
Risk Management : A practical toolkit for identifying,
analyzing and coping with project risks

Tom Gilb
Tom@Gilb.com

Abstract. Risk management must be fully
integrated into all the implementation (development,
production and delivery) and operational processes for
systems. It involves more than applying risk
assessment methods to identify and evaluate system
risks. To explain this broad approach to risk
management, this paper discusses the way in which
‘Planguage’ (a planning language and set of system
engineering methods) contributes to handling risks.

DEFINITION OF ‘RISK’

Risk is an abstract concept expressing the possibility of
unwanted outcomes.
A ‘risk’ is anything that can lead to results that
deviate negatively from the stakeholders’ 'real'1

requirements for a project.
It is in the nature of risk that the probability of risks

actually occurring, and their actual impact when they do
so, can only be predicted to varying degrees of
accuracy. Not all risks can be identified in advance.
Risk Management is any activity that identifies risks,
and takes action to remove, reduce or control ‘negative
results’ (deviations from the requirements).

PRINCIPLES OF RISK MANAGEMENT

In my view, the fundamental principles of risk
management include:
1. Quantify requirements: All critical performance and
resource requirements must be identified and quantified

1 ‘Real’ requirements are all the requirements of all

the stakeholder types, both internal and external to the
system. Such requirements may, or may not, have been
identified and specified. To check the validity of the
requirements, several tactics should be used: reviewing
requirements with stakeholders, Inspection of
requirements, design analysis (Impact Estimation) and
evolutionary delivery (See later discussion in this
paper).

Only during the process of evolutionary delivery
will all the ‘real’ requirements be identified. ‘Real’
requirements are likely to change during the course of a
project in response to both the delivered results and, to
changes in the business environment.

numerically
2. Maximize profit, not minimize risk: Focus on
achieving the maximum benefits within budget and
timescales rather than on attempting to eliminate all
risk.
3. Design out unacceptable risk: Unacceptable risk
needs to be ‘designed out’ of the system consciously at
all stages, at all levels in all areas, e.g. architecture,
purchasing, contracting, development, maintenance
and human factors.
4. Design in redundancy: When planning and
implementing projects, it is a necessary cost to use
conscious backup redundancy for outmaneuvering
risks.
5. Monitor reality: Early, frequent and measurable
feedback from reality must be planned into your
development and maintenance processes, to identify
and assess risks before they become dangerous.
6. Reduce risk exposure: The total level of risk
exposure at any one time should be consciously
reduced to between 2% and 5% of total budget.
7. Communicate about risk: There must be no
unexpected surprises. If people have followed
guidelines and are open about what work they have
done, then others have the opportunity to comment
constructively. Where there are risks, share the
information.
8. Reuse what you learn about risk: Standards, rules
and guidance must capture and assist good practice.
Continuous process improvement is also needed.
9. Delegate personal responsibility for risk: People
must be give personal responsibility in their sector for
identification and mitigation of risks.
10. Contract out risk: Make vendors contractually
responsible for risks, they will give you better advice
and services as a result.

Now, let’s consider, each of these principles in
turn and describe some (but not all!) of the roles that
the Planguage methods play in risk management.

However, first here is an outline sketch of the
Planguage methods:
• Planguage Specification: Requirement, design and
project management specification using the Planguage
language, which insists on quantified values.
• Impact Estimation (IE): An analysis tool (a table)
allowing evaluation of the likelihood of achieving

requirements and, the evaluation and comparison of
different designs (strategies). A strength of IE is that it
also helps identify new designs and uncover previously
unstated requirements.
• Evolutionary Delivery (Evo): This method is based
on the work by the quality gurus, Deming and Juran. It
is a way of working that focuses on evolutionary
delivery of early, measurable, system benefits to the
customers. A system is developed, by small-risk steps,
in a series of plan, develop, deliver and evaluate cycles.
• Specification Quality Control (SQC) (also known
as Inspection): A technique for measuring and
improving technical document quality. Technical
documents are evaluated against their source documents
and any prevailing standards by teams consisting of
individuals with specially assigned roles. The overall
aims are to identify defects, to identify patterns in the
Project Risk Planguage Method
Project Fit to the
Stakeholder

Requirement
Specification / Qualifiers:
S p e c i f i c q u a l i f i e d
parameter levels for each
stakeholder and market.
Goal [Market=UK]: 66%.

Customer Perception Evo: Test perception
through frequent, early
result deliveries.

Political Influences Requirement
Specification: Use of
Source , Au tho r i ty ,
Rationale, Depends On
parameters.

Organizational Stability Standards: By capturing
best practice in standards
and demanding that work
is carried out to them.

User Involvement Requirement
Specification and Evo:
Capturing specific User
r e q u i r e m e n t s a n d
involving user during
early delivery.

