

RAPID AND FLEXIBLE PRODUCT
DEVELOPMENT: AN ANALYSIS OF SOFTWARE

PROJECTS AT HEWLETT PACKARD AND
AGILENT

by

Sharma Upadhyayula

M.S., Computer Engineering
University of South Carolina, 1991

Submitted to the System Design and Management Program in Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Engineering and Management

at the
Massachusetts Institute of Technology

January 2001

 Sharma Upadhyayula. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis
document in whole or in part.

Signature of Author ...

 System Design and Management Program
December 13, 2000

Certified by...

Michael A. Cusumano

Sloan Management Review Distinguished Professor of Management

Thesis Supervisor

Accepted by..

Stephen C. Graves
Abraham Siegel Professor of Management

LFM/SDM Co-Director

Accepted by..

Paul A. Lagace
Professor of Aeronautics & Astronautics and Engineering Systems

LFM/SDM Co-Director

2

RAPID AND FLEXIBLE PRODUCT DEVELOPMENT:
AN ANALYSIS OF SOFTWARE PROJECTS AT

HEWLETT PACKARD AND AGILENT

by Sharma Upadhyayula

Submitted to the System Design and Management Program on January 05, 2001 in Partial
Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

Before companies started competing on Internet time, most companies involved in software
product development carried out the different phases of the product development sequentially. If,
during the later stages of product development (ex: coding), the company came across new
information or the user needs changed then these changes would be incorporated into the next
version of the product otherwise risk shipping the product late. Rapid innovation in the
technological areas and the Internet has created very dynamic environment in all walks of life. In
this environment, the user needs are changing very rapidly resulting in new challenges for the
companies and its product development managers. They have to respond to the changing needs
of the users very quickly either with rapid product releases and/or incorporating the changes into
product under development. To achieve this, companies need a product development strategy
that allows them to incorporate changes at any stage in the product development without affecting
their time-to-market.

This thesis focuses on strategies for rapid and flexible software product development. This
research will study systematically the range of approaches that producers of software and
hardware use for product development.

Thesis Supervisor: Michael A. Cusumano
Sloan Management Review Distinguished Professor of Management

3

Acknowledgements

Many people have contributed to this research project and the creation of this thesis. I am very

grateful to all the people who made it possible.

First and foremost, I would like to thank my advisor, Prof. Michael Cusumano for letting me be

part of the research team. His guidance and insightful perspective on software product

development and data analysis has been great help and very educational for me. He always

managed to make time, to discuss the project and provide any help to enable me to carry out the

research, in spite of his extremely busy schedule. I also would like to thank him and Center for

Innovation of Product Development (CIPD) for providing me with full research assistantship for

Fall 2000 semester.

I have been very fortunate to have Prof. Chris Kemerer (Katz Graduate School of Business,

University of Pittsburgh) and Prof. Alan MacCormack (Harvard Business School), on the

research team. Their active participation and guidance in analyzing the data was instrumental in

the timely completion of this thesis.

I would like to thank Bill Crandall and Guy Cox (Process Consulting Group, Hewlett Packard).

Without their support this research project would not have materialized. I would also like to

thank all the project teams within Hewlett Packard and Agilent, who took time out of their busy

schedules, to participate in this research and this thesis would not have reached this stage without

their help.

Lastly, I would like to specially thank my wife Usha and my son Nischay for their support (and

sacrifices) and constant encouragement through out the academic coursework and thesis work.

4

Table of Contents

Chapter 1: Introduction ... 10

1.1 Motivation: .. 10
1.2 Existing methodologies and techniques common to software product development
... 11

1.2.1 Sequential (Waterfall) Methodology:... 11
1.2.2 Iterative (Evolution) Methodology:.. 12
1.2.3 Synch and Stabilize technique:... 13

Chapter 2: Research Methodology .. 15
2.1 Questionnaire Development:... 15
2.2 Data collection: ... 16
2.3 Variables (Context, Process and Outcome): ... 17

2.3.1 Some of the contexts variables available from the research data: 18
2.3.2 Some of the process variables available from the research data: 18
2.3.3 Some of the outcome variables available from the research data: 20

2.4 Generic project description (size, complexity etc):... 21
Chapter 3: Data Analysis.. 27

3.1 Hypothesis and data analysis: ... 27
3.2 Impact Of Market and Technical Feedback .. 28

3.2.1 Hypothesis 1:.. 28
3.2.2 Hypothesis 2:.. 28
3.2.3 Hypothesis 3:.. 28
3.2.4 Hypothesis 4:.. 29
3.2.5 Hypothesis 5:.. 29
3.2.6 Data Analysis to evaluate impact of market and technical feedback............... 30
3.2.7 Sensitivity Analysis:.. 41
3.2.8 Observations based on the data analysis for market and technical feedback: 44

3.3 Impact of Separate Development Sub-Cycles... 45
3.3.1 Hypothesis 6:.. 45
3.3.2 Hypothesis 7:.. 45
3.3.3 Data Analysis to evaluate the impact of separate development sub-cycles 46
3.3.4 Sensitivity Analysis:.. 51
3.3.5 Observations based on the data analysis for separate development sub-cycles:
... 53

3.4 Flexibility in Project Activities ... 54
3.4.1 Hypothesis 8:.. 54
3.4.2 Data analysis to evaluate flexibility in project activities 55
3.4.3 Sensitivity Analysis:.. 63
3.4.4 Observations based on the data analysis for variables to evaluate flexibility in
project activities:... 64

3.5 Impact of Code Reuse ... 65
3.5.1 Hypothesis 9:.. 65
3.5.2 Data analysis to evaluate impact of code reuse... 66

3.6 Impact of Frequent Synchronization ... 69
3.6.1 Hypothesis 10:.. 69

5

3.6.2 Hypothesis 11:.. 70
3.6.3 Data analysis to evaluate impact of frequent synchronization 71
3.6.4 Sensitivity Analysis:.. 75

3.7 Impact of Design and Code Reviews .. 76
3.7.1 Hypothesis 12:.. 76
3.7.2 Hypothesis 13:.. 77
3.7.3 Data analysis to evaluate the impact of design and code reviews 78
3.7.4 Observations based on the data analysis for impact of Design and Code
review:... 82

3.8 Impact of simple compile and link test vs. regression testing................................. 83
3.8.1 Hypothesis 14:.. 83
3.8.2 Data analyses to evaluate Impact of simple compile and link test vs. regression
testing .. 84
3.8.3 Observations based on the data analysis for impact of simple compile and link
test vs. regression testing: ... 85

3.9 Relative emphasis of developers testing vs. QA staff testing code......................... 86
3.9.1 Hypothesis 15:.. 86
3.9.2 Hypothesis 16:.. 86
3.9.3 Data analysis for Relative emphasis of developers testing vs. QA staff testing
code ... 87
3.9.4 Sensitivity Analysis:... 90
3.9.5 Observations based on analysis of developers and QA testing code:.............. 91
3.10.1 Hypothesis 17:.. 92
3.10.2 Hypothesis 18:.. 92
3.10.3 Hypothesis 19:.. 92
3.10.4 Data analysis for relative emphasis of component testing vs. integration
testing vs. system testing.. 93
3.11.1 Hypothesis 20:.. 98
3.11.2 Hypothesis 21:.. 98
3.11.3 Data analysis for Impact of Final Stabilization Phase 99

Chapter 4: Conclusions... 104
4.1 Current state of project practices:.. 104
4.2 Practices for flexible product development:.. 105
4.3 Limitations of the research:... 107
4.4 Next Steps: .. 108
4.5 Areas for inclusion in the survey instrument (addition for future surveys): 108

Appendix-A One Way ANOVA (Analysis Of Variance) Reports 110
Appendix B – Survey Instrument .. 129
References .. 142

6

List of Tables

Table 2-1 - Descriptive Statistics for Context Variables ... 21
Table 2-2 - Breakdown of Sample by Software Type.. 22
Table 2-3 - Projects Grouped by Usage .. 22
Table 2-4 - Projects Grouped by Project Type ... 22
Table 2-5 - Descriptive Statistics for Process Variables .. 23
Table 2-6 - Descriptive Statistics for Process Variables ... 23
Table 2-7 - Descriptive Statistics for Process Variables .. 24
Table 2-8 - Summary of Build Frequency.. 24
Table 2-9 - Projects grouped by whether Regression Tests were performed or not 24
Table 2-10 - Projects grouped by whether Design Review was done or not 25
Table 2-11 - Projects grouped by whether Code Review was done or not 25
Table 2-12 - Descriptive Statistics for Outcome Variables.. 25
Table 3-1 - Market and Technical Feedback Correlation Table ... 30
Table 3-2 - Market and Technical Feedback Correlation Table – without the outlier in

productivity ... 42
Table 3-3 - Summary of hypotheses on impact of market and technical feedback 44
Table 3-4 - Correlation Table For Separate Development Sub-Cycles 46
Table 3-5- Correlation Table For Separate Development Sub-Cycles – without the outliers

for number of sub-cycles, productivity and architectural effort 51
Table 3-6 Summary of hypotheses on the impact of separate development sub-cycles........ 53
Table 3-7 - Correlation Table For Variables to Evaluate Flexibility in Project Activities... 55
Table 3-8 - Correlation Table For Variables to Evaluate Flexibility in Project Activities –

without the outlier for Productivity.. 64
Table 3-9 Summary of hypothesis on flexibility in project activities................................... 64
Table 3-10 - Correlation Table For Code Reuse Measures ... 66
Table 3-11 Summary of hypothesis on impact of code reuse... 69
Table 3-12 - Correlation Table For Frequent Synchronization Measure............................ 71
Table 3-13 - Correlation Table For Frequent Synchronization Measure – without the outlier

for productivity .. 75
Table 3-14 Summary of hypotheses on impact of frequent synchronization 76
Table 3-15 - Correlation Table For Design and Code Review Measure 78
Table 3-16 Summary of hypotheses on impact of design and code review 82
Table 3-17- Correlation Table For Regression Test Measure ... 84
Table 3-18 Summary of hypothesis on impact of simple compile and link test vs. regression

testing .. 85
Table 3-19- Correlation Table For Developers and QA testing Code 87
Table 3-20 - Correlation Table For Developers and QA testing Code Measure – without the

outlier for productivity... 90
Table 3-21 Summary of hypotheses on impact of developers and QA staff testing code 91
Table 3-22 - Correlation Table For Emphasis of Testing.. 93
Table 3-23 Summary of hypotheses on impact of relative emphasis of testing 97
Table 3-24- Correlation Table For Final Product Stabilization Phase 99
Table 3-25 Summary of hypotheses on impact of final product stabilization phase 103

7

Table of Figures

Figure 1-1 - Sequential (Waterfall) Methodology... 11
Figure 1-2 - Iterative (Evolutionary) Methodology .. 12
Figure 1-3 - Overview of Synch-and-Stabilize Development Approach.......................... 14
Figure 3-1- scatter plot of % final product functionality implemented in first prototype vs.

