
Motivational Issues in Creating Reusable Software Artifacts ∗

Gerhard Chroust, Christoph Hoyer

J. Kepler University Linz
Altenbergerstr. 69
A-4040 Linz
Austria

email: {gc,hoc}@sea.uni-linz.ac.at

Abstract

Despite all progress in technology and conside-
rable publication effort, component based soft-
ware development (CBD) seems to get a slower
start than anticipated. To some extent this can
be attributed to psychological ad motivational
soft factors of software developers. Component
based development has three essential players:
the provider of components, the consumer (user)
of components and an intermediatory responsi-
ble for storage, dissemination and marketing. In
this paper we discuss soft factors from the view-
point of the component provider, arranging them
according to the various steps in the compo-
nent provision process and analysing them using
Maslow’s Hierarchy of Needs.

1 Reuse: COTS and Components

"Work smarter, not harder!" Avoiding (unnecessary) dupli-
cation of work by reusing available artifacts is obviously a
key factor to increased productivity [Christensen, 1994].
Reuse promises higher productivity and shorter time-to-
market (a key postulate for today’s software production)
but also higher quality [Allen, 2001; Arnold and Frakes,
1993; Chroust, 1996; 2002; Woodman et al., 2001].
After a period of unsystematic, ad-hoc reuse by indi-

viduals or a small groups reuse has become a recogni-
zed and systematized field of research and application, do-
cumented in many books and publications [Allen, 2001;
Cheesman and Daniels, 2001].
Re-use of ideas, concepts, architectural patterns [Booch,

1998], designs and other high-level constructs promises
more return on investment than reuse of code, because such
artifacts preserve previously acquired domain knowledge.
Despite all technological advances, publicity and lip

service software components have not achieved the wi-
despread use their proposers hoped for. We suspect that
part of the reason for the slow uptake is caused by the psy-
chological disposition of software engineers. In this paper
we analyse soft factors (motivational issues and psycholo-
gical preconditions) connected with the creation and pro-
vision of software components in a CBD-environment.
The rest of the paper is organized as follows. In chap-

ter 2 we discuss the basic concepts of CBD. Chapter 3
introduces the importance of considering soft factors and

Maslow’s Hierarchy of Needs. The component provision
process of CBD is shown in chapter 4 and the individual
steps are discussed in relation to Maslow’s Hierarchy of
Need, followed by some overall soft factors relevant to the
overall process (chapter 5).

2 The re-use life cycle

When speaking of reusable artifacts several types of prdu-
cing them may be distinguished:

Commercial off the Shelf (COTS) :
These are ready-made pieces of software which, in the
fashion of a black box, can be integrated into other
software systems to deliver a certain functionality wi-
thout allowing access to their internal structure [Voas,
1998].

Components :
Components have to conform to the architecture of a
component model which specifies the way they are to
be build and integrated, and how they communicate
with one another [Allen, 2001; Bachmann and others,
2000; Cheesman and Daniels, 2001].

Software patterns :
A Software Pattern is a proven, non-obvious, and con-
structive solution to a common problem in a well-
defined context, taking into account interactions and
trade-offs (forces") that each tend to drive the solu-
tion into different directions. A Pattern describes the
interaction between a group of components, hence it
is a higher-level abstraction than classes or objects.
[Bruyninckx, 2002].

other reuseable artefacts :
Other intermediate results of a system design pro-
cess (requirements specifications, designs, check lists,
etc.) are also often useful to archive and to reuse later.

The life cycle of components undergoing reuse is de-
picted in Fig 1. It shows four ways of acquiring reu-
sable components [Allen, 2001] which differ in the
amount of pre-planning and marketing orientation.

Fig. 1: Life Cycle of Reused Components

[Allen, 2001] identifies the following four ways to ac-
quire components:

Components in Advance :
Components are planned based on expected need and
demand, governed by a component model [Bachmann
and others, 2000] and/or a product line model in a top-
down, architecture driven way with special emphasis
on quality [Woodman et al., 2001], later replaceability
and marketability.

Components as you Go :
During system development certain modu-
les/parts/concepts are identified as candidates
for components, and after removing application
specifics and adding potentially needed details
(’homogenization’) these components are made
available, often after a certain ’ripening phase’
(beta-versions) internally and/or on the free market.