Conflicting Goals Requirement
Specification: Capture
detailed stakeholder
in fo rmat ion wi th in
requirements and carry
out conflict resolution

Conflict over Resource
Allocation

IE: Using IE to establish
benefit-to-cost ratios for
design ideas and carrying
out engineering tradeoff.

Table 1: A List of some Project Risks and
the selected Planguage Methods to use to

tackle them.

introduction of defects (leading to process
improvement), to help train individuals to avoid
creating defects and, to assist team-building.

Readers wanting a more detailed explanation of the
Planguage methods should look at (Gilb 2002).

Principle 1: Quantify requirements: All critical
performance and resource requirements must be
identified and quantified numerically.

Risk is negative deviation from requirements. So,
if we are going to understand risk, we must have some
way of specifying exactly what we want. If we use
vague statements like “State of the Art, World Class,
Competitor-Beating Levels of Quality”, we cannot
understand and assess risk.

Planguage helps because it demands numerically
quantified requirements. Using Planguage, we must go
through the following steps:
• Identify all critical performance2 and resource
attributes of the system. In practice, this could be ten
or more critical performance attributes (e.g.
availability) and, five or more critical resource
attributes (e.g. operational costs). The critical
attributes will vary from project to project and must be
identified locally by each project.
• Define exactly how to understand variation in each
attribute by specifying a scale of measure, e.g. ‘Scale:
Probability of being fully operational throughout the
office day’ and ‘Scale: Total of all monetary
operational expenses including long term
decommissioning costs’.
• For each attribute, state one or more benchmark
levels: ‘Past’ levels. Of special importance is the
recent level. The risk involved in attaining any
required level has to be assessed in relation to the level
the system currently achieves.
• For each attribute, define one or more critical points
on the defined scale of measure which are needed for
the system to function properly and profitably. There
are three important categories: ‘Survival’, ‘Fail’ and
‘Goal’. A ‘Survival’ level defines the system survival
level. A ‘Fail’ level defines the system failure level. A
‘Goal’ level defines a formal success level. Only when
all the specified Goal levels for all the attributes have
been met for a defined system, can the system formally
be declared a total success.

For risk management, there are several
performance and cost parameters which have different
priority:
First two constraint parameters – which have higher
priority than target parameters,
• Survival levels define the minimum and maximum

2 Performance consists of quality, workload
capacity and resource savings attributes.

required levels for system survival. A value for any
performance attribute outside its Survival levels means
(formally) total system failure, or possibly contractual
failure
• Fail levels define the levels at which some types and
degrees of associated system fault are expected to
occur. For example, failure conditions can describe
safety problems, operator discomfort, customer
discomfort, loss of value, loss of market share etc.

Then target parameters,
• Goal levels define the levels for success
• Stretch levels define desired, but not promised levels.
Their prime motivation is to encourage and challenge
the system designers to attempt to go beyond the Goal
levels
• Wish levels state stakeholder requirements that are not
yet budgeted. They are independent of considerations of
cost or technical feasibility. Wish levels are captured so
that they will not be forgotten if at some future date a
possibility opens up to achieve them.

• For all levels, define additional qualifying
information. We call this using ‘qualifiers’. You are
basically defining time, place and event conditions, i.e.
when it is critical for you to achieve a certain level of
an attribute, where it is critical and under what events.
For example:
Goal [2004, Europe, If the Euro is primary currency]:
99.98%.

We can even give direct expression to the amount
of risk we are prepared to take by a statement such as :
Goal [2004, UK, If Euro is used in Norway & UK]:
60% ±20%.

In other words, allowing for an error margin, the
range of results 40% to 80% is an acceptable upper and
lower limit for the Goal level, but below 40% is
unacceptable. Here is a more complete example:
Usability:
Type: Performance.Quality Requirement.
Scale: Mean time to learn defined [Task] to minimum
proficiency.
Fail [Timescale = Release 2.0, Language Variant =
English, Task = Modifying Files]: 10 minutes.

Rationale: will be beaten by competition.
Goal [Release 2.0, English, Task = Modifying Files]: 7
minutes.
Goal [Release 3.0, English, Task = Modifying Files]: 5
minutes.
Goal [Release 3.0, French & Dutch, Task = Finding a
File by Content]: 5 minutes.

In this example, the most critical risk is the Fail
level. The other statements are only of secondary risk;
they indicate the levels required to declare success. It
should be obvious that the degree of risk can be

expressed in terms of the deviation from the target
levels. For example:
Method A can sometimes result in a learning time of
10 minutes, while Method B can never result in a
learning time exceeding 4 minutes.

This means that for the specified requirements,
Method A poses a real risk, but Method B does not.