% original features implemented in the final product (all projects).......................... 30
Figure 3-2 - scatter plot of % final product functionality implemented in first system

integration vs. % original features implemented in the final product (all projects).. 31
Figure 3-3 – scatter plot of % final product functionality implemented in first beta vs. %

original features implemented in the final product (all projects) 32
Figure 3-4 - % final product functionality implemented in first prototype Vs. Bugginess

(all projects)... 33
Figure 3-5 - % final product functionality implemented in first system integration Vs.

Bugginess (all projects)... 34
Figure 3-6 - % final product functionality implemented in first beta vs. Bugginess (all

projects)... 35
Figure 3-7 - % final product functionality implemented in first prototype vs. % schedule

estimation error (all projects) .. 36
Figure 3-8 - % final product functionality implemented in first system integration vs. %

schedule estimation error (all projects) ... 36
Figure 3-9 - % final product functionality implemented in first beta vs. % schedule

estimation error (all projects) .. 37
Figure 3-10 - % final product functionality implemented in first prototype vs. customer

satisfaction perception rating (all projects) ... 38
Figure 3-11 - % final product functionality implemented at first system Integration Vs.

customer satisfaction perception rating (all projects) ... 39
Figure 3-12 - % final product functionality implemented at first beta vs. customer

satisfaction perception rating (all projects) ... 39
Figure 3-13 - % final product functionality implemented at first prototype vs.

productivity (all projects) .. 40
Figure 3-14 - % final product functionality implemented at first system integration vs.

productivity (all projects) .. 40
Figure 3-15 - % final product functionality implemented at first beta vs. productivity (all

projects)... 41
Figure 3-16 - % final product functionality implemented at first beta vs. schedule &

budget performance perception rating (without outlier in productivity)................... 43
Figure 3-17 - Number of Sub-cycles Vs. % original features implemented in the final

product (all projects) ... 47
Figure 3-18 - Number of sub-cycles vs. bugginess (all projects)...................................... 48
Figure 3-19 - Number of sub-cycles vs. productivity (all projects) 48
Figure 3-20 - Architecture Effort vs. % original features implemented in the final product

(all projects)... 49
Figure 3-21 - Architecture Effort Vs. bugginess (all projects) ... 50
Figure 3-22 - Architecture Effort Vs. productivity (all projects) 50

8

Figure 3-23 - Number of sub-cycles vs. productivity - without the outliers for number of
sub-cycles, productivity and architectural effort... 52

Figure 3-24 - Architecture Effort Vs. % schedule estimation error - without the outliers
for number of sub-cycles, productivity and architectural effort................................ 52

Figure 3-25 - % elapsed time from project start till last major requirements change vs. %
original features implemented in the final product (all projects) 56

Figure 3-26 - % elapsed time from project start till last major functional spec change vs.
% original features implemented in the final product (all projects).......................... 56

Figure 3-27 - % elapsed time from project start till last major code addition vs. % original
features implemented in the final product (all projects) ... 57

Figure 3-28 - % elapsed time from project start till last major requirements change vs.
bugginess (all projects).. 58

Figure 3-29 - % elapsed time from project start till last major functional spec change vs.
bugginess (all projects).. 59

Figure 3-30 - % elapsed time from project start till last major code addition vs. bugginess
(all projects)... 60

Figure 3-31 - % elapsed time from project start till last major requirements change vs.
productivity (all projects) .. 61

Figure 3-32 - % elapsed time from project start till last major functional spec change vs.
productivity (all projects) .. 62

Figure 3-33 - % elapsed time from project start till last major code addition vs.
productivity (all projects) .. 63

Figure 3-34 - % code reuse vs. Bugginess (all projects)... 67
Figure 3-35 - % code reuse vs. % original features implemented in the final product (all

projects)... 67
Figure 3-36 - % code reuse vs. % schedule estimation error (all projects)....................... 68
Figure 3-37 - Build Frequency Vs. bugginess (all projects) ... 72
Figure 3-38 - Build Frequency Vs. customer satisfaction perception rating (all projects)72
Figure 3-39 - Build Frequency vs. % schedule estimation error (all projects) 73
Figure 3-40 - Build Frequency vs. productivity (all projects)... 74
Figure 3-41- Design Review done or not vs. % Original Features implemented in final

product (all projects) ... 79
Figure 3-42 - Design Review done or not Vs. Bugginess (all projects)............................ 79
Figure 3-43 - Design review vs. % schedule estimation error (all projects) 80
Figure 3-44 - Code Review done or not vs. Bugginess (all projects) 81
Figure 3-45 - Code Review done or not vs. % schedule estimation error (all projects) ... 82
Figure 3-46 - Running Regression Test or not Vs. Bugginess (all projects) 85
Figure 3-47 - % of total testing time developers tested their own code vs. bugginess (all

projects)... 88
Figure 3-48 - % of total testing time developers tested their own code vs. productivity (all

projects)... 88
Figure 3-49 - Testing effort vs. bugginess (all projects) ... 89
Figure 3-50 - Testing effort vs. customer satisfaction perception rating (all projects)..... 89
Figure 3-51 - % of total testing time spent in component testing vs. Bugginess (all

projects)... 94

9

Figure 3-52 - % of total testing time spent in integration testing vs. bugginess (all
projects)... 94

Figure 3-53 - % of total testing time spent in integration testing Vs. Schedule Estimation
Error (all projects) ... 95

Figure 3-54 - % of total testing time spent in system testing Vs. Bugginess (all projects)
... 95

Figure 3-55 - % of total testing time spent in system testing Vs. Customer satisfaction
perception rating (all projects) .. 96

Figure 3-56- % project duration spent in stabilization phase vs. % schedule estimation
error (all projects).. 100

Figure 3-57 - % project duration spent in stabilization phase vs. % Original features
implemented in final product (all projects) ... 100

Figure 3-58 - % project duration spent in stabilization phase vs. % final product
functionality in first prototype... 101

Figure 3-59 - % project duration spent in stabilization phase vs. % final product
functionality in first system integration .. 101

Figure 3-60 - % project duration spent in stabilization phase vs. % final product
functionality in first beta (all projects) .. 102

10

 Chapter 1: Introduction

1.1 Motivation:

Technologies, competitor moves, and user needs change so quickly that companies can no longer

plan specifically what they will do and then proceed through long sequential product-

development cycles. One approach is an iterative process that combines preliminary design goals

and some design details with continual feedback from users as well as outside partners during

development. Simultaneously, designers attempt to build and integrate components and

prototypes as the project moves forward. Companies can also try to influence the direction toward

which their products evolve by controlling architectures of their product platforms and by

working with producers of complementary products. Many firms, however, have been slow to

adopt the more iterative processes to product development. One reason may be that it is difficult

to control such a process and know when to stop iterating. As a result, the outcomes and dates are

less predictable than a sequential process, and there is likely to be less waste and rework in a

sequential process. There are also few detailed case studies or statistically documented studies on

how to manage an iterative development process effectively.

This research will study systematically the range of approaches that producers of software and

hardware for personal computers and, especially, Internet applications use for strategic planning

and product development.

Benefits:

New and deeper understanding of how firms can structure and manage iterative and cooperative

approaches to product development in rapidly changing markets

Define when an incremental approach to product development, as opposed to a more sequential

approach, is useful as well as difficult to introduce.

• Description of current s/w development processes

• Description of evolutionary development process

• Strategies

11

1.2 Existing methodologies and techniques common to software product development

1.2.1 Sequential (Waterfall) Methodology:

One of the software product development methodologies that was popular in the 70s and 80s is

the sequential (waterfall) methodology. The typical sequential (waterfall) product development

process consists of requirements phase, detailed design phase, module coding and testing phase,

integration testing phase and system testing phase1 as shown in figure 1-1.

“Sequential approach to software development may require very long periods of time because

they schedule work in sequence, not in parallel. Managers may also find it difficult to assess

progress accurately because they tend to schedule major testing very late-often too late in the

development cycle”2. Sequential approach has been shown to be extremely effective in stable

environments but its effectiveness has been questioned in uncertain and dynamic environments3.

1 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 192
2 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 262
3 Alan MacCormack, Roberto Verganti, and Marco Iansiti, “Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process”, Harvard Business School Working paper 99-118, 1999, p 4

Figure 1-1 - Sequential (Waterfall) Methodology

Requirements
Phase

Detailed Design
Phase

Module Coding
and Testing Phase

Integration
Testing Phase

System
Testing Phase

Product
Release

12

1.2.2 Iterative (Evolution) Methodology:

The challenge for product teams in uncertain and dynamic environments is that user needs for

many types of software are so difficult to understand that it is nearly impossible or unwise to try

to design the system completely in advance, especially as hardware improvements and customer

desires are constantly and quickly evolving4. In the iterative approach, the product development

cycle is divided into sub-cycles with each sub-cycle consisting of design, develop, build, test and

release activities.

This methodology emphasizes the ability to respond to new information from market (customer)

and technical (engineering) feedback for as long as possible during a development cycle5. The

iterative (evolutionary) approach to product development is favored because companies usually

build better products if they have the flexibility to change specifications and designs, get and

incorporate market (customer) and technical (engineering) feedback, and continually test

Figure 1-2 - Iterative (Evolutionary) Methodology

4 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 14
5 Alan MacCormack, Roberto Verganti, and Marco Iansiti, “Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process”, Harvard Business School Working paper 99-118, 1999, p 6

Specification

Final Product Stabilization Phase

Market (Customer) and Technical (Engineering)
feedback

Design

Develop

Integration
(Build/Test)

Release

source: Alan MacCormack, Roberto Verganti, Marco Iansiti, and Bo Kemp,
"Product Development Performance In Internet Software", Harvard Business

School, September 1997, p 6

13

components as the products are evolving. The product teams also ship preliminary versions of

their products, incrementally adding features or functionality over time in different product

releases6.