Components by Opportunity :
When need arises old artifacts are taken, mostly due
to the memory of a developer that "we had that al-
ready", on the fly adopted and used (often via cut
and paste). Derogatively this is called the ’quarry’ or
’scavenging’ method. It is unsystematically and often
’quick and dirty’.

acquisition on the component market :
On the component market components may be acqui-
red which did not originate in the own organisation.

3 The software engineer and the Hierarchy

of Needs

For a provider of components (be it COTS or components
on any development level) above four alternatives require a
different attitude for developers and as a consequence yield
different criteria for emotional satisfaction.
In [Chroust, 2002] and in [Chroust, 2003] we have des-

cribed mostly demotivators for software engineers as users
to follow the re-use paradigm, using COTS and/or softwa-
re components of any sort. In this paper we will look ’at
the other side of the fence’: motivators and demotivators

for producing/providing reusable artifacts (more or less for
others):

Obviously the biggest driver for component providers
would be a strong market demand. In the case of new para-
digms, a market has to be created from scratch. Given the
reluctance of many developers (i.e. potential customers of
a component market) availability much precede and trigger
the demand. This means that potential component provi-
ders have to have a motivation for producing components.

We therefore investigate the soft factors [McConnell,
2000; Lynex and Layzell, 1997; Enzenhofer, 2001;
Chroust, 2002; 2003] involved in producing for a compo-
nent market from the viewpoint of a component provider,
with special emphasis on soft factors considering the soft
factors in this transition period is of utmost importance.

Fig. 2: Relations of an Individual

[Kunda and Brooks, 1999] emphasise that Software sy-
stems do not exist in isolation. They are used in social
and organisational contexts. Experience and many studies
show that the major cause of most software failures is the
people rather than technical issues [Curtis et al., 1988] ...
It is the people and culture of the organisation that deter-
mines how any system is used. ... human, social and or-
ganisational considerations affect software processes and
introduction of software technology.

Following [Chroust, 2002] we will use Maslow’s Hier-
archy of Needs to analyse the consequences of the mul-
tiple relations any individual is involved in, e.g with the
peers, the managers, the quality assurance personnel etc.
(Fig. 2). We will put this into contrast to the observations
in [Chroust, 2002] where we considered the other side of
the coin: engineers who want/have to use pre-existing com-
ponents.

Maslow [Maslow, 1943; Boeree, 1998; Chroust, 2002]
described a five-level hierarchy of needs (Fig. 3) with the
assumption that lower level needs have to be substantially
fulfilled before a strong interest in the higher levels is felt.

Fig. 3: Maslow’s Hierachy of Needs

basic physiological needs (survival) :
At this level the individual is fighting for survival
against an adverse environment, trying to avert hun-
ger, thirst, cold etc. This level does not seem to have
any relevance to our subject; software engineering is
a save, non-endangering activity.

security (physical, economic,) :
On this level the individual’s concern is about stabili-
ty of the future and about a safe environment. Worries
include job security, loss of status, loss of income, he-
alth etc.

social environment (community) :
Engineers usually have a strong identification with
their status as ’engineers’, and a strong attachment
to their professional class. This implies certain stan-
dards and a certain way to look at work. This need
is stressed by the observation [Glass, 1983] that soft-
ware engineers develop a remarkable loyalty to their
company.

recognition :
Individuals strive for receiving appropriate recogniti-
on and appreciation in the workplace, being recogni-
zed as somebody with ’something to say’.

self-fulfillment :
This level can be seen as the highest stage in the de-
velopment of a person, drawing satisfaction from re-
cognizing one’s own contribution to some higher goal
or endeavour and being able to realize one’s full po-
tential as a human being.