A template specification of risk levels. In addition to
the basic statements described above, it should be
noted that there are a wide variety of ways within
Planguage to indicate that the information contains
some element of risk. Here are some examples:
Goal: 60-80. “Specification of a range.”
Goal: 60±30. “Specification of an upper and lower
limit.”
Goal: 60 ‡ 90.
Goal: 60? “Expressing that the value is in doubt.”
Goal: 60?? “Expressing that the value is in serious
doubt.”
Goal: 60 fl A wild guess. “Using the source of the
information to show the doubt.”
Goal: 60 fl A.N. Other. “Depends on A.N. Other’s
credibility in setting this value.”
Goal: <60>. “Fuzzy brackets indicate data needing
improvement.”

All of the above signals can be used to warn of
potential risk. Of course, the culture must encourage
such uncertainty specification rather than intimidate
people from using it.
Goal [If Euro is used in UK]: 99%.

The above is an example where the risk is
controlled by making the specification totally
dependent on the ‘If’ condition. There is no ‘risk’ if
the level is below 99% if the condition is false.
However, they are warned to plan to achieve 99%
should the condition turn true.

Note, you can also use ‘If’ qualifiers to constrain
the use of a strategy (a ‘means’ for achieving a goal).
This reduces the risk that an expensive strategy is
applied under inappropriate conditions.
Strategy03 [If hunger famine in a country and If road
and rail transport unavailable]: Aerial Supply of Food.

Principle 2: Maximize profit, not minimize risk:
Focus on achieving the maximum benefits within
budget and timescales rather than on attempting to
eliminate all risk.

Elimination of all risk is not practical, not
necessary and, not even desirable. To eliminate all risk
would lead to infinite costs. At some point as you
approach no risk, you would eliminate necessary profit
or incur costs that were too high.

All risk has to be controlled and balanced against
the potential benefits. In some cases, it is appropriate
to decide to use (and manage) a strategy with higher

benefits and higher risks.
 I use Impact Estimation (IE) to help me assess the

set of strategies I need to ensure I meet the
requirements. My focus is always on achieving the
requirements in spite of the risks.

Outline Description of Impact Estimation (IE). The
basic IE idea is simple: estimate quantitatively how
much your design ideas impact all critical requirements.
This is achieved by completing an IE table. The left-
hand column of the table should contain the
requirements and, across the top of the table should be
the proposed strategies. For the requirements, assuming
you have expressed them using Planguage, it is usually
a question of listing all the performance and resource
attributes you wish to consider. You need next to
decide on a future date you want to use. This should be
a system ‘milestone’; a date for which you have
specified Fail and Goal levels. Then, against each
attribute, you state the current level and the Goal level
for your chosen date (If you are especially risk averse
you would use the Fail or Survival level!). For the
strategies, you simply list them across the top of the IE
table.

You then fill in the table, for each cell you answer
the question, ‘How does this strategy move the attribute
from its current level towards the Goal level?’ First you
state the actual value, on your defined Scale, you
would expect and then you convert this into a
percentage of the total amount of required change. For
example, Training Time for Task A is currently 15
minutes and you require it to be 10 minutes within six
months. You estimate Strategy B will reduce Training
Time for Task A to 12 minutes. In other words,
Strategy B will get you 60% of the way to meeting your
objective.

Further Improvements to specifying the Impacts.
There are a number of improvements to this basic idea,
which make it more communicative and credible. Here
is a brief summary of them:
• Uncertainty of Impact: You can specify a range of
values rather than a single value.
• Evidence for Impact Assertion: You can state the
basis for making your estimate. For example: "Strategy
B was used for 5 projects last year in our company, and
the percentage improvement for training times was
always 60% to 80%".
• Source of Evidence for Impact Assertion: Of
course, some skeptic might like to check your assertion
and evidence out, so you should give them a source
reference, e.g. "Company Research Report ABR-017,
pages 23-24."

• Credibility Rating of the Impact Assertion: We
have found it very useful to establish a numeric
'credibility' for an estimate, based on the credibility of
the evidence and the source. We use a sliding scale of
0.0 (no supporting evidence) to 1.0 (completely
relevant supporting evidence) because the credibility
rating can then be used later to modify estimates in a
conservative direction by multiplication (For example,
0.5 modifies an impact to half its original estimated
value).

Risk Analysis using the IE Data. Once you have
completed filling in all the impacts, there are a number
of calculations, using the percentage impact estimates
(%Impact), that help you understand the risks involved
with your proposed solution.

Let me stress that these are only rough, practical
calculations. Adding impacts of different independent
estimates for different strategies, which are part of the
same overall architecture, is dubious in terms of
accuracy. But, as long as this limitation is understood,
you will find them very powerful when considering
such matters as whether a specific quality goal is likely
to be met or which is the most effective strategy. The
insights gained are frequently of use in generating new
strategies.

