections, inventing experimental rules to check by, and a host of other
incremental improvements.

Not everyone has grasped the nettle to the same extent, however.

 “This is one area that I feel we haven't taken
enough action on. We have plenty of process
change requests/ideas but we have not really
acted on most of them” Niru Reid - Project
Manager

“The mentality of most, if not all developers
pre-Inspection was 'this is my document and
my code, as I understand it that is good
enough'. Now the 'for my eyes only' approach
is out the window and I believe everyone
thinks about the possible readership of what
they are writing” Shaun Hooper -
Developer

Type Description Document Author/Editor Nominated by Date
FRS Functional Requirements lm0028.doc John Connor Shaun Hooper 11/04/95

lb0023.doc Paul Westgate Paul Westgate 11/04/95
bg0646_5.doc Shaun Hooper Shaun Hooper 11/04/95

SS Solution Spec. lb0058.doc Jason DaCunha Jason DaCunha 21/04/95
PDS Program Design pv7p2.doc John Connor John Connor 11/04/95
SC Program Source Code coat.c Hemant Mistry John Connor 11/04/95

coin.c Philip White Niru Reid 10/10/95
CAF Concepts & Facilities vlve.doc Niru Reid Niru Reid 11/04/95

Test Spec. & Plan testdc37.doc Andrew Smith Andrew Smith 11/04/95
bg0844.doc Shaun Hooper Shaun Hooper 11/04/95

Test Data Spec. & Plan testdc38.doc Andrew Smith Andrew Smith 11/04/95
TG Technical Guide trialbal.doc Rob Dixon Manoj Gupta 11/04/95

bg0842_3.doc Shaun Hooper Shaun Hooper 11/04/95
Memo bg6461.doc Shaun Hooper Shaun Hooper 11/04/95
Minutes bg646m2.doc Shaun Hooper Shaun Hooper 11/04/95

Because this is such an immense change in the way
that work is carried out, it has proved to be a shock for
many, and some are still having difficulty in coming
to terms with the ramifications. One of the things we
are still learning is how to convey the message of the
method in such a way that we get people to “buy in”.
Peter Senge, MIT Professor of Systems Thinking and
Organisational Learning, writes about sharing a vision in his book The Fifth Discipline [Senge90] and
offers the following spectrum of responses.

Possible Attitudes Toward A Vision.

Commitment - Wants it. Will make it happen. Creates whatever “laws” (structures) are
needed.

Enrolment - Wants it. Will do whatever can be done within the “spirit of the law”.

Genuine Compliance - Sees the benefit of the vision. Does everything expected and more.
Follows the “letter of the law”. “Good soldiers”.

Formal Compliance - On the whole, sees the benefits of the vision. Does what’s expected
and no more. “Pretty good soldier”.

Grudging Compliance - Does not see the benefits of the vision. But, also, does not want to
lose job. Does enough of what’s expected because he has to, but also lets it be known that
he is not really on board.

Non-compliance - Does not see the benefits of vision and will not do what’s expected. “I
won’t do it; you can’t make me”.

Apathy - Neither for nor against vision. No interest. No energy. “Is it five o’clock yet?”.

Amongst the development team, we have people with
attitudes drawn from right across this spectrum; our
ultimate goal is to share the vision in such a way that
the majority of the attitudes move to those of
commitment and enrolment. But at the same time we
recognise that for some the change required is too
great and the environment too uncomfortable for them
- we have indeed already experienced a limited amount of “fall out” as a result of the need for such
radical change.

“X to Y ‘Y, can you attend an inspection
kickoff on Thursday please?’ The reply, ‘sorry
too busy, too many important things to do,
maybe next time’” X - (anonymous but
committed)

“I agree in principle with the idea of
inspections” Z, when declining the
opportunity of checking on an
Inspection - (anonymous and possibly
apathetic)

Where To Next?

One of the most tangible effects of our new-found culture is that decisions are no longer seen as the
exclusive preserve of “management”, everybody is now actively involved in change. We continuously
generate new ideas about how to build on the start we have made and maintain the momentum - these
we shall describe next.