1.2.3 Synch and Stabilize technique:

Many product teams, in addition to the above-mentioned iterative (evolutionary) approach, also

put pieces of their products together frequently. This is useful to determine what works and what

does not, without waiting until the end of the project7. Figure 1-3 provides an overview of synch-

and-stabilize development approach.

6 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 14-15
7 Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995, p 15

14

Figure 1-3 - Overview of Synch-and-Stabilize Development Approach

Planning Phase: Define product vision, specification and
schedule.
__
* Vision Statement: Product and program management use
extensive customer input to identify and prioritize product
features.
* Specification Document: Based on vision statement, program
management and development group define feature functionality,
architectural issues, and component interdependencies.
* Schedule and Feature Team Formation: Based on
specification document, program management coordinates and
arranges feature teams that each contain approximately 1
program manager, 3-8 developers, and 3-8 testers (who work in
parallel 1:1 with developers)

Development Phase: Feature development in 3 or 4 sequential
subprojects that each results in a milestone release.
__
Program managers coordinate evolution of specification.
Developers design, code and debug. Testers pair up with
developers for continuous testing.
* Subproject I: Firs 1/3 of features: Most critical features and
shared components..
* Subproject II: Second 1/3 of features.
* Subproject III: Final 1/3 of features: Least critical features

Stabilization Phase: Comprehensive internal and external
testing, final product stabilization, and ship..
__
Program managers coordinate OEMs and ISVs and monitor
customer feedback. Developers perform final debugging and
code stabilization. Testers recreate and isolate errors.
* Internal Testing: Thorough testing of complete product within
the company.
* External TestingI: Thorough testing of complete product
outside the company by "beta" sites such as OEMs, ISVs, and
end-users.
* Release PreparationI: Prepare final release of "golden master"
diskettes and documentation for manufacturing.

source: Michael A. Cusumano and Richard W. Selby, Microsoft Secrets,
Free Press 1995, p 194

15

Chapter 2: Research Methodology

2.1 Questionnaire Development:

A questionnaire was developed and used to allow systematic collection of data. The team

involved in developing the questionnaire consisted of members from the academic community

and industry members (from Hewlett Packard), along with the author. The academic community

members are: Prof. Michael A. Cusumano (MIT Sloan School of Management) who is the thesis

advisor to the author, Prof. Chris F. Kemerer (Katz Graduate School of Business, University of

Pittsburgh), Prof. Alan MacCormack (Harvard Business School). The industry members from

Hewlett Packard are Bill Crandall and Guy Cox. Both Bill Crandall and Guy Cox represented

Process Consulting Group (PCG) within Hewlett Packard.

The objective of the questionnaire was to capture all pertaining information about a software

development project that would provide us with:

• Will provide the ability to benchmark development practices, at Hewlett Packard and

Agilent initially and subsequently (in future work) at a larger cross-section of companies

globally.

• Helps in identifying variables, which contribute most to performance providing insights

into approaches for rapid and flexible software product development.

Iterative (evolutionary) process was used to design and develop the questionnaire. The

questionnaire consists of two parts. Part 1 of the questionnaire was focused on project description

and environment, size of the project (with respect to development budget, development effort,

project schedule and lines of code), origins of the software code (code from previous version,

other products, off-the-shelf code, new code developed by the team), project team roles

composition, design and development process, testing and debugging process, relative emphasis

on different types of testing during the project, interaction with customers (a customer can be

internal or external).

Part 2 of the questionnaire was focused on various project activities (requirements phase,

architectural and functional design phase, detailed design and development phase, and integration

and system testing phase), product development methodologies (sequential (waterfall), iterative

(evolutionary) and synch-and-stabilize approach), project performance metrics (financial

16

performance, market performance, schedule performance, budget performance and software

quality).

2.2 Data collection:

In order to facilitate an efficient data collection process, the author created a website which would

allow the project team representatives to view the questionnaire and answer the questions. M.I.T

through its CWIS group provides its students the ability to create forms based questionnaire and

host it on web.mit.edu. After the project team representatives submit responses to the questions,

the information is received as email. M.I.T’s CWIS group also provides perl script, which

prepares the information received as email into tab-delimited records for inclusion into a database

or spreadsheet.

A more efficient process could be implemented by storing the responses directly in a database

after the project team representatives submit responses to the questions. The infrastructure

provided by M.I.T’s Web Communications Services (WCS) group did not allow database support

for the forms at the time the research was carried out. In future research work where there is a

potential for large number of responses, database support for the forms (questionnaire) should be

considered, if the infrastructure allowed.

Initial approach of the author was to import the data received into Microsoft Access® database.

The reason for this approach was to provide, the academic and industry members of the research

team, reports on the cases that were received. Due to the large number of variables being used to

collect the data, the author quickly ran into issues while designing report(s) to display data for

each case in its entirety. The author, realizing that using Access database may not provide

various statistical analysis methods that could be used to analyze the data collected, imported all

the data into SPSS® 10.0 application package.

The author used the SPSS® application to run all the statistical analysis except for a brief period

of time where another statistical analysis package, Data Desk® 6.0 was used. The author started

using Data Desk® because of certain usability features but realized that certain statistical

information (like significance level) for some analysis was not being provided. This drawback

led the author back to using the SPSS® package.

The industry members of the research team were instrumental in contacting various project team

representatives to participate in the research. The goal of the research team, at the beginning of

17

the research project, was to collect data from 40 projects. The initial expectation of the research

team was that the data collection would not be a problem since both industry members, Bill

Crandall and Guy Cox, were part of Hewlett Packard and knew and/or had contacts for large

number of projects. As the data collection process went live, the research team realized that the

data collection process was not going as expected. To spread the word and motivate potential

respondents (project team representatives) of the questionnaire, Prof. Michael A. Cusumano and

Prof. Alan MacCormack spoke at Hewlett Packard and Agilent internal seminars on software

product development. In addition to the above actions, by the research team, Bill Crandall also

provided $50 gift certificates (towards purchases at Amazon.com) to project team representatives

who participated in the research.

At the end of the data collection process, the research team received surveys for 27 projects. For

the data analysis, the author used 26 project surveys for the sample. The one project that was not

included in the data analysis is a very small project. The duration of this project was 1-week.

The project duration was too small to study various project activities. The smallest project that

was considered for data analysis in the sample was 4 months long.

After the data was collected and initial analysis was performed, the research team realized that

some additional information was required in the areas % of original features implemented in the

final product, bugs reported by the customer in the first 12 months after the product launch and

project performance ratings (customer satisfaction rating, schedule and budget performance

rating) as perceived by the project team members. Of the 26 projects in the sample, we received

responses from 22 project teams for the additional questionnaire.

2.3 Variables (Context, Process and Outcome):

For analysis, we studied the relation between several process variables and the outcome variables.

Project Outcome

Project Context Project Process

Project Outcome

Project Context Project Process

18

2.3.1 Some of the contexts variables available from the research data:

• Type of Software developed:

- Systems software

- Application software

- Embedded software

• Software developed for:

- External customers

- Internal customers

• New product development or extension of current product functionality

- < 50% of code reuse from a previous project is assumed to be new product

• Project size:

- Lines of code (LOC)

- Project duration

- Project budget

- Effort in person years

• Team Composition:

- Development resources

- Testing resources

2.3.2 Some of the process variables available from the research data:

• User Orientation

19

- How early were the prototypes (with respect to functionality)

- How early were the system integrations (with respect to functionality)

- How early were the betas (with respect to functionality)

• Number of Sub-cycles

• Frequency of synchronization (Build frequency)

• Reviews:

- Design reviews

- Code reviews

• Build validation

- Simple compile and link tests Vs. Regression tests

• Testing and debugging

- Time spent by developers in testing Vs. Time spent by QA or testing staff

• Relative Emphasis of testing in a project

- % Of total testing time spent in Component testing, % of total testing time spent

in Integration testing, % of total testing time spent in System testing

• Testing Effort

• Flexibility of the process/project:

- How late into the project schedule were the requirements changing?

- How late into the project schedule was the team changing the design?

)/(resourcesavgTestingelopmentaverageDevcestingresourAverageTes +

20

- How late into the project was the team able to add new code?

• Length of the first sub-cycle (which is elapsed time from project start to first system

integration) – indication of time taken to implement the core/important functionality

(similar to what Tom Gilb has in the evolutionary approach – Juicy bits first principle)

• Architecture Effort:

• Amount of Code Reuse

2.3.3 Some of the outcome variables available from the research data:

• Productivity (LOC per person day): productivity is defined as new lines of code

developed per person day. To calculate this, total person years was used which includes

project managers, arch, developers, testers etc.

• % Schedule estimation error: is defined as

• Bugginess (Average number of bugs per million Lines of code reported per month during

the first 12 months after the system launch)

• Customer satisfaction Perception Rating: This variable is customer satisfaction rating as

perceived by the project team.

• Schedule and Budget performance Perception Rating: This variable is schedule and

budget performance rating as perceived by the project team.

• Financial return Perception Rating: This variable is a measure of financial return from

the project as perceived by the project team.

)/(ourcestestingrestdevelopmenesralresourcArchitectu +

)250*/(nYearsTotalPersoCodeNewLinesOf

nectduratioactualprojtionrojectduraestimatedpectdurtionactualproj /100*)(−

)*/()1000000*(CodeNewLinesOfnthsNumberOfMoByCustomergsreportedNumberOfBu

21

A 5-point scale was used to measure customer satisfaction perception rating, schedule and budget

performance perception rating and financial return perception rating, where 1= significantly

below expectations, 2=below, 3=met expectations, 4=above, 5=significantly above expectations.

2.4 Generic project description (size, complexity etc):

This section summarizes the data of projects used in the sample. Table 2-1 summarizes the raw

data for some of the context variables. The table shows the size of the projects in terms of actual

lines of code, new code developed for the project, project duration and project development and

testing resources.

Table 2-1 - Descriptive Statistics for Context Variables

Table 2-2 summarizes the various types of software in the sample. The different types of

software in the sample are application software, system software, embedded software and other

(projects with a combination of application, system and/or embedded software).

Variable Count Mean Median StdDev Min Max
Actual LOC 26 671306 160000 1.66E+06 1320 8.50E+06
Log(Actual LOC) 26 5.1819 5.20327 0.868566 3.12057 6.92942
New Code 26 368342 57369 1.32E+06 255 6.80E+06
Log(New Code) 26 4.69759 4.75859 0.93063 2.40654 6.83251

Total Development +
Testing Resources 25 11.612 6 14.2048 2 55
Total resources (in
person Years) 26 27.4192 9.5 39.5967 0.2 160
Project Duration 26 18.7692 14.5 11.0247 4 45

22

Table 2-2 - Breakdown of Sample by Software Type

Table 2-3 shows the sample breakdown or grouping by customer i.e., internal customer (use) and

external customer (use).