The risk analysis calculations are as follows:
• Impact on an Attribute: For each individual
performance or resource attribute, sum all the
percentage impacts horizontally for the different
strategies. This gives us an understanding of whether
we are likely to make the planned level for each
performance or cost. Very small impact sums like
'4%' indicate high risk that the architecture is probably
not capable of meeting the targets. Large numbers,
like 400%, indicate that we might have enough design,
or even a 'safety margin'.
• Impact of a Strategy: For each individual strategy,
sum all the percentage impacts it achieves vertically
across all the performance attributes to get an estimate
of its overall effectiveness in delivering the required
performance. The resulting estimates can be used to
help select amongst the strategies. It is a case of
selecting the strategy with the highest estimated value
and the best fit across all the critical performance
requirements. If the design ideas are complementary
then the aim is to choose which strategies to
implement first. If the strategies are alternatives, then
you are simply looking to determine which one to
pick.

In addition to looking at the effectiveness of the

Strategy A Strategy B Strategy C Sum of
Strategy
Impacts

Sum
Uncertainty

Reliability
900 <-> 1000
hours MTBF

0+/-10% 10+/-20% 50+/-40% 60% +/-70%

Table 2: An example of a simple Impact Estimation (IE) table. Adding the percentage impacts
for a set of strategies on a single performance attribute or cost can give some impression of how

the strategies are contributing overall to the requirements. Note Strategies A, B and C are
independent and complementary.

Performance
Attribute

Past <-> Goal New Idea

Reliability 900 <-> 1,000 hours
MTBF

50%+/-10%

Maintainability 10 minutes to fix <-
> 5 minutes to fix.

100%+/-50%

Total estimate of
total effect of
New Idea on all goals

150%+/-60%

Table 3: A measure of the effectiveness of strategy ‘New Idea’ can be found by adding
together its percentage impacts for all the performance attributes.

individual strategies in impacting the performance
attributes, the cost of the individual strategies also
needs to be considered (See next).
• Benefit-to-Cost Ratio: For each individual strategy,
calculate the benefit-to-cost ratio. For benefit, use the
estimate calculated in the previous section. For cost,
use the percentage drain on the overall budget of the
strategy or, use the actual cost.

The overall cost figure used should take into
account both the cost of developing or acquiring the
strategy and, the cost of operationally running the
strategy over the chosen time scale. Sometimes,
specific aspects of resource utilization also need to be
taken into account. For example, maybe staff
utilization is a critical factor and therefore a strategy
that doesn’t use scarce programming skills becomes
much more attractive.

My experience is that comparison of the 'bang for
the buck' of strategies often wakes people up
dramatically to ideas they have previously under- or
over-valued.
• Average Credibility / Risk Analysis: Once we have
all the credibility data (i.e. the credibility’s for all the
estimates of the impacts of all the strategies on all the
performance attributes), we can calculate the average
credibility of each strategy and, the average credibility
of achieving each performance attribute. This

information is very powerful, because it helps us
understand the risk involved. For example, "the average
credibility, quality controlled, for this alternative
strategy is 0.8". Sounds good! This approach also saves
executive meeting time for those who hold the purse
strings.

Principle 3: Design out unacceptable risk:
Unacceptable risk needs to be ‘designed out’ of the
system consciously at all stages, at all levels in all
areas, e.g. architecture, purchasing, contracting,
development, maintenance and human factors.

Once you have the completed initial IE table, you
are in a position to identify the unacceptable risks and
design them out of the system. Unacceptable risks
include:
• Any performance or resource attribute where the sum
of the % Impacts of all the proposed strategies does not
total 200% (A 100% safety factor has been mandated, to
reduce the risk of failure).
• Any strategy providing i) a low total for the sum of its
% Impacts, ii) very low credibility or iii) low benefit-to-
cost ratio.

New strategies will have to be found that reduce
these risks. In some cases, it may be decided that the
levels set for the requirements are unrealistic and they
may be modified instead.

Within software engineering, the art of designing
a system to meet multiple performance and cost
targets, is almost unknown (Gilb 1988). However, I
have no doubt that there is great potential in
‘conscious design’ to reduce risks. For example, it is
a hallowed engineering principle to be conservative
and use known technology. However, this concept
has not quite caught on in software engineering
technology, where ‘new is good’, even if we do not
know much about its risks. At least, with the use of
an IE table there is a chance of expressing and
comparing the risk involved in following the different
strategies.

Principle 4: Design-in redundancy: When planning
and implementing projects, it is necessary to use
conscious backup redundancy for outmaneuvering
risks.

Under Principle 3, we have discussed finding new
strategies. Principle 4, takes this idea a step further.
Actively look for strategies that provide backup. An
extreme example of this practice is NASA’s use of
numerous backup computer systems for manned space
missions. The additional redundancy cost is always
weighed against the consequential cost of failed
systems. We don’t build ‘superfluous’ redundancy
into a system.