4 Providing software components

In this section we will discuss some of the motiva-
tors/demotivators for providing re-usable artifacts for the
current and future software development based on the pro-
vision cycle shown in Fig. 4 We will not discuss ge-
neral obstacles to paradigm change as described in ma-
ny other publications ([Chroust, 2002; Enzenhofer and
Chroust, 2001; Hoch, 1991; Greswell, 1989; Kuhn, 1970]).
We restrict our discussion to the issue of providing of

components in particular and relate them to the the le-
vels in Maslow’s Hierarchy of Needs, seen with the eyes
and with the motivational situation of a producer of reu-
sable software artefact, we can identify some soft factors.
Fig. 4 shows the necessary steps [Chroust et al., 1994;
Chroust, 1996]:

Fig. 4: Process Steps for Component Provision

4.1 Identify specific need

In general the need for a certain functionality will trigger
the search for an existing component, which might identify
a need to produce a new component. As indicated in Fig.
4 a ’quick and dirty’ way is to cut and paste the needed
functionality from some existing artifact.
With respect to Maslow’s hierarchy, we see a window of

opportunity for someone to

social environment, recognition, self-fulfilment :
The consequence of this work very much depends on
the climate in the organisation and the personality: is
the identification of a need seen as constructive and
’far-sighted’ or is it considered as a nuisance - or even
unnecessary. In general we expect to have a positive
influence on the person, because he/she shows insight,
far-sightedness and a crisp mind.

4.2 Identify opportunity

During the project often the reuse potential of a compo-
nent is not recognized - only in hindsight one sometimes
recognizes a potentially useful compoent.

social environment, recognition, self-fulfilment :
The similar arguments hold for this step, but based on
more solid evidence and even the chance to prove the
productivity gain

4.3 Abstract and homogenize component
definition

A function selected for reuse must still be made into a com-
ponent. The function must usually be augmented and mo-
dified by some additional functionality to be sufficiently
generic. At the same time specifics for the original appli-
cation (e.g. type of printer, ...) have to be removed. A subt-
le compromise between a module’s broad applicability and

its efficiency must be made. As with any other marketable
product there must be a compromise between the fully, po-
tentially achievable functionality and the economics of the
achievable. Engineers also have to live with ’good-enough-
quality’ (cf. [Bach, 1997]) as provided by the components
and often cannot achieve ’best quality’. This is often diffi-
cult to accept emotionally by engineers.

security (economic) :
Our society is largely based on the notion of owner-
ship which also extends to immaterial products like
ideas and intellectual achievements (’intellectual pro-
perty rights’, IPR). Such ownership is protected and
defended by copyright and patent legislation. Plagia-
rism is objected on moral grounds and often punished
[Kock, 1999]. What is the division(?) of IPRs bet-
ween the original creator of a piece of code and the
later ’homogenizer’, putting in ideas, largely surpas-
sing the originators own views?

recognition, self-fulfillment :
This step needs persons with strong abstraction ca-
pabilities and imagination. Such persons are usually
well accepted in a community and derive considera-
ble self-fullfillment from such work.

4.4 Position with respect to other components
and the domain

This is an essential step because it strongly influences the
acceptability of a component, because users will evaluate
the need in view of the assembly of all components. Too
much overlap or remaining gaps are detrimental to a com-
ponent’s acceptance.

security (physical, economic,) :
Miscalculations and misinterpretations of the compo-
nent market and the specific domain can have detri-
mental effects on the economic situation of the pro-
ducing organisation and as a consequence also on the
persons responsible.

social environment, recognition :
In order to be able to position the future components
correctly, considerable contacts, with other devel-
opers, professional organisations are necessary, usual-
ly leading to a certain improved social standing.

4.5 Implement component

Few aspects specific to the implementation of components
are discernible. The same situation as in any other software
development project exists. Basically this step is the same
as in any other environment. Difficulties arise from the fact
that for components higher requirements for trust have to
be applied if a component is intended to be used as a black
box in another environment. Different environmental influ-
ences (different hardware, software and platforms) have to
be considered.

security (physical, economic,) :
Two divergent trends can be seen here. Components
being more restricted by rules and regulations (e.g.
the component model) give a certain base security to
the developer

self-fulfilment :
Due to the often stringent rules and regulations it is

expected that developers will not feel free about their
way of working and thus only enjoy a more limited
amount of self-fulfilment.

4.6 Restricted availability, ripening

Due to the intended use outside of the original domain of
definition there is a higher risk that the component does not
perform as expected in all situations. Additionally being
used as a component in a foreign environments requires a
higher quality and thus establishing a higher level of trust
in the component. The ripening step will also be a time of
changes and modifications to the component.

security (physical, economic,) :
People usually dislike if their work is scrutinized by
other people, cf. [Chroust and Lexen, 1998; 1999] be-
cause they feel threatened.

recognition, self-fulfillment :
If the component is successful, both recognition and
the feeling of achievement will be the reward for the
developer, perhaps even gaining over time the status
of a ’great designer’, as F.Brooks postulated for soft-
ware professionals [Brooks, 1986].