Immediate steps

We are concerned that Document Inspection is still
too much of a “big deal” for us and is not yet
sufficiently embedded into our way of life.

We are exploring a number of strategies to overcome
this:

• Automate the capture of all the data from
Inspections

• Put the whole Inspection process on-line
electronically to eliminate the paper entirely

• Making Inspections part of everyone’s core objectives
• Setting Inspection objectives for every project that we run
• Inventing better ways of sampling big documents so that we can do more, smaller Inspections
• Encouraging people to Inspect a document even while it’s being developed (at the time of writing

this your author is conducting an experiment with a document of his authorship)

We’ve also very recently revitalised the Process Change Management Team and made it more fluid
and dynamic and less management-oriented in an effort to concentrate on many of the Process
Ownership issues that have lain fallow.

Spreading the word

We are going to tackle next our Customer Services
processes and visit again our Problem Management
process. The latter is particularly interesting in that the
process must operate on a very short timescale (4
hours for an Operational Fix for Problem Severity Level 1 is called for by our standard Problem
Resolution Service) and we want and need to Inspect and exit documents in that time!

So far we have addressed the product development and shipment processes in isolation. They exist,
however, in the context of the Icon business as a whole. We are now therefore going to develop a
holistic process map for the Icon business.

“Inspection needs to be more 'In Your Face'.
The current motivation method is to let the
combination of Tom's talk on checking, and
the proof, the statistics, speak for themselves.
This is okay, but we need to shout out the
results of Inspection. (I did a spot poll and it is
amazing how many people don't know how
successful Inspection is.)” Shaun Hooper -
Developer

“It’s too early to evangelise - you should wait
two or three years” Tom Gilb

Industry

Legislature

Legislative

&

Regulatory

Changes

Market

Technology

Strategy

Requirements

Identification

Competitor

Changes

Product Strategy

Customers

Capability

Development

Running

Capability

Delivery

Continuous

Process

Improvement

Technological

&

Architectural

Changes
Customer

Acquisition

Product

Selection Implementation

Figure 13: High level process map

Within each of the process groups in the map are the atomic processes that we use to run our business -
including software development and shipment, and the Customer Services activities that we are going
to address next. This map helps us to look at the whole business from a process viewpoint and thereby
ignore functional boundaries when designing new and better processes

Looking at the fundamentals

What are we observing today?

The resource consumption of testing and problem diagnosis and resolution continues to rise: indeed,
this has been a quite deliberate act. However, in terms of our original “time to market” objective this is
effort which could be otherwise employed in developing more product functionality.

This does, and in the short term will continue to, bring significant benefit to the product: we are
removing more and more defects not just from newly developed or enhanced facilities, but also from
much of the “old” code right across the system. As a result of this focus, the defect rate from field
usage is expected to fall in the short term, but as more functionality is incorporated into the product,
and more customers use it in diverse ways, the rate will rise again.

So we have a defect rate which rises and falls, as more or less effort is put into defect correction and
testing, but the underlying trend is always upwards. Ultimately, the resources required to maintain the
defect rate down to an acceptable level may absorb all the available staff for all of their time: this
scenario is illustrated in Figure 14 below.

Effort on defect

correction and testing

Capacity to prevent

defects in software

Problem symptoms

(defect rate)

T I M E

Figure 14: Effect of defect correction and testing

What could be the causes?

This situation can be expressed succinctly in a Causal Loop Diagram or system model, as described by
Peter Senge in The Fifth Discipline [Senge90]. In the book Senge defines a number of standard
template models or system archetypes; he calls this one “Shifting the Burden”.

Figure 15 depicts the “Shifting the Burden” archetype, applied to our defect correction and testing
issue.

In this archetype, a symptom-correcting process is adopted in an attempt to rectify a problem. This
process is shown in the upper balancing loop (indicated by a balance on a fulcrum in its centre). The
problem-correcting process, the one that would cure the disease instead of merely treating the
symptoms, remains, however, unexplored. This process is shown in the lower balancing loop. The
long-term consequence of pursuing the wrong strategy is shown in the large reinforcing loop (indicated
by a snowball effect in its centre): a reduction in the capacity of this system to fix itself over time
because the addiction to the symptom-correcting process diverts increased resources away from the
ability to correct the real problem.