Principle 5: Monitor reality: Early, frequent and
measurable feedback from reality must be planned
into your development and maintenance processes
to identify and assess risks before they become
dangerous.

I expect the IE information only be used as an
initial, rough indicator to help designers spot potential
problems or select strategies. Any real estimation of
the impact of many strategies needs to be made by
real tests (Ideally, by measuring the results of early
evolutionary steps in the field). Evolutionary
Delivery (Evo) is the method to use to achieve this
(See next Principle).

Principle 6: Reduce risk exposure: The total level
of risk exposure at any one time should be
consciously reduced to between 2% and 5% of
total budget.

The Evolutionary Delivery (Evo) method
typically means that live systems are delivered step by
step to user communities for trial often (e.g. weekly)
and early (e.g. 2nd week of project).

One of the major objectives of Evo is to reduce
and control risk of deviation from plans. This is
achieved by:

• getting realistic feedback after small
investments
• allowing for change in requirements and
designs; as we learn - during the project

• investing minimum amounts at any one time (2%
to 5% of project time or money1) so that total loss is
limited if a delivery step totally fails.
IE is of use in helping to plan the sequencing of Evo

steps. IE tables also provide a suitable format for
presenting the results of Evo steps. See Table 4, which
is a hypothetical example of how an evolutionary project
can be planned and controlled and risks understood
using an IE table. The ‘deviation’ between what you
planned and what you actually measured in practice is a
good indicator of risk. The larger the deviation, the less
you were able to correctly predict about even a small
step. Consequently, there is a direct measure of the
areas at risk in the ‘deviation’ numbers.

The beauty of this, compared to conventional risk
estimation methods (Hall 1998) is as follows:

• it is based on real systems and real users (not
estimates and speculation be fore practical
experience)
• it is early in the investment process
• it is based on the results of sma l l system
increments, and the cause of the risk is easier to
spot and perhaps, to eliminate or to modify, so as to
avoid the risk.
Evolutionary Project management does not ask

what the risks might be. It asks what risks have shown
up in practice. But it does so at such an early stage, that
we have a fair chance to do something about the
problems.

Principle 7: Communicate about risk: There must be
no unexpected surprises. If people have followed
guidelines and are open about what work they have
done, then others have the opportunity to comment
constructively. Where there are risks, share the
information.

Hopefully, readers will by now have begun to
understand that Planguage and IE are good means of
communicating risk. Let me now introduce
Specification Quality Control (SQC), also known as
Inspection, as a third useful method.
SQC is a direct weapon for risk reduction (Gilb 1993,

1 Practice (For example, academic studies on
Hewlett Packard Evo practice over 14 years.)
has shown that a 2% to 5% range (or 1-2
weeks) is realistic. The Evo step size is a
function of the level of risk you want to take,
which in turn is a function of things such as the
technology, the market and the profitability. A
project manager can take any step size they
wish, but will find a step size of between 2%
and 5% of a project’s total time and financial
budget is practical and challenging.

2000). Early SQC performed on all written
specifications is a powerful way to measure, identify
and reduce risk of bad plans becoming bad
investments. The key idea is that major defects are
measured, removed, and that people learn to avoid
them, by getting detailed feedback from colleagues.
A defect is a violation of a ‘best practice’ rule. A
major defect is defined as a defect,which can have
substantial economic effect ‘downstream’ (in practice,
in ‘test’ phases and in the field). By this definition, a
major defect is a ‘risk’. So SQC measures risks!

Many people think that the main benefit from
SQC is in identifying and removing major defects
early (e.g. before source code reaches test phases).
This is not the case (My experience is that SQC is as
bad as testing in % defect-removal effectiveness. In
very rough terms half of every defect present is not
identified or removed). The really important
economic effect of SQC is not what happens at the
level of a single document, but in teaching the people
and the organization (Gilb 1993, 2000). The real
effects of SQC include:

• teaching individual system engineers exactly how
often they violate best practice rules
• motivating the system engineers to take rules
seriously (really avoid injecting major defects)
• regulating flow of specification defects, so that
high major defect project specifications and user
documents can neither exit their initial process, nor
enter adjacent work processes.
Staff involved in SQC meetings learn very quickly

how to stop injecting defects. Typically, the defects
introduced by an author reduce at the rate of about 50%
less injection every time a new document is written and
inspected using SQC. For example, using SQC
methods, Raytheon reduced ‘rework’ costs, as a % of
development costs, from 43% to 5% in an eight year
period (Dion 1995).
Sampling. One other little-appreciated aspect of SQC is
that you can use it by sampling a small section of a large
document, rather than trying to ‘clean up’ the entire
document. If the sample shows a high major defect