Table 2-3 - Projects Grouped by Usage

Another variable used for grouping the projects is based on whether it is a new product or a

product extension. A product extension is defined, as a project with percentage of code reuse

from a previous project is greater than 50%. The grouping is showed in table 2-4.

Table 2-4 - Projects Grouped by Project Type

S o f t w a r e T y p e C o u n t
A p p l i c a t i o n 8
S y s t e m 6
E m b e d d e d 5
O t h e r 7

G roup Count
External Use 18
Internal Use 8

G ro u p C o u n t
N e w P ro d u c t 1 8
P ro d u c t E x te n s io n s 8

23

Tables 2-5, 2-6, 2-7 provide descriptives for various process variables. The data for some of the

process variables are derived (or calculated) from the raw data provided by the project teams.

Table 2-5 - Descriptive Statistics for Process Variables

Table 2-6 - Descriptive Statistics for Process Variables

Variable Count Mean Median StdDev Min Max
Requirements Phase
(months) 26 7.69231 5.5 7.13733 0 24

Design Phase (months) 26 10.9615 7.5 8.90609 0 33
Development Phase
(months) 26 11.1538 8 8.66576 2 30
Integration Phase
(months) 26 6.88462 5.5 7.33936 1 37
Stabilization Phase
(months) 26 2.40385 2 2.8285 0 13
Number of Betas 26 2.61538 2 2.46701 0 10

Architectural Effort 25 0.295969 0.2 0.276657 0.02 1
% code reuse 26 0.603077 0.625 0.246021 0 0.9

Variable Count Mean Median StdDev Min Max
Developers testing their
code (as % of total
testing time) 26 0.529615 0.5 0.302793 0.07 1
QA staff testing code
(as % of total testing
time) 24 0.490833 0.5 0.278223 0 0.93
Component Testing (%
of total testing time) 26 0.313462 0.25 0.232189 0 0.85
Integration Testing (%
of total testing time) 25 0.266 0.2 0.153921 0 0.6
System Testing (% of
total testing time) 26 0.426923 0.4 0.239262 0.1 1
Testing Effort 25 0.252893 0.225 0.145212 0 0.5

24

Table 2-7 - Descriptive Statistics for Process Variables

Table 2-8 provides a grouping of projects based on their build frequency. The other category

includes projects with weekly, bi-weekly and monthly build frequency. Table 2-9 summarizes

projects that have performed regression tests after developers checked changed or new code into

the project build. Table 2-10 provides a breakdown of projects, which performed design reviews,

and the projects that did not perform design review. Table 2-11 provides a breakdown of

projects, which performed code reviews, and the projects that did not perform code review.

Table 2-8 - Summary of Build Frequency

Table 2-9 - Projects grouped by whether Regression Tests were performed or not

Variable Count Mean Median StdDev Min Max
% of Elapsed time at
first prototype 24 33.8989 25.8333 22.9054 4.54545 83.3333
% of Elapsed time at
first system integration 26 58.5214 59.7222 17.1573 25 93.3333
% of Elapsed time at
first beta 19 77.8108 81.8182 17.2383 30.4348 102.778
% of functionality in first
prototype 24 37.4167 36.5 25.2499 0 90
% of functionality at first
system integration 24 63.0417 63.5 20.6976 15 100
% of functionality in first
beta 25 91.8 95 7.04746 80 100

G roup C ount
D aily B uild 11
O ther 15

Group Count
Regression Tests Performed 17
Regression Tests Not Performed 9

25

Table 2-10 - Projects grouped by whether Design Review was done or not

Table 2-11 - Projects grouped by whether Code Review was done or not

Table 2-12 provides descriptives for some of the outcome variables. Bugginess, productivity and

% schedule estimation error are derived variables.

Table 2-12 - Descriptive Statistics for Outcome Variables

Since the sample set contained several types of projects, to evaluate the significance of the mean

with respect to the mean of the various groupings of the project, an analysis of variance

(ANOVA) was performed. Analysis of variance was performed for the following process

variables:

• % Functionality in first prototype

• % Functionality in first system integration

• % Functionality in first beta

Group Count
Design Review Done 22
Design Review Not Done 4

Group Count
Code Review Done 14
Code Review Not Done 12

Variable Count Mean Median StdDev Min Max
% of original features
implemented in the final
product 22 82.0455 90 19.2984 40 100
Schedule and Budget
Performance Perception
Rating 22 2.5 2 0.859125 1 4
Customer Satisfaction
Perception Rating 22 3.5 3.5 0.672593 2 5
Financial Return
Perception Rating 20 3.55 3 0.998683 1 5
Bugginess 21 464.755 12.5 2032.2 0 9333.33
Productivity 26 548.512 99.0933 2204.64 0.96 11333.3
% Schedule Estimation
Error 26 73.932 40.6593 86.2291 0 340

26

• % Elapsed time till last major requirements change

• % Elapsed time till last major functional specification change

• % Elapsed time till last major code addition

• Architectural effort

• % Code reuse

• % Total testing time developers spent testing their own code

• % Total testing time QA staff spent testing code

• % Total testing time spent in component testing

• % Total testing time spent in integration testing

• % Total testing time spent in system testing

The ANOVA was performed for the above process variables under three separate groupings and

they are:

• Software Use (Internal Use Vs. External Use)

• Software Type (Application S/W, System S/W, Embedded S/W and Others –

combination of application, system and embedded software)

• New Products Vs. Product Extensions

Based on the ANOVA reports, it appears that in all cases (except % Code Reuse) the process

variables are independent of how the projects are grouped. Appendix-A contains the ANOVA

reports for the above-mentioned variables under the project groupings mentioned earlier.

27

Chapter 3: Data Analysis

3.1 Hypothesis and data analysis:

Since the process variables were independent of project groupings, in the data analysis to evaluate

various hypotheses, the data for the entire sample set was used as one group. Most of the

hypothesis constructs relationship between process variables and outcome variables. The one

exception is the ‘percentage code reuse’ variable. As part of the data analysis, Spearman Rank

Correlation analysis was performed to evaluate the hypotheses. The hypotheses and analysis is

focused on incremental (evolutionary) feature development, frequent synchronization and testing.

To address the above-mentioned topics, detailed analysis was performed in the following areas:

Incremental (evolutionary) feature development:

• Market (customer/user) feedback. The feedback is based on the final product

functionality available in the product. This is evaluated at two key milestones, which are

the first prototype and first beta8.

• Technical feedback. This is the feedback provided by the engineers (development and

build). The feedback is based on the final product functionality available in the product.

This is evaluated at first system integration milestone9.

• Impact of separate development sub-cycles.

• Flexibility in project activities.

• Code reuse.

Frequent synchronization:

• Frequent synchronization.

8 Alan MacCormack, Roberto Verganti, and Marco Iansiti, “Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process”, Harvard Business School Working paper 99-118, 1999, pp
14-15
9 Alan MacCormack, Roberto Verganti, and Marco Iansiti, “Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process”, Harvard Business School Working paper 99-118, 1999, pp
14-15

28

Testing:

• Design and Code reviews.

• Testing (simple compile and link Vs. regression tests).

• Impact of developers and QA staff testing code.

• Relative emphasis of testing (component testing, integration testing, system testing).

• Impact of Final stabilization phase.

3.2 Impact Of Market and Technical Feedback

3.2.1 Hypothesis 1:

Obtaining market (first prototype and first beta) and technical (first system integration) feedback

early in the project, with respect to functionality, allows the team to incorporate more feature

changes based on the market and technical feedback. Thus the project is more flexible. This

results in:

• Increased feature evolution

• Increased customer satisfaction

3.2.2 Hypothesis 2:

Incorporating more market and technical feedback, increases the schedule estimation error (the

obvious tradeoff is that as less feedback is incorporated, the schedule estimation error

decreases).

3.2.3 Hypothesis 3:

As projects obtain technical feedback early in the project, the bugginess of the product will

decrease.

29

3.2.4 Hypothesis 4:

As projects obtain early market feedback, the bugginess could increase as the team makes

changes to incorporate the market feedback.

3.2.5 Hypothesis 5:

As projects obtain feedback early in the project, the productivity improves since it reduces

potential rework (because the amount of functionality implemented is less).

The process variables used to evaluate market and technical feedbacks are:

• % Functionality implemented in first prototype

• % Functionality implemented at first system integration

• % Functionality implemented in first beta

The outcome variables used to evaluate the impact of market and technical feedbacks are:

• % Original features implemented in the final product

• Productivity

• % Schedule estimation error

• Customer satisfaction perception rating

30

3.2.6 Data Analysis to evaluate impact of market and technical feedback

Table 3-1 - Market and Technical Feedback Correlation Table

Figure 3-1- scatter plot of % final product functionality implemented in first
prototype vs. % original features implemented in the final product (all projects)

1.000 .297 -.225 -.284 .272 -.049 .223 .348 .674**
. .204 .327 .212 .233 .834 .345 .133 .001

21 20 21 21 21 21 20 20 20
.297 1.000 -.022 -.056 .222 .305 .672** .134 .363
.204 . .927 .816 .348 .191 .002 .583 .127

20 20 20 20 20 20 19 19 19
-.225 -.022 1.000 .191 -.198 -.052 -.025 .039 -.471*
.327 .927 . .361 .390 .822 .908 .859 .020

21 20 25 25 21 21 23 23 24

-.284 -.056 .191 1.000 -.385 -.135 -.266 -.080 -.260
.212 .816 .361 . .085 .561 .221 .716 .220

21 20 25 25 21 21 23 23 24
.272 .222 -.198 -.385 1.000 .032 .191 .128 .429
.233 .348 .390 .085 . .891 .420 .590 .059

21 20 21 21 21 21 20 20 20
-.049 .305 -.052 -.135 .032 1.000 .288 -.537* -.194
.834 .191 .822 .561 .891 . .218 .015 .414

21 20 21 21 21 21 20 20 20
.223 .672** -.025 -.266 .191 .288 1.000 .476* .482*
.345 .002 .908 .221 .420 .218 . .022 .020

20 19 23 23 20 20 23 23 23
.348 .134 .039 -.080 .128 -.537* .476* 1.000 .499*
.133 .583 .859 .716 .590 .015 .022 . .015

20 19 23 23 20 20 23 23 23
.674** .363 -.471* -.260 .429 -.194 .482* .499* 1.000
.001 .127 .020 .220 .059 .414 .020 .015 .