Delay

Defective

software

Use of testing

to find and

correct defects

Capacity to

prevent defects

by process

improvements

and redesign

Diverting

development

capacity to fixing

defects and

testing

ADDICTION
LOOP

SYMPTOM
CORRECTING

PROCESS

PROBLEM
CORRECTING

PROCESS

Figure 15: "Shifting the Burden " archetype

In our case, the symptom-correcting process being followed is defect correction and testing of
defective software which brings short-term benefits, but the capacity to invoke the fundamental
problem-correcting process, preventing defects by process improvements and system redesign, is
slowly eroded by the addiction loop of diverting more development capacity to removing defects and
testing the results.

Fixing the problem by improving the processes

This is, of course, to the detriment of reaching our “time to market” goal: defect correction and testing
between them take far too much time in practice. Recall IBM’s measured times of 1-20-82, and the
conservative 1-8 we’re using to predict time saved by defect detection in Inspections instead of test and
field use. Document Inspection is just such an improvement which prevents defects getting to test and
thence the field and so is part of the problem-correcting process. Other parts are defect prevention by
Continuous Process Improvement and, equally importantly, fundamental software redesign.

Our experience in this regard is, however, not atypical of most software development organisations:
removing the defects found by testing the software after it’s been written instead of not inserting them
in the first place. It is still only the advanced organisations using such techniques as Document
Inspection and Continuous Process Improvement [Gilb93] who are seriously attacking that
fundamental problem. And, of course, we intend to become one of those advanced organisations!

These arguments make it compelling to study what other systems may be underlying our processes; the
“Shifting the Burden” archetype illustrated is only one of many such systems at work.

Projectising Our Work

The methods and techniques that we have adopted and developed encourage a very open, egoless
culture. We have recently formalised this in a set of policies and rules for processes and documents,
with the emphasis on projectising our work. Projectising, a term coined by Tom Peters in Liberation
Management [Peters92], means turning all of your activity into projects with defined targets, goals or
objectives, and running each with a defined project team.

Here is our current policy for projects and project teams:

A Policy for Development Project Teams
Version [0.3]; Date 22 March 1996; Editor DH; Tag POLICY.DT; Rules RULES.G;
Pages 0.5; Readers Unrestricted; Status Unexited > 60 defects/page; Unverified

DT1 PROJECTS All work shall be carried out within projects, either for customers as
defined in {CUSTOMERS} or for internal goals as defined in
{GOALS}.

DT2 TEAM A project team shall be created for each project and disbanded when
the project objectives have been met.

DT3 LEADER A team shall have a leader, who shall be selected by a method
chosen by the team members.

DT4 OBJECTIVES A project shall have written objectives, as defined in “SPECIFIC
RULES: Project Objectives” {RULES.PO}, agreed between its
customers and the project team.

DT5 START The first task of the project team shall be to author the Project
Objectives Document as defined in {OBJECTIVES}.

DT6 CUSTOMERS The two classes of customer herein defined are external (commercial
product Customers) and internal (other parts of the vendor
organisation) who, as downstream processes, are de facto
customers.

DT7 GOALS Internal goals for all teams include, but are not limited to, education,
customer business exposure, project team leadership; external goals
are defined in “SPECIFIC RULES: Project Objectives”
{RULES.PO}.

DT8 AIM The ultimate aim, when this policy is pervaded across all technical
and commercial processes is an organisation of Self-Managing Case
Teams.

The final tag, DT8 AIM, in this policy refers to Case Teams. Case Teams are self-managed work teams
which are characterised by being small, fast, empowered and highly focused on their project, what Tom
Peters calls “Customerised" [Peters92]. We are already making significant strides in that direction with
an increasing number of customer-focused development projects.

The policy above also refers to a Project Objectives Document, and this is the current rule set for that
document.

SPECIFIC RULES: Project Objectives

Version [0.6]; Date 12 July 1996; Editor NR; Tag RULES.PO; Rules RULES.G;
Pages 0.5; Readers Unrestricted; Status Unexited > 60 defects/page; Unverified

PO1 READER Readership is unrestricted.