Step->

Attribute

STEP1
plan
%

Impact

actual
%

Impact

devia-
tion
%

STEP2
to

STEP20
plan

plan
cumul-

ated
to here

STEP21
[CA,NV,

WA]
plan

plan
cumul-

ated
to here

STEP22
[all

others]
plan

plan
cumul-
ated to
here

Performan
ce 1

5 3 -2 40 43 40 83 -20 63

Performan
ce 2

10 12 +2 50 62 30 92 60 152

Performan
ce 3

20 13 -7 20 33 20 53 30 83

Cost A 1 3 +2 25 28 10 38 20 58
Cost B 4 6 +2 38 44 0 44 5 49

Table 4: A hypothetical example. This shows the expected percentage impacts (plan % Impact)
for an Evo plan consisting of a series of Evo steps, STEP1 to STEP22, on a series of critical

performance and resource budget attributes. Each Evo step comprises one or more design ideas
(solutions). STEP1 has been implemented and the feedback results are shown (actual % Impact).

The feedback is compared to the estimated impact, to see if the project is progressing as
expected (deviation %). The plan is updated to include the estimates (and later the actual results),

in the future cumulated figures.

density (say more than one major/page) then the
document is probably ‘polluted’ and action can be
taken to analyze the defect sources. A complete
rewrite may be necessary using appropriate
specification rules, or using new/improved source
documents. This is generally cheaper than trying to
clean up the entire document using defect removal
SQC or testing. You can calculate what pays off.

Principle 8: Reuse what you learn about risk:
Standards, rules and guidance must capture and
assist good practice. Continuous process
improvement is also needed.

In the previous section, the importance of SQC
was discussed and rules were highlighted as one of the
essentials required to support it. It is worth
emphasizing the aspect of reuse that is occurring in
SQC. The more effort that is put into making rules
more effective and efficient, by incorporating
feedback from SQCs, the more productive the SQCs
are, and the greater the reduction in risk.

Even more benefit can be achieved if what is
learnt from SQC is used to modify the processes that
are causing the defects. Continuous Process
Improvement has been shown to have a major
influence on risk. For example, Raytheon has
achieved zero deviation from plans and budgets over
several years. They used a $1million/year (for 1,000
software engineers) for 8 years to do continuous
software process improvement. They report that the
return on this investment was $7.70 per $1 invested
on improving processes such as requirements, testing
and SQC itself. Their software defect rate went down
by a factor of three (Dion 1995).

Using SQC defect and cost data , analysis of the
identified defects to find process improvements is
carried out in the Defect Prevention Process (DPP,
part of SQC). DPP was developed from 1983 at IBM
by Robert Mays and Carole Jones and, is today
recognized as the basis for SEI CMM Level Five.
The breakthrough concept in getting DPP to work,
compared to earlier failed efforts within IBM (Fagan’s
Inspection, 10 years earlier tried to use statistics to
improve process – but was more successful in defect
removal), was probably in the decentralization of
analysis activity to many smaller groups, rather than
one ‘Lab Wide’ effort by a Quality Manager. This
follows what the quality Guru Dr. W Edwards
Deming taught that the Japanese; factory workers
must analyze their own statistics and be empowered to
improve their own work processes.

Analysis of ‘root causes’ of defects is very much
a risk analysis effort (Hall 1998) and a handful of my
clients are reporting success at doing so. But, most
are still working on other disciplines like defect
detection SQC alone (not DPP) and others mentioned

elsewhere in this paper.

Principle 9: Delegate personal responsibility for risk:
People must be give personal responsibility in their
sector for identification and mitigation of risks.

To back up communicating about risk, people must
be given ownership of the risks in their sector (e.g.
allocating ownership/sign off of IE tables, and giving
people specific defect searching roles, or process
improvement roles within SQCs).

Principle 10: Contract out risk: Make vendors
contractually responsible for risks, they will give you
better advice and services as a result.

I would like to point out that contracting for
products and services gives great opportunity to legally
and financially control risks by squarely putting them on
someone else’s shoulders

The effects of contracting out a risk include:
• you have removed the risk in some sense, but
if they fail, you will still be affected!
• the supplier (assuming they get the risk) will be
more motivated to take steps to eliminate the
risks,
• the supplier will be motivated to tell you exactly
what you have to do to avoid being hit by risks,
• the supplier might come up with a more realistic
bid and time plan to cope with the risks.

You might wonder if a supplier will voluntarily accept
contracts with in-built risk guarantees. My experience is
that contractors will always accept reasonable risks to
ensure they get the business. Contractors should only be
made responsible for risks which they, not us, have
knowledge and control over. In many respects, we are
defining responsibility before a lawsuit situation, rather
than after. A buyer has great power, but usually fails to
use it to maximum advantage, thus allowing greater risk
exposure. Relating the payment mechanism to the
results is a key means of transferring risk. All critical
success factors in the contract should be defined with
Scales and target and constraint levels. For performance
attributes, below Survival level means no payment,
below Fail level means partial payment and reaching
Goal level, within stated conditions, means 100%
payment.
Specifying the use of Evolutionary Project Management
within contracts is another key risk reduction
mechanism. If a contractor fails to meet early
deliverable levels, then you have early warning of the
problem.