20 19 24 24 20 20 23 23 24

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% final product
functionality in first
prototype

% final product
functionality in first
system integration

% final product
functionality in first
beta

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% final
product

functionali ty
in first

prototype

% final
product

functionali t
y in first
system

integration

% final
product

functionali ty
in first beta

Correlation is significant at the .01 level (2-tai led).**.

Correlation is significant at the .05 level (2-tai led).*.

% Final Product Functionality in First Prototype

100806040200

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

31

Correlation between % functionality implemented in first prototype and % original features

implemented in the final product: 0.223. The correlation between these two variables is not

statistically significant. The idea of having an early prototype, with respect to functionality, is to

obtain and be able to incorporate customer/user feedback into the product. The lack of

statistically significant correlation could be because the project teams may have implemented the

market feedback in the project (with respect to functionality) and therefore final product

functionality might be different than the original features that the product team started with.

Potentially, the correlation may be significant if the projects completed the prototype later in the

project (with respect to functionality) i.e. potentially implementing more original functionality

before releasing the prototype.

Correlation between % functionality implemented in first system integration and % original

features implemented in the final product: 0.348. The correlation between these two variables is

statistically not significant. . The idea of having early system integration, with respect to

functionality, is to obtain and be able to incorporate technical (engineering) feedback into the

product. The lack of statistically significant correlation could be because the project teams may

have incorporated the technical feedback and therefore final product functionality might be

Figure 3-2 - scatter plot of % final product functionality
implemented in first system integration vs. % original features

implemented in the final product (all projects)

% Final Product Functionality in First System Integration

120100806040200

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

32

different than the original features that the product team started with. Potentially, the correlation

may be significant if the projects integrated the system later in the project (with respect to

functionality) i.e. potentially implementing more original functionality before integrating the

system.

Correlation between % functionality implemented in first beta and % original features

implemented in the final product: 0.674. The Correlation between the two variables is

statistically significant at the 0.01 level (two-tailed). The correlation is significant because the

first beta is released late in the project with respect to functionality.

Figure 3-3 – scatter plot of % final product functionality implemented in first beta vs. %
original features implemented in the final product (all projects)

% Final Product functionality in First Beta

110100908070

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

33

Correlation between % final product functionality implemented in first prototype and bugginess:

0.672. The Correlation between the two variables is statistically significant at the 0.01 level (two-

tailed). As more functionality is implemented in the first prototype it becomes difficult for the

project team to incorporate market feedback and if the project team does incorporate the market

feedback, then the team potential has created an environment to introduce more bugs due to the

rework.

Figure 3-4 - % final product functionality implemented in first prototype Vs. Bugginess (all projects)

% Final product functionality implemented in First Prototype

100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

34

Correlation between % final product functionality implemented in first system integration and

bugginess: 0.134. The correlation between these two variables is statistically not significant. The

possible reason for lack of statistically significant correlation between these two variables could

be because bugginess is a measure of bugs reported by the end user and since the end user sees a

system which has been integrated. The correlation potentially could be significant if based on the

issues faced by the project team to integrate the system and the team ends up changing the

functionality already implemented to resolve the integration issues. This situation could

potentially lead to more bugs in the product due to the rework.

Figure 3-5 - % final product functionality implemented in first system integration Vs. Bugginess (all projects)

% Final Product Functionality in First System Int.

120100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

35

Correlation between % final product functionality implemented in first beta and bugginess: 0.363.

The correlation between these two variables is statistically not significant. The correlation is

potentially statistically not significant because the first beta, for the projects, is released late in the

project with respect to functionality. This may result in the project team not implementing the

market feedback and if there is no rework then the team has possibly avoided opportunities to

introduce bugs due to rework.

Figure 3-6 - % final product functionality implemented in first beta vs. Bugginess (all projects)

% Final Product Functionality in First Beta

110100908070

Bu
gg

in
es

s

100

80

60

40

20

0

36

Correlation between % final product functionality implemented in first prototype and % schedule

estimation error: -0.025. The correlation between these two variables is statistically not

significant. To better understand why this correlation is statistically not significant, it would be

helpful to understand the feature changes, due to customer feedback that were implemented

compared to the original product functionality that the team started with.

Correlation between % final product functionality implemented in first system integration and %

schedule estimation error: 0.039. The correlation between these two variables is statistically not

Figure 3-7 - % final product functionality implemented in first prototype vs. % schedule estimation error
(all projects)

Figure 3-8 - % final product functionality implemented in first system
integration vs. % schedule estimation error (all projects)

% Final Product Functionality in First Prototype

100806040200

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

% Final Product Functionality in First System Integration

120100806040200

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

37

significant. One possible reason that this correlation is not statistically significant could be that

the product did not require any rework, irrespective of the functionality implemented at the time

of first system integration.

Correlation between % final product functionality implemented in first beta and % schedule

estimation error: -0.471. The Correlation between the two variables is statistically significant at

the 0.05 level (two-tailed). The possible reason for the correlation to be significant could be that

as the team implements more functionality in first beta, the team probably will be less inclined to

incorporate customer feedback thereby reducing schedule estimation error.

Figure 3-9 - % final product functionality implemented in first
beta vs. % schedule estimation error (all projects)

% Final Product functionality implemented in First Beta

110100908070

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

38

Correlation between % final product functionality implemented in first prototype and customer

satisfaction perception rating: 0.288. The correlation between these two variables is statistically

not significant. Even though this correlation is statistically not significant, it is a very interesting

correlation i.e. as the % final product functionality implemented in first prototype is increasing so

does the customer satisfaction perception rating. The basic idea of iterative (evolutionary)

approach is the ability to obtain and incorporate customer feedback as the customer needs evolve.

Since majority of the projects that are part of the sample are hardware dependent, it might be

necessary to implement more functionality in first prototype to demonstrate the concepts to the

customers. This could potentially lead to higher customer satisfaction perception rating.

Figure 3-10 - % final product functionality implemented in first prototype vs. customer satisfaction
perception rating (all projects)

% Final Product Functionality in First Prototype

100806040200

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

39

Correlation between % final product functionality implemented at first system integration and

customer satisfaction perception rating: -0.537. The Correlation between the two variables is

statistically significant at the 0.05 level (two-tailed).

Correlation between % final product functionality implemented at first beta and customer

satisfaction perception rating: -0.194. The correlation between these two variables is statistically

Figure 3-11 - % final product functionality implemented at first system Integration Vs. customer
satisfaction perception rating (all projects)

Figure 3-12 - % final product functionality implemented at first beta
vs. customer satisfaction perception rating (all projects)

% Final Product Functionality implemented in First System Int.

120100806040200

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

% Final Product Functionality in First Beta

110100908070

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

40

not significant. The correlation between these two variables is negative and as more functionality

is implemented in the first beta it becomes less likely that the project team would incorporate the

customer feedback from the beta resulting in a product with unmet customer needs.

Correlation between % final product functionality implemented at first prototype and

productivity: -0.266. The correlation between these two variables is statistically not significant.

The correlation suggests that as the % final product functionality implemented at first prototype is

increasing the productivity of the project team is decreasing. This could be due to more rework

as a result of customer feedback on the functionality that was implemented.

Figure 3-13 - % final product functionality implemented at first prototype vs. productivity (all
projects)

Figure 3-14 - % final product functionality implemented at first system integration vs. productivity
(all projects)

% Final Product Functionality in First Prototype

100806040200

Pr
od

uc
tiv

ity
12000

10000

8000

6000

4000

2000

0

% Final Product Functionality in First System Integration

120100806040200

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

41

Correlation between % final product functionality implemented at first system integration and

productivity: -0.080. The correlation between these two variables is statistically not significant.

The two variables have very little correlation and this may be due to smooth system integration or

no major system integration issues that require rework.

Correlation between % final product functionality implemented at first beta and productivity: -

0.260. The correlation between these two variables is statistically not significant. As can be seen

from the sample data the first beta was released late in the project, with respect to functionality

and the project teams may not be in a position to incorporate any significant customer feedback

resulting in no or very little rework. As the team does not spend any time doing rework, the team

can incorporate remaining functionality resulting in new code. Since productivity is being

measured as a function of total lines of code, the above mentioned scenario might result in higher

productivity.

3.2.7 Sensitivity Analysis:

In our data analysis to evaluate hypothesis 1 through hypothesis 5, there are some instances where

some outlier cases were observed. In order to study the effect of these outlier cases on the

analysis, sensitivity analysis was performed. The correlation analysis was performed again with

the data after filtering out the outlier case(s). The following correlation table (Table 3-2) contains

the analysis without the outlier case(s). The scatter graph (Figure 3-16) following the table is

provided for the variables with statistically significant correlation.

Figure 3-15 - % final product functionality implemented at first beta vs. productivity (all projects)

% Final Product Functionality in First Beta

110100908070

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

42

Table 3-2 - Market and Technical Feedback Correlation Table – without the outlier in
productivity

1.000 .275 -.250 -.255 .301 -.071 .194 .373 .639**
. .255 .288 .277 .197 .767 .425 .116 .003

20 19 20 20 20 20 19 19 19
.275 1.000 -.032 .039 .278 .245 .664** .198 .357
.255 . .898 .875 .249 .311 .003 .432 .146

19 19 19 19 19 19 18 18 18
-.250 -.032 1.000 .226 -.190 -.060 -.055 .022 -.493*
.288 .898 . .287 .423 .802 .809 .923 .017

20 19 24 24 20 20 22 22 23

-.255 .039 .226 1.000 -.496* -.071 -.202 -.124 -.234
.277 .875 .287 . .026 .765 .367 .583 .283

20 19 24 24 20 20 22 22 23
.301 .278 -.190 -.496* 1.000 .072 .247 .112 .464*
.197 .249 .423 .026 . .762 .308 .647 .046

20 19 20 20 20 20 19 19 19
-.071 .245 -.060 -.071 .072 1.000 .255 -.545* -.222
.767 .311 .802 .765 .762 . .292 .016 .361

20 19 20 20 20 20 19 19 19
.194 .664** -.055 -.202 .247 .255 1.000 .518* .491*
.425 .003 .809 .367 .308 .292 . .013 .020

19 18 22 22 19 19 22 22 22
.373 .198 .022 -.124 .112 -.545* .518* 1.000 .521*
.116 .432 .923 .583 .647 .016 .013 . .013

19 18 22 22 19 19 22 22 22
.639** .357 -.493* -.234 .464* -.222 .491* .521* 1.000
.003 .146 .017 .283 .046 .361 .020 .013 .