4.7 General Availability, Marketing

No specific differences exist to the previous step, only that
the effects (both positive and negative) are reinforced.

5 General Motivators and Demotivators

Besides the specific motivators and demotivators discussed
in section 4, general ones exist, too.

5.1 Security

The need for security is threatened by numerous factors
related to the introduction of new technology. There are a
few intriguing aspects if considering the software engineer
providing reusable artifacts.

job security: :
It has to be recognized that considerable know-how
goes into a component. Know-how which original-
ly was only located in the engineer’s head. A certain
danger of becoming redundant is lingering there. If
one assumes, however, that the component will be a
strategic component of other systems - even of sy-
stems alien to the original source, it is to be expected
that the component will have to undergo modificati-
ons. And thus the originator of the component might
ever become indispensable. Being the originator of a
component, if it is successful, we be - rightly - as an
expert in that domain.

compromising: :
As with any other marketable product there must be
a compromise between the fully, potentially achieva-
ble functionality and the economic temporal achieva-
ble. Engineers also have to live with ’good-enough-
quality’ (cf. [Bach, 1997]) as provided by the com-
ponents and often cannot achieve ’best quality’. This
is often difficult to accept emotionally by engineers.

5.2 Social Environment (community)

intellectual property rights: :
Our society understanding of (’intellectual property
rights’, IPR), i.e. ownership on immaterial products
like ideas and intellectual achievements. What part of
the IPRs belongs to the creator of the original compo-
nent and what part has the homogenizer?

change of work organisation: :
CBD needs a different work organisation [Kunda
and Brooks, 1999], a rearrangement of areas of re-
sponsibility, including power and status, potentially
causing upsetting an established social climate and
well-established conventions.

isolation :
Developers of componentent could get the feeling that
they are second class developers, having (to a large
extent) work on and homogenize etc. conmponents
who were invented by somebody else, they will be
attacked if their modules are not delivered on the pro-
mised time or in the agreed upon quality etc.

5.3 Recognition

new guru-ship :
Components encapsulate and hide implementation
details and domain know-how. The originator of com-
ponents will own this knowledge and thus become
an indispensable expert for this component. A strong
motivator for an individual is recognition by the rele-
vant social or professional reference group. For soft-
ware engineers the reference group is the peer group
of software engineers.

the CBD-water carrier: :
Component development is mostly concerned with
making existing modules reusable, and not with crea-
ting new ones. Jobs in the ’reuse-unit’ (similar to
maintenance units [Basili, 1990]) might be conside-
red to require less know-how and receive lower presti-
ge, despite the fact that these jobs might require hig-
her know-how and experience than the job to design
a system from scratch.

isolation :
"Just delivering components" could be seen by ma-
nagement as a not too challenging job, endangering
these professionals of being overlooked at promoti-
ons etc.

shifting of prestige: :
Successful CBD needs a change in organisation [Kun-
da and Brooks, 1999] which means that certain per-
sons gain or loose influence, power and prestige. With
respect to CBD - which needs a different mind set
and also to some extend other abilities - other persons
will become the centre of attention, a dramatic danger
Where does one stand in the pecking order?

contempt: :
The inherent individuality of software development
(’lone wolves’) together with the multitude of diffe-
rent ways to solve the same problem has tempted ma-
ny software developers into contempt of everybody
else’s work, if it is different from ’their way’. Thus

the necessary recognition for the component devel-
opers could be missing.

5.4 Self-fulfilment

The ability to design "wonderful" systems is a strong mo-
tivator for software engineers. This feeling goes beyond
recognition of peers - one knows it oneself. This makes
it difficult for component developers to make their com-
ponents accepted by other people work: Not invented here!
[Campell, 2001], [Disterer, 2000]. CBD by necessity has
to rely on external sources in terms of a global market.

goldplating: :
The feeling of self-fulfilment often cannot accept the
knowledge that a component should/must still be im-
proved, leading to endless effort in gold-plating a sy-
stem before delivery (or even thereafter). This temp-
tation becomes larger since the components are inten-
ded to be used "by the whole world".

creativity: :
The process of recognizing a need for a component
plus the subsequent specification of the component is
highly creative and therefor self-fulfilling.