PRACTICAL APPLICATIONS OF
PLANGUAGE APPROACHES TO RISK

MANAGEMENT

There are extensive individual case studies carried out
by the Author’s clients (For example, Hewlett Packard,

Ericsson and Intel) on the various elements of the
Planguage approach to risk management (Gilb 2002).
The most well-studied aspects are in the areas of SQC
(Inspection) and Evolutionary Project Management.
See specifically, the case study by Dick Holland for
an integrated example of three of the risk management
methods (SQC, Evo and Planguage quantified
requirement specification).

SUMMARY

Risks can be handled in many ways and at many
levels. The need to fully integrate risk management
into all implemenation and operational processes is
clear.

 I have tried to point out some risk management
methods which are not so well known, or well treated,
in existing literature (See Pennock 2002 for more
conventional risk management thinking).

The Planguage approach to risk management includes,
in summary:

• Within the Planguage specification language:

- quantification of benchmark and target levels for all
performance and resource attributes. This aims to
obtain a clear, unambiguous statement of the current
and required levels for all the critical factors. This
reduces the risk of misunderstandings or overlooking
a critical requirement and, means that success can be
measured.

- explicit specification of the constraint levels for all
performance and resource attributes. This clearly
defines the minimum and maximum acceptable limits.

- the use of qualifier conditions [when, where, event]
to reduce generalization and identify specific
dimensions for requirements. This helps eliminate risk
by reducing the spread of requirements down to the
precise areas of interest.

• Using SQC to sample the quality of specifications
against best practice standards. By allowing process
exit only when the level of remaining defects is
acceptable, the risk of downstream pollution of the
system engineering process is reduced.

• Using Impact Estimation (IE) to evaluate the
estimated quantitiative impacts of designs and
architectures on all the critical requirements. The risk
of inadequate design is reduced by consideration of
the evidence and credibility of design impacts and, by
involving safety factors.

• Using Evolutionary Project Management (EVO) to
obtain early delivered results and early feedback. By
aiming for results at frequent intervals (say 2% of
project resource budgets), there is more immediate

feedback on how the project plans work in reality and
how the customer perceives the results. If changes are
required, there is resource budget to take corrective
action. By implementing changes in small steps, risk is
distributed and, it is easier to identify where any
problems exist.

 Tables 5 and 6 recap the ideas presented in this
paper. Table 5 is a set of policies for risk management.
See (Gilb 2002) for more detail. Table 6 contains
‘Twelve Tough Questions’ that you should ask when
assessing risk.

POLICY IDEAS FOR RISK MANAGEMENT

Explicit Risk Specification
All managers/planners/engineers/testers/quality
assurance people shall immediately in writing,
integrated in the main plan, specify any uncertainty, and
any special conditions which can imaginably lead to a
risk of deviation from defined target levels of system
performance and cost attributes.

Complete Requirement Specification
A complete set of all critical performance and cost
aspects shall be specified, avoiding the risk of failing to
consider a single critical attribute.

Numeric Expectation Specification
The benchmark, constraint and expected target levels of
all performance and cost attributes of the system shall be
specified in a numeric way, using defined scales of
measure, and at least an outline of one or more
appropriate ‘Meters’ (test or measuring instruments for
determining where we are on a scale).

Conditions Specified
The requirements levels shall be qualified with regard to
when where and under which conditions the targets
apply, so there is no risk of us inadvertently applying
them inappropriately.

Specification Quality Control Numerically Exited
All requirements, design, impact estimation and
evolutionary project plans, as well as all other related
critical documents such as contracts, management plans,
contract modifications, marketing plans, shall be
‘quality controlled’ using the SQC method (Gilb 1993).
A normal process exit level shall be that ‘no more than
0.2 major defects per page maximum, can be calculated
to remain, as a function of those found and fixed before
release, when checking is done properly’ (e.g. at
optimum checking rates of 1 logical page (300 words) or
less per hour).

Complete Design Specification and Impact
Estimation Specified
A complete set of designs or strategies for meeting the
complete set of performance and cost targets will be
specified. They will be validated against all specified

performance and cost targets (using Impact
Estimation Tables). They will meet a reasonable level
of safety margin.
They will then be evolutionarily validated in practice
before major investment is made. The Evo steps will
be made at a rate of maximum 2% of budget, and 2%
of ‘project time’, per ‘incremental trial’ (Evo step) of
designs or strategies.