19 18 23 23 19 19 22 22 23

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% final product
functionality in first
prototype

% final product
functionality in first
system integration

% final product
functionality in first
beta

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% final
product

functionali ty
in first

prototype

% final
product

functionali t
y in first
system

integration

% final
product

functionali ty
in first beta

Correlation is significant at the .01 level (2-tai led).**.

Correlation is significant at the .05 level (2-tai led).*.

43

Correlation between % final product functionality implemented at first beta and schedule &

budget performance perception rating: 0.464. The Correlation between the two variables is

statistically significant at the 0.05 level (two-tailed). As has been mentioned earlier, even without

the outlier if the % final product functionality implemented at first beta is high then that results in

smaller schedule estimation error or better schedule performance perception rating.

Figure 3-16 - % final product functionality implemented at first beta vs. schedule & budget
performance perception rating (without outlier in productivity)

% Final Product Functionality in First Beta

110100908070

Sc
he

du
le

 &
 B

ud
ge

t P
er

f.
Pe

rc
ep

tio
n

R
at

in
g

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

.5

44

3.2.8 Observations based on the data analysis for market and technical feedback:

Hypothesis

Number

Summary of hypothesis Observations

1 Obtaining early market and technical feedback

results in increased feature evolution and

customer satisfaction.

Increased feature evolution is

statistically significant with

functionality in first beta.

Early technical feedback and

customer satisfaction

perception rating are

significantly correlated.

2 Incorporating more market and technical

feedback increases schedule estimation error.

Schedule estimation error is

statistically significant with %

of functionality in final

product at first beta.

3 Obtaining early technical feedback reduces

bugginess

The relation between these

two variables is statistically

not significant.

4 Bugginess increases as project teams implement

early market feedback

Bugginess is statistically

significant with functionality

in first prototype.

5 Productivity increases due to reduced rework as

project teams obtain early feedback

The relation between these

two variables is statistically

not significant.

Table 3-3 - Summary of hypotheses on impact of market and technical feedback

• The analysis validates our hypothesis that as the projects obtain feedback early in the

project (with respect to functionality), there is more feature evolution. As can be seen

from the analysis, as the % final product functionality at key milestones (first prototype,

45

system integration and first beta) increases, so does the % of original features

implemented in the final product, making it more inflexible and reducing the ability to

incorporate market and technical feedback

• For customer satisfaction perception rating, it can be seen that our hypothesis is

validated. As can be seen from the analysis, as the % final product functionality in first

system integration increases, the customer satisfaction perception rating decreases. This

could be because the customer has less influence in the features that will be available in

the final product.

• From the analysis we observe that there is very little correlation of % functionality at first

prototype and system integration with schedule estimation error. Our hypothesis holds

true for % functionality in first beta, as the functionality is increasing, schedule

estimation error is decreasing.

3.3 Impact of Separate Development Sub-Cycles

3.3.1 Hypothesis 6:

Dividing the development phase of the project into separate development sub-cycles that built

and tested a subset of the final product functionality, allows the team to be:

• More flexible (increased feature evolution)

• Deliver a high quality product

• Improves the productivity of the team (section 14.12 The productivity of evolutionary

delivery, Principles Of Software Engineering Management, Tom Gilb, 1988).

3.3.2 Hypothesis 7:

A high level architectural specification (without implementation details) provides for more

flexible product development while detailed architectural specification (lot of rules) tend to create

a rigid environment (chapter 4, page 244 - Microsoft Secrets, Michael Cusumano and Richard

Selby, 1998).

The process variables used to evaluate the impact of separate development sub-cycles are:

46

• Number of sub-cycles

• Architecture effort

The outcome variables used to evaluate the impact of separate development sub-cycles are:

• % Original features implemented in the final product

• Bugginess

• Productivity

3.3.3 Data Analysis to evaluate the impact of separate development sub-cycles

Table 3-4 - Correlation Table For Separate Development Sub-Cycles

1.000 .297 -.225 -.284 .272 -.049 -.165 .475*
. .204 .327 .212 .233 .834 .476 .029

21 20 21 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 -.119 .068
.204 . .927 .816 .348 .191 .618 .775

20 20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 -.028 .233
.327 .927 . .361 .390 .822 .895 .263

21 20 25 25 21 21 25 25

-.284 -.056 .191 1.000 -.385 -.135 .334 -.227
.212 .816 .361 . .085 .561 .103 .276

21 20 25 25 21 21 25 25
.272 .222 -.198 -.385 1.000 .032 -.094 .199
.233 .348 .390 .085 . .891 .685 .388

21 20 21 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 .047 .033
.834 .191 .822 .561 .891 . .839 .889

21 20 21 21 21 21 21 21
-.165 -.119 -.028 .334 -.094 .047 1.000 -.408*
.476 .618 .895 .103 .685 .839 . .043

21 20 25 25 21 21 25 25
.475* .068 .233 -.227 .199 .033 -.408* 1.000
.029 .775 .263 .276 .388 .889 .043 .

21 20 25 25 21 21 25 25

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivi ty

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Number Of
Subcycles

Architectural
Effort

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivi ty

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating
Number Of
Subcycles

Architectura
l Effort

Correlation is significant at the .05 level (2-tai led).*.

47

Correlation between number of sub-cycles and % original features implemented in the final

product: -0.165. The correlation between these two variables is statistically not significant. %

Original features implemented in the final product could mean that either the project team has not

implemented all the functionality due to schedule constraints or the project team may have

incorporated feature changes as a result of customer and technical feedback. Further information

about the type and/or amount of changes incorporated in the product would be helpful in

understanding this relation better.

Figure 3-17 - Number of Sub-cycles Vs. % original features implemented in the final product (all
projects)

Number Of Sub-Cycles

403020100

%
 O

rig
in

al
 F

ea
tu

re
s

Im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

48

Correlation between number of sub-cycles and bugginess: -0.119. The correlation between these

two variables is statistically not significant. One of the possible reasons that we see a negative

correlation between these two variables could be that as the project teams divide their project

development cycle into more sub-cycles, it provides them with the opportunity to discover bugs

and correct them as they test the new code at the end of each sub-cycle. This could be a reason

why the end user is encountering low number of bugs after the final product release.

Correlation between number of sub-cycles and productivity: 0.334. The correlation between

these two variables is statistically not significant. As can be seen from the scatter plot in figure 3-

19, there is an outlier case. Sensitivity analysis was performed by filtering out the outlier case

Figure 3-18 - Number of sub-cycles vs. bugginess (all projects)

Figure 3-19 - Number of sub-cycles vs. productivity (all projects)

Number Of Sub-Cycles

403020100

Bu
gg

in
es

s

100

80

60

40

20

0

Number Of Sub-Cycles

403020100

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

49

and it is seen that the correlation becomes statistically significant, as shown later in this section

(figure 3-23).

Correlation between architecture effort and % original features implemented in the final product:

0.475. The Correlation between these two variables is statistically significant at the 0.05 level

(two-tailed). One of the reasons for this correlation could be that as the project team spends more

effort in creating detailed architecture based on the original specifications, thus creating more

rules on how the product will be implemented. This potentially leaves little room for the project

team to incorporate customer feedback; therefore the team would end up implementing more of

the original features.

Figure 3-20 - Architecture Effort vs. % original features implemented in the final product (all
projects)

Architectural Effort

1.21.0.8.6.4.20.0

%
 O

rig
in

al
 F

ea
tu

re
s

Im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

50

Correlation between architecture effort and bugginess: 0.068. The correlation between these two

variables is statistically not significant. The positive correlation could be because of rework by

the project team after spending a lot off effort on architecture, which may create an environment

of inflexibility as far as incorporating market feedback into the product. By trying to rework the

implementation based on market feedback, with lot off implementation rules (due to detailed

architecture) could result in increased bugs.

Figure 3-21 - Architecture Effort Vs. bugginess (all projects)

Figure 3-22 - Architecture Effort Vs. productivity (all projects)

Architectural Effort

1.21.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

Architectural Effort

1.21.0.8.6.4.20.0

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

51

Correlation between architecture effort and productivity: -0.227. The correlation between these

two variables is statistically not significant. One of the reasons that could be influencing this

relation is the fact that if the project team spends lot off effort on architecture effort then they

could have designed clean interfaces between modules reducing the need for lot off new code

required for the modules to interact with each other. This has a direct bearing on the productivity

since it is measured in terms of lines of code.

3.3.4 Sensitivity Analysis:

In our data analysis to evaluate hypothesis 6 and hypothesis 7, there are some instances where

some outlier cases were observed for number of sub-cycles, productivity and architectural effort

variables. In order to study the effect of these outlier cases on the analysis, sensitivity analysis

was performed. The correlation analysis was performed again with the data after filtering out the

outlier case(s). The following correlation table (Table 3-4) contains the analysis without the

outlier case(s). The scatter graphs (Figure 3-23 and Figure 3-24) following the table are provided

for the variables with statistically significant correlation.

Table 3-5- Correlation Table For Separate Development Sub-Cycles – without the outliers for
number of sub-cycles, productivity and architectural effort

1.000 .340 -.234 -.002 .310 -.182 -.152 .390
. .198 .365 .992 .226 .486 .561 .122

17 16 17 17 17 17 17 17
.340 1.000 .038 .057 .133 .000 -.175 .161
.198 . .888 .833 .622 1.000 .516 .551

16 16 16 16 16 16 16 16
-.234 .038 1.000 .250 -.164 -.067 -.200 .444*
.365 .888 . .275 .529 .799 .385 .044

17 16 21 21 17 17 21 21

-.002 .057 .250 1.000 -.478 -.033 .448* -.141
.992 .833 .275 . .052 .900 .041 .543

17 16 21 21 17 17 21 21
.310 .133 -.164 -.478 1.000 -.105 -.071 .260
.226 .622 .529 .052 . .688 .787 .313

17 16 17 17 17 17 17 17
-.182 .000 -.067 -.033 -.105 1.000 -.051 .154
.486 1.000 .799 .900 .688 . .845 .554

17 16 17 17 17 17 17 17
-.152 -.175 -.200 .448* -.071 -.051 1.000 -.287
.561 .516 .385 .041 .787 .845 . .206

17 16 21 21 17 17 21 21
.390 .161 .444* -.141 .260 .154 -.287 1.000
.122 .551 .044 .543 .313 .554 .206 .