6 Summary

Soft factors like motivations and psychological precondi-
tions play a stronger role than expected even in a techni-
cal field like software engineering. These soft factors could
account for the slow uptake of component based software
development. In this paper we discussed some of the soft
factors potentially inhibiting a faster acceptance of compo-
nent based software development from the view point of a
software component provider. We have shown the sources
for components and the steps leading to a component on a
’market’, be it an internal data base to take components
from or a true externally accessible competitive market.
Using the framework of Maslow’s Hierarchy of Needs we
identified important aspects of (non-)fulfilments of needs
in the course of component based development projects.

References

[Allen, 2001] P. Allen. Realizing e-Business with Com-
ponents. Addison-Weseley 2001, 2001. ISBN 0-201-
67520-X.

[Arnold and Frakes, 1993] R.S. Arnold and W.B. Frakes.
Software reuse and reegineering. Arnold, R.S.(ed.):
Software Reengineering, IEEE Computer Society Press,
Los Alamitos, Calif. 1993, pages 476–484, 1993.

[Bach, 1997] J. Bach. Good enough quality: Beyond the
buzzword. IEEE Computer vol. 30 (1997) no. 8, pages
96–98, 1997.

[Bachmann and others, 2000] F. Bachmann et al. Volume
ii: Technical concepts of component-based software en-
gineering. Technical report, CMU/SEI-2999-TR-008,
ESC-TR-2000-007, May 2000, 2000.

[Basili, 1990] V. R. Basili. Viewing maintenance as re-
use oriented software development. IEEE Software Jan.
1990, pages 19–25, 1990.

[Boeree, 1998] C. G. Boeree. Abraham Maslow, Bio-
graphy. http://www.ship.edu/˜cgboeree/maslow.html
(2001-11-18), 1998.

[Booch, 1998] G. Booch. Architectural patterns.
http://www.rational.com/products/ whitepapers/390.jsp
2001-07-30, 1998.

[Brooks, 1986] F.P.Jr. Brooks. No silver bullet - essence
and accidents of software engineering. Kugler H.J.
(ed.): Information Processing 86, IFIP Congress, pages
1069–1076, 1986.

[Bruyninckx, 2002] H. Bruyninckx. Software patterns.
http://www.orocos.org/patterns.html, Dez. 2002, 2002.

[Campell, 2001] J. Campell. Cour-
se on reuse: Impediments to reuse.
http://www.cs.qub.ac.uk/˜J.Campbell/ myweb/misd/
node8.html#section00840000000000000000 (excerpt,
2001-11-17), 2001.

[Cheesman and Daniels, 2001] J. Cheesman and J. Da-
niels. UML Components. Addison Wesley, 2001, 2001.
ISBN 0-201-70851-5.

[Christensen, 1994] S.R. Christensen. Software reuse in-
itiatives at lockheed. Lockheed Horizons, Lockheed
Corp., December 1994, 1994.

[Chroust and Lexen, 1998] G. Chroust and H. Lexen.
Software-inspections : Yes, but.... - improving the qua-
lity of software products. In Hofer, S. and Beneder,
M.: IDIMT’98, Proc. 6th Interdisciplinary Information
Management Talks, Oct. 21-23, 1998, Zadov, Czech Re-
public, Trauner, Linz, pages 227–240, 1998. ISBN 3-
85320-955-6.

[Chroust and Lexen, 1999] G. Chroust and H. Lexen.
Software inspections - Theory, new approaches and an
experiment. In Tyrell, A.: Euromicro 1999 IEEE Com-
puter Press 1999, pages 286–293, 1999.

[Chroust et al., 1994] G. Chroust, P. Grünbacher, and
S. Hofer. Software 2001 – eine Vision und ein Weg.
Kepler Univ. Linz, Techn. Bericht für Softlab Österreich,
Juni, 1994.