Evolutionary Proof-of-Concept Priorities
The Evolutionary Project Management method (Gilb
2002) will be used to sense and control risk in mid-
project. The dominant paradigms will include:

• 2% steps
• high value to cost with regard to risk delivered
first
• high risk strategies tested ‘offline to customer
delivery’, in the ‘backroom’ of development
process, or at cost-to-vendor, or with ‘research
funds’ as opposed to project budget.

Table 5: Policy Ideas for Risk
Management

TWELVE TOUGH QUESTIONS
 1. Why isn't the improvement quantified?
 2. What is degree of the risk or uncertainty and why?
 3. Are you sure? If not, why not?
 4. Where did you get that from? How can I check it
 out?
 5. How does your idea affect my goals and budgets,
 measurably?
 6. Did we forget anything critical to survival?
 7. How do you know it works that way? Did it
before?
 8. Have we got a complete solution? Are all
 requirements satisfied?
 9. Are we planning to do the 'profitable things' first?
10. Who is responsible for failure or success?
11. How can we be sure the plan is working, during
the
 project, early?
12. Is it ‘no cure, no pay’ in a contract? Why not?
© Tom@Gilb.com 2002. Use freely with @

Table 6: Twelve Tough Questions

REFERENCES
Dion, Raymond, "Process Improvement and the

Corporate Balance Sheet", IEEE Software, July
1993, Pages 28-35.

Dion, Raymond and Haley, Tom and Ireland, Blake
and Wojtaszek, Ed, “The Raytheon Report:
Raytheon Electronic Systems Experience in
Software Process Improvement”, November
1 9 9 5 , S E I w e b - s i t e ,

http://www.sei.cmu.edu/products/pub
lications/95.reports/95.tr.017.html
/. This is an important update of earlier reports.

Gilb, Tom, Principles of Software Engineering
Management, Addison-Wesley, 1988, 442 pages.
ISBN 0-201-19246-2. See particularly Chapter 6,
“Estimating the Risk” (Also reproduced in Boehm,
Software Risk Management, IEEE CS Press, 1989
page 53).

Gilb, Tom and Graham, Dorothy, Software Inspection,
Addison-Wesley, 1993, ISBN 0-201-63181-4, 471
pages. (This book covers the Defect Detection
Process and the Defect Prevention Process, as well
as giving sample Rules to check by, defined
processes and a well defined set of Glossary terms
to aid quantification and comparison. It is a next-
generation Inspection (SQC), with hundreds of
larger and smaller improvements over initial
Inspection practices.)

Gilb, Tom 2000
“Planning to get the most out of Inspection” in
Software Quality Professional, ASQ (American Society
for Quality
Volume Two, Issue Two, March 2000
Pages 7-19 , http://sqp.asq.org
 Published (2001) in book
“Fundamental Concepts for the Software Quality”
Engineer, Order ASQ 800 248 1946, Quality Press
Online http://qualitypress.asq.org

Gilb, Tom, http://www.Gilb.com/, 2002.
Various papers and manuscripts. These include:
. Competitive Engineering (CE) in draft
. Evolutionary Project Management. 1996 draft.

Also slides
. “Requirements Engineering Language.” Slides

only.
Hall, Elaine M., “Managing Risk: Methods for Software

Systems Development”. SEI Series in Software
Engineering, Addison Wesley Longman, USA,
1998, ISBN 0-201-25592-8, 374 pages.

May, Elaine L. and Zimmer, Barbara A., “The
Evolutionary Development Model for Software”,
Hewlett-Packard Journal, August 1996, Vol. 47,
No. 4, pages 39-45.

Pennock, Michael J. and Haimes, Yacov Y., “Principles
and Guidelines for Project Risk Management in
Systems Engineering”. The Journal of INCOSE.
Vol 5, No. 2, 2002. Pages 89 – 107.

BIOGRAPHY

Tom Gilb is the author of “Principles of Software
Engineering Management” (1988) and “Software
Inspection” (1993). His book “Software Metrics”
(1976) coined the term and, was used in the Radice IBM

CMM version directly, and later indirectly as the basis
for the Software Engineering Institute Capability
Maturity Model Level Four (SEI CMM Level 4). His
most recent interests are development of true software
engineering and systems engineering methods. His
sons, Kai and Tor, now work with him.

Tom Gilb was born in Pasadena CA in 1940. He
moved to England in 1956, then two years later he
joined IBM in Norway. Since 1963, he has been an
independent consultant and author.

Further information can be found at
http://www.Gilb.com/.

E-mail: Tom@Gilb.com

This paper was edited by Lindsey Brodie,
lindseybrodie@BTopenworld.com.

Edit note this version
was edited by Tom after
Lindsey’s rewrite July
8th. Changes to LB are

tracked but not on
screen.