17 16 21 21 17 17 21 21

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivi ty

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Number Of
Subcycles

Architectural
Effort

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating
Number Of
Subcycles

Architectura
l Effort

Correlation is significant at the .05 level (2-tai led).*.

52

Correlation between number of sub-cycles and productivity: 0.448. The Correlation between

these two variables is statistically significant at the 0.05 level (two-tailed). This essentially

validates our hypothesis.

Figure 3-23 - Number of sub-cycles vs. productivity - without the outliers for number of sub-cycles,
productivity and architectural effort

Figure 3-24 - Architecture Effort Vs. % schedule estimation error - without the outliers for number
of sub-cycles, productivity and architectural effort

Number Of Sub-Cycles

3020100

Pr
od

uc
tiv

ity

700

600

500

400

300

200

100

0

Architectural Effort

.7.6.5.4.3.2.10.0

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

53

Correlation between architecture effort and % schedule estimation error: 0.444. The Correlation

between these two variables is statistically significant at the 0.05 level (two-tailed). This seems

to be an interesting correlation and one of the possible reasons is that if the project team spends

too much effort in creating a detailed architecture thus creating lot off rules on how to implement

the product. By creating a detailed architecture instead of high-level architecture the product

team may have to rework the detailed architecture and the product implementation as they obtain

customer feedback. This in turn could further delay the product launch thus increasing the

schedule estimation error.

3.3.5 Observations based on the data analysis for separate development sub-cycles:

Hypothesis

Number

Summary of hypothesis Observations

6 Dividing the development phase into sub-cycles

allows the team to be more flexible, deliver high

quality product and improve the productivity.

The correlation between sub-

cycles and various outcome

variables is statistically not

significant.

7 High-level architecture specification provides

for more flexible product development measured

in terms of feature evolution.

The relation between

architectural effort and % of

features implemented in final

product is statistically

significant.

Table 3-6 Summary of hypotheses on the impact of separate development sub-cycles

• From the analysis we observe that as the architecture effort is increasing so is the % of

original features implemented in the final product. This validates our hypothesis.

54

3.4 Flexibility in Project Activities

3.4.1 Hypothesis 8:

Evolutionary development also allows great flexibility in project activities. This allows the

project team to work in uncertain environment with requirements changes, design changes and

consequently implement new features (add new code) very late in the product development cycle.

As we mentioned earlier, flexible projects have high feature evolution.

The process variables that are used to measure the flexibility in project activities are:

• % Elapsed project duration till the last major requirement changes

• % Elapsed project duration till the last major functional design changes

• % Elapsed project duration till the last major code addition for new features (excluding

any bug fixes)

Some of the outcome variables that we will study in relation to the process variables are:

• % Original features implemented in the final product

• Bugginess

• Productivity

55

3.4.2 Data analysis to evaluate flexibility in project activities

Table 3-7 - Correlation Table For Variables to Evaluate Flexibility in Project Activities

1.000 .297 -.225 -.284 .272 -.049 -.547* -.439 -.254
. .204 .327 .212 .233 .834 .012 .060 .266

21 20 21 21 21 21 20 19 21
.297 1.000 -.022 -.056 .222 .305 -.068 .175 .157
.204 . .927 .816 .348 .191 .783 .487 .510

20 20 20 20 20 20 19 18 20
-.225 -.022 1.000 .191 -.198 -.052 .127 -.038 .322
.327 .927 . .361 .390 .822 .553 .864 .117

21 20 25 25 21 21 24 23 25

-.284 -.056 .191 1.000 -.385 -.135 -.086 .017 .062
.212 .816 .361 . .085 .561 .690 .937 .768

21 20 25 25 21 21 24 23 25
.272 .222 -.198 -.385 1.000 .032 -.162 -.040 .099
.233 .348 .390 .085 . .891 .495 .872 .668

21 20 21 21 21 21 20 19 21
-.049 .305 -.052 -.135 .032 1.000 .373 .113 .259
.834 .191 .822 .561 .891 . .105 .646 .258

21 20 21 21 21 21 20 19 21
-.547* -.068 .127 -.086 -.162 .373 1.000 .596** .135
.012 .783 .553 .690 .495 .105 . .003 .530

20 19 24 24 20 20 24 23 24
-.439 .175 -.038 .017 -.040 .113 .596** 1.000 .317
.060 .487 .864 .937 .872 .646 .003 . .141

19 18 23 23 19 19 23 23 23
-.254 .157 .322 .062 .099 .259 .135 .317 1.000
.266 .510 .117 .768 .668 .258 .530 .141 .

21 20 25 25 21 21 24 23 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and Budget
Perf. perception
rating

Customer
satisfaction
perception rating

% Elapsed prj
duration ti ll last major
req change

% Elapsed prj
duration ti ll last major
func spec change

% Elapsed prj
duration ti ll last major
code addtn.

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivi ty

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% Elapsed
prj duration

ti ll last
major req
change

% Elapsed
prj duration

ti ll last
major func

spec
change

% Elapsed
prj duration

ti l l last
major code

addtn.

Correlation is significant at the .05 level (2-tailed).*.

Correlation is significant at the .01 level (2-tailed).**.

56

Correlation between % elapsed time from project start till last major req. change and % original

features implemented in the final product: -0.547. The Correlation between these two variables is

statistically significant at the 0.05 level (two-tailed). One of the obvious reasons for this is that as

the product requirements change late into the project, either due to technological reasons or

customer feedback, there will be significant feature evolution.

Correlation between % elapsed time from project start till last major functional specification

change and % original features implemented in the final product: -0.439. The correlation

Figure 3-25 - % elapsed time from project start till last major requirements change vs. % original
features implemented in the final product (all projects)

Figure 3-26 - % elapsed time from project start till last major functional spec change vs. % original
features implemented in the final product (all projects)

% Elapsed Project duration till last major Req change

120100806040200

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

% Elapsed Project duration till last Major Func Spec., change

10090807060504030

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

57

between these two variables is statistically not significant. Just as in the requirements case, if

there are design changes late into the project that could result in changes to the original list of

features that the team started the project with. Alternately, the design could change without

significantly impacting the original feature list and this may explain why the correlation is

statistically not significant yet the negative correlation tells that there will feature evolution as the

team changes the product design late into the project.

Correlations between % elapsed time from project start till last major code addition and %

original features implemented in the final product: -0.254. The correlation between these two

variables is statistically not significant. Just as in the requirements and functional specification

cases, if there are major code additions late into the project that could result in changes to the

original list of features that the team started the project with. Alternately, major code could be

added without significantly impacting the original feature list i.e., the features may not be

changing but the team may be delayed and just adding the code for the features on the original list

and this may explain why the correlation is statistically not significant yet the negative correlation

tells that there will be either feature evolution and/or reduction in the features of the product due

to schedule delays as the team adds new code late into the project.

Figure 3-27 - % elapsed time from project start till last major code addition
vs. % original features implemented in the final product (all projects)

% Elapsed project duration till last major code addtn.

120110100908070

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

58

Correlation between % elapsed time from project start till last major req. change and bugginess: -

0.068. The correlation between these two variables is statistically not significant. The ability of

the product team to handle changes late into the project depends on how the team has architected

the various modules within the product. If it is a clean architecture where the changes are

localized to a single module then the product team may achieve good product quality (low

number of bugs) even with all the late changes in requirements on the other hand if the

architecture is not clean then all the late changes in requirements may decrease the product

quality (high number of bugs).

Figure 3-28 - % elapsed time from project start till last major requirements change vs. bugginess (all
projects)

% Elapsed project duration till last major req. change

120100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

59

Correlation between % elapsed time from project start till last major functional specification

change and bugginess: 0.175. The correlation between these two variables is statistically not

significant. The ability of the product team to handle changes late into the project depends on

how the team has architected the various modules within the product. If it is a clean architecture

where the functional specification changes are localized to a few modules then the product team

may achieve good product quality (low number of bugs) even with all the late changes in the

design on the other hand if the architecture is not clean then all the late changes in design will

decrease the product quality (high number of bugs).

Figure 3-29 - % elapsed time from project start till last major functional spec change vs. bugginess
(all projects)

% Elapsed project duration till last major func spec change

10090807060504030

Bu
gg

in
es

s

100

80

60

40

20

0

60

Correlations between % elapsed time from project start till last major code addition and

bugginess: 0.157. The correlation between these two variables is statistically not significant. As

mentioned earlier the ability to handle changes depends on the product architecture. Even with

clean architecture any time the team adds or modifies code there is always an opportunity to

introduce bugs. This is what the positive correlation between these two variables, is telling us.

Figure 3-30 - % elapsed time from project start till last major code addition vs. bugginess (all
projects)

% Elapsed project duration till last major code addtn

120110100908070

Bu
gg

in
es

s

100

80

60

40

20

0

61

Correlation between % elapsed time from project start till last major req. change and productivity:

-0.086. The correlation between these two variables is statistically not significant. The two

variables have very little correlation between them. Productivity is measured as a function of

uncommented lines of code. The total lines of code developed can be impacted by variety of

factors when the product requirements are changing late into the project. Some of the factors

could be that the team may find an efficient algorithm to implement functionality based on the

new information, which may reduce the lines of code, required, less feature implementation due

to schedule constraints etc.

Figure 3-31 - % elapsed time from project start till last major requirements change vs. productivity
(all projects)

% Elapsed prj duration till last major req change

120100806040200

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

62

Correlation between % elapsed time from project start till last major functional specification

change and productivity: 0.017. The correlation between these two variables is statistically not

significant. The two variables are barely correlated and the reasons for lack of correlation are

similar to the reasons for lack of correlation between % elapsed time for project start till last

major requirements change and productivity.

Figure 3-32 - % elapsed time from project start till last major functional spec change vs. productivity
(all projects)

% Elapsed prj duration till last major func spec change

10090807060504030

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

63

Correlations between % elapsed time from project start till last major code addition and

productivity: 0.062. Correlation between these two variables is statistically not significant. The

reasons for lack of correlation are the same as in the previous two cases.