[Chroust, 1996] G. Chroust. Software 2001 – ein Weg in
die Wiederverwendungswelt. In Lehner F. (ed.): Soft-
warewartung und Reengineering – Erfahrungen und
Entwicklungen Gabler Edition Wissenschaft, Deutscher
Universitätsverlag, pages 31–49, 1996. ISBN 3–8244–
6294-X.

[Chroust, 2002] G. Chroust. Motivational issues in com-
ponent based software development. In Trappl, R.: EM-
CSR 2002, Proc. European Meeting on Cybernetics and
Systems Research, Vienna, April 2002, pages 165–170,
2002. ISBN 3 85206 160 1.

[Chroust, 2003] G. Chroust. Software Komponenten - un-
geliebte Kinder der Software-Ingenieure. In Fiedler, G.
and Donhoffer, D.: Mikroelektronik 2003, Wien, pages
577–588. ÖVE Schriftenreihe, Nr. 33, 2003.

[Curtis et al., 1988] B. Curtis, H. Krasner, and Iscoe N. A
field study of the software design process for large sy-
stems. Comm ACM, 31:11:1268–1298, 1988.

[Disterer, 2000] G. Disterer. Individuelle und soziale Bar-
rieren beim Aufbau von Wissenssammlungen. Wirt-
schaftsinformatik, vol. 42 (2000), no. 6, pages 539–546,
2000.

[Enzenhofer and Chroust, 2001] W. Enzenhofer and
G. Chroust. Best practices approaches in know-how
and technology transfer methods for manufacturing
smes. In Proc. 27th EUROMICRO Conference, Sept
4-6, 2001, Warsaw, pages 279–286. IEEE Computer
Society, 2001. ISBN 0-7695-1246-4.

[Enzenhofer, 2001] W. Enzenhofer. Best Practice Imple-
mentation of Advanced Information and Communicati-
on Technologies in Manufacturing SMEs. PhD thesis, J.
Kepler University, PhD-Thesis, Nov. 2001, 2001.

[Glass, 1983] R.T. Glass. Software Runaways. Prentice
Hall 1998, 1983.

[Greswell, 1989] C.A.E. Greswell. Technology transfer of
quality management tools. Bennett K.H. (ed.): Software
Engineering Environments - Research and Practice El-
lis Horwood Books in Information Technology,, pages
289–298, 1989.

[Hoch, 1991] D.J. Hoch. Management von Technologie-
Diskontinuitäten in Informatik-Projekten. Elzer P. (ed.):
Multidimensionales Software-Projektmanagement AIT-
Verlag München, pages 153–179, 1991.

[Kock, 1999] N. Kock. A case of academic plagiarism.
CACM, Vol. 42 (1999), no. 7, pages 94–104, 1999.

[Kuhn, 1970] T. Kuhn. The Structure of Scientific Revolu-
tions. Chicago Univ. Press 1970, 1970.

[Kunda and Brooks, 1999] D. Kunda and L. Brooks.
Human, social and organisational influences on
component-based software engineering. In ICSE
99, 1999. http://www.sei.cmu.edu/cbs/icse99/ pa-
pers/19/19.htm.

[Lynex and Layzell, 1997] A. Lynex and P.J. Layzell. Un-
derstanding resistance to software reuse. Proceedings
of the 8th International Workshop on Software Techno-
logy and Engineering Practice (STEP ’97) 0-8186-7840
IEEE 1997, 1997. see andy.lynex<at>umist.ac.uk.

[Maslow, 1943] A.H. Maslow. A theory of human
motivation. Psychological Review, 50 (1943), also
http://psychclassics.yorku.ca/ Maslow/motivation.htm
(2001-11-18), pages 370–396, 1943.

[McConnell, 2000] S. McConnell. Quantifying soft fac-
tors. IEEE Software vol. 17(2000), no. 6, pages 9–11,
2000.

[Voas, 1998] J.M. Voas. Certifying off-the-shelf software
components. IEEE Computer, June 1998, pages 53–59,
1998.

[Woodman et al., 2001] M. Woodman, O. Benedictsson,
B. Lefever, and F. Stallinger. Issues of CBD product
quality and process quality. In 4th ICSE Workshop:
Component Certification and System Prediction, 23rd
Int. Conf. on Software Engineering (ICSE), IEEE Com-
puter Society, 2001, 2001. ISBN 0-7695-1050-7.