PO2 PRODUCT Project deliverable products shall be defined.

PO3 TARGET Tracking methods, progress reporting including estimate revision,
communication with customers, and milestones shall be defined.

PO4 STRATEGY Variations from product strategy both business and technical shall be
documented with an impact and risk analysis.

PO5 ATTRIBUTES Relevant system attributes {flATTRIBUTES} shall be listed and an
estimates of improvements on them shall be enumerated.

PO6 PEOPLE Targets for developing the people on the project team by: adopting
new team roles, learning and applying new skills and expertise, shall
be set.

PO7 EXPERIMENT Conducting at least one organisational, project management or
technical experiment in pursuit of the continuous improvement goal

As you can see, there is considerable emphasis on developing more than simply application
functionality: meeting our targets for Quantified System Attributes, and developing the people on the
project team attract as much attention. The last rule, tagged PO7 EXPERIMENT, enjoins project teams
to try at least one new thing on every project and to share the results with others; in this way we believe
we can enjoy a constant influx of new insights and discoveries through the activities of the project
teams.

The Continuing Challenge

It is a constant battle against the forces of evil - deadlines, schedules and promises made to customers!

We continue to seek ways of doing everything better. Document Inspection is clearly not a complete
answer, there are other mechanisms that we must look for to bring domain knowledge, skills and
expertise, energy and commitment to bear on every aspect of our business.

We are now continually asking ourselves questions:

• Do we have too many document types? Should we dispense with some of them?
• Do we have too few document types? Does this make documents too big?
• Are we doing Inspections optimally?
• Are there smarter ways of doing checking? Can we automate any of it?
• Are there smarter ways of choosing Inspection teams to make it more efficient?

Look at these quotes from practitioners

In other words we may yet be making the BS5750 mistake - having an elegant process that produces
beautifully documented garbage! This is one reason why we are now concentrating on defining the
Verify sub-process in our generic process structure (see Figure 3 on page 8).

What these and many of the other quotes throughout this paper do illustrate, however, is that more and
more people are now starting to question everything we do - and that’s the beginning of the real
awakening.

“Do we inspect too early? Are inspections sometimes used as extended requirements gathering or review?
Should we encourage peer review and walkthroughs as a way of getting to an inspectable document?” Paul
Westgate - Business Analyst

“I have become a great believer in choosing checkers for an inspection based upon their knowledge of the
subject matter being inspected. The idea that ANYONE can inspect a document is fundamentally flawed. A
document can be entirely self-consistent, beautifully tagged, and clearly reference all sources whilst still
containing serious fundamental errors” Dominic Thomas - Developer

“It should be noted that Document Inspection is not the ultimate solution. It will not necessarily improve the
technical accuracy of the original source document. This fundamental concept must be understood to avoid
disappointment” Shaun Hooper - Developer

References

[Deming86] W. Edwards Deming. Out of the Crisis. Cambridge, England: Cambridge University
Press, 1986.

[Fagan76] Michael E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. Armonk, NY: IBM Systems Journal Vol. 15 No. 3, 1976.

[Gilb88] Tom Gilb. Principles of Software Engineering Management. Wokingham, England:
Addison-Wesley, 1988.

[Gilb93] Tom Gilb and Dorothy Graham. Software Inspection. Wokingham, England:
Addison-Wesley, 1993.

[Hammer93] Michael Hammer and James Champy. Reengineering the Corporation. London,
England: Nicholas Brealey Publishing, 1993.

[Juran88] J.M. Juran. Juran on Planning for Quality. New York, NY: Macmillan, 1988.

[Paulk93] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis and Charles V. Weber. Capability
Maturity Model for Software, Version 1.1. CMU/SEI-93-TR-24. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, February 1993.

[Peters92] Tom Peters. Liberation Management. London, England: Macmillan, 1992.

[Petrozzo94] Daniel P. Petrozzo and John C. Stepper. Successful Rengineering. New York, NY:
Van Nostrand Reinhold, 1994.

[Senge90] Peter M. Senge. The Fifth Discipline. London, England: Century Business, 1990.