3.4.3 Sensitivity Analysis:

In our data analysis to evaluate hypothesis 8, there are some instances where some outlier cases

were observed for productivity variables. In order to study the effect of these outlier cases on the

analysis, sensitivity analysis was performed. The correlation analysis was performed again with

the data after filtering out the outlier case(s). The following correlation table (Table 3-6) contains

the analysis without the outlier case(s). There are no scatter graphs following the table because

there were no correlations between process and outcome variables, which were statistically

significant.

Figure 3-33 - % elapsed time from project start till last major code addition vs. productivity (all
projects)

% Elapsed prj duration till last major code addtn

1201101009080706050

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

64

Table 3-8 - Correlation Table For Variables to Evaluate Flexibility in Project Activities –
without the outlier for Productivity

3.4.4 Observations based on the data analysis for variables to evaluate flexibility in project

activities:

Hypothesis

Number

Summary of hypothesis Observations

8 Evolutionary development allows flexibility in

product development allowing the project team

to make requirements, functional changes and

add code for new features late into the project.

The relation between

flexibility in requirements

change and % of original

features in final product is

statistically significant.

Table 3-9 Summary of hypothesis on flexibility in project activities

1.000 .275 -.250 -.255 .301 -.071 -.565* -.419 -.272
. .255 .288 .277 .197 .767 .012 .083 .246

20 19 20 20 20 20 19 18 20
.275 1.000 -.032 .039 .278 .245 -.106 .192 .114
.255 . .898 .875 .249 .311 .677 .461 .642

19 19 19 19 19 19 18 17 19
-.250 -.032 1.000 .226 -.190 -.060 .151 -.022 .320
.288 .898 . .287 .423 .802 .491 .923 .128

20 19 24 24 20 20 23 22 24

-.255 .039 .226 1.000 -.496* -.071 -.071 -.035 .095
.277 .875 .287 . .026 .765 .747 .877 .658

20 19 24 24 20 20 23 22 24
.301 .278 -.190 -.496* 1.000 .072 -.156 -.046 .128
.197 .249 .423 .026 . .762 .525 .855 .590

20 19 20 20 20 20 19 18 20
-.071 .245 -.060 -.071 .072 1.000 .373 .123 .241
.767 .311 .802 .765 .762 . .116 .626 .306

20 19 20 20 20 20 19 18 20
-.565* -.106 .151 -.071 -.156 .373 1.000 .602** .141
.012 .677 .491 .747 .525 .116 . .003 .521

19 18 23 23 19 19 23 22 23
-.419 .192 -.022 -.035 -.046 .123 .602** 1.000 .329
.083 .461 .923 .877 .855 .626 .003 . .135

18 17 22 22 18 18 22 22 22
-.272 .114 .320 .095 .128 .241 .141 .329 1.000
.246 .642 .128 .658 .590 .306 .521 .135 .

20 19 24 24 20 20 23 22 24

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule Estimation
Error

Productivity

Schedule and Budget
Perf. perception rating

Customer satisfaction
perception rating

% Elapsed prj duration
ti l l last major req
change

% Elapsed prj duration
ti l l last major func spec
change

% Elapsed prj duration
ti l l last major code
addtn.

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% Elapsed
prj duration

ti l l last
major req
change

% Elapsed
prj duration

ti l l last
major func

spec
change

% Elapsed
prj duration

ti l l last
major code

addtn.

Correlation is significant at the .05 level (2-tai led).*.

Correlation is significant at the .01 level (2-tai led).**.

65

• The first hypothesis in this area is validated by the analysis. From the analysis we observe

that as the % of elapsed time (for requirements change, functional design change, and

code addition) increases, the % of original features implemented in the final product is

decreasing significantly. This essentially is because more feedback is being incorporated.

3.5 Impact of Code Reuse

3.5.1 Hypothesis 9:

More code reuse results in:

• Reduced product bugginess

• Reduced feature evolution due to potential inflexibility introduced due to existing code

(I.e. code being reused)

• Reduces schedule estimation error.

The process variable that is used to track the code reuse is:

• % New code developed by the team

Some of the outcome variables that we will study to understand the impact of code reuse are:

• Bugginess

• % Of original features implemented in the final product

• % Schedule estimation error

66

3.5.2 Data analysis to evaluate impact of code reuse

Table 3-10 - Correlation Table For Code Reuse Measures

1.000 .297 -.225 -.284 .272 -.049 .245
. .204 .327 .212 .233 .834 .285

21 20 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 .168
.204 . .927 .816 .348 .191 .480

20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 .034
.327 .927 . .361 .390 .822 .870

21 20 25 25 21 21 25

-.284 -.056 .191 1.000 -.385 -.135 -.069
.212 .816 .361 . .085 .561 .743

21 20 25 25 21 21 25
.272 .222 -.198 -.385 1.000 .032 -.251
.233 .348 .390 .085 . .891 .272

21 20 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 .096
.834 .191 .822 .561 .891 . .678

21 20 21 21 21 21 21
.245 .168 .034 -.069 -.251 .096 1.000
.285 .480 .870 .743 .272 .678 .

21 20 25 25 21 21 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% Code Reuse

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating
% Code
Reuse

67

Correlation between % code reuse and Bugginess: 0.168. Correlation between these two

variables is statistically not significant. One of the reasons for the positive correlation could be

because the team members may not be completely familiar with code being reused or the

assumptions made while developing the previous code resulting in increased bugs reported by the

customer.

Figure 3-34 - % code reuse vs. Bugginess (all projects)

Figure 3-35 - % code reuse vs. % original features implemented in the final product (all projects)

% Code Reuse

1.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

% Code Reuse

1.0.8.6.4.20.0

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

68

Correlation between % code reuse and % original features implemented in the final product:

0.245. The correlation between these two variables is statistically not significant. There is a

positive correlation between these two variables indicating that more % of original features would

be implemented as the % code reuse increases. When a project team reuses code, they essentially

are reusing functionality that has already been implemented and this leaves little flexibility for the

team to incorporate customer feedback without changing the code being reused.

Correlation between % code reuse and % schedule estimation error: 0.034. The correlation

between these two variables is statistically not significant. Typically one would expect with more

% code reuse, the schedule estimation error would be less since part of the code is already

implemented. On the flip side, as mentioned earlier, if the project team members are not familiar

with the code being reused or the assumptions made while developing the previous code, then the

project team may face quality issues which might impact the schedules and increase the %

schedule estimation error.

Figure 3-36 - % code reuse vs. % schedule estimation error (all projects)

% Code Reuse

1.0.8.6.4.20.0

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

69

Observations based on the data analysis for impact of code reuse:

Hypothesis

Number

Summary of hypothesis Observations

9 More code reuse results in reduced bugginess,

reduced feature evolution and reduced schedule

estimation error.

The correlation, between the

process and outcome variables

being used to measure the

impact of code reuse, is

statistically not significant.

Table 3-11 Summary of hypothesis on impact of code reuse

There are no significant observations made since the data analysis did not yield any statistically

significant correlation between process and outcome variables.

3.6 Impact of Frequent Synchronization

3.6.1 Hypothesis 10:

“Doing daily (frequent) builds gives rapid feedback to the project team about how the product is

progressing. This makes sure that the basic functions of the evolving product are working

correctly most of the time” (chapter 5, pages 268-269 - Microsoft Secrets, Michael Cusumano

and Richard Selby, 1998). This results in:

• Higher productivity

• Higher customer satisfaction

• Bugginess could be lower. An alternate hypothesis is that frequent synchronization will

eliminate any system integration surprises but does not necessarily mean that it reduces

bugginess in individual components.

70

3.6.2 Hypothesis 11:

“Knowing where the team is, with respect to the project, makes the overall product development

process more visible and predictable” (chapter 5, page 276 – Microsoft Secrets, Michael

Cusumano and Richard Selby, 1998). This results in:

• Reduced schedule estimation error

The process variable that was used to measure the frequency of synchronization is:

• Build frequency (daily or other – weekly, biweekly, monthly etc.)

• •Some of the outcome variables that we will study to understand the impact of frequent

synchronization approach:

• Productivity

• Bugginess

• % Original features implemented

• % Schedule estimation error

71

3.6.3 Data analysis to evaluate impact of frequent synchronization

Table 3-12 - Correlation Table For Frequent Synchronization Measure

1.000 .297 -.225 -.284 .272 -.049 -.127
. .204 .327 .212 .233 .834 .584

21 20 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 .000
.204 . .927 .816 .348 .191 1.000

20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 -.142
.327 .927 . .361 .390 .822 .499

21 20 25 25 21 21 25

-.284 -.056 .191 1.000 -.385 -.135 .102
.212 .816 .361 . .085 .561 .628

21 20 25 25 21 21 25
.272 .222 -.198 -.385 1.000 .032 -.135
.233 .348 .390 .085 . .891 .559

21 20 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 .194
.834 .191 .822 .561 .891 . .399

21 20 21 21 21 21 21
-.127 .000 -.142 .102 -.135 .194 1.000
.584 1.000 .499 .628 .559 .399 .

21 20 25 25 21 21 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Build Frequency
(Daily - 1; Other - 0)

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

Bui ld
Frequency
(Daily - 1;
Other - 0)

72

Correlations between build frequency and bugginess: 0. The correlation between these two

variables is statistically not significant. The reason that these two variables are not correlated is

probably because bugs as reported by the customer may not be the right parameter to evaluate.

The parameter that should be used is the number of bugs found during the sub-cycles. This piece

of data has not been captured in the questionnaire and should be obtained in future research.

Figure 3-37 - Build Frequency Vs. bugginess (all projects)

Figure 3-38 - Build Frequency Vs. customer satisfaction perception rating (all projects)

Build Frequency

1.21.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

Build Frequency

1.21.0.8.6.4.20.0

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

73

Correlations between build frequency and customer satisfaction perception rating: 0.194. The

correlation between these two variables is statistically not significant. Frequent synchronization

might have provided the project team with opportunities to resolve any issues found during the

product development and synchronization process resulting in a higher customer satisfaction

perception rating.

Correlations between build frequency and % schedule estimation error: -0.142. The correlation

between these two variables is statistically not significant. The reason for negative correlation

between these two variables could be because frequent synchronization might have provided the

project team with opportunities to resolve any issues found during the product development and

synchronization process early enough in the project thus reducing schedule estimation error.

Figure 3-39 - Build Frequency vs. % schedule estimation error (all projects)

Build Frequency

1.21.0.8.6.4.20.0

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

-20

74

Correlations between build frequency and productivity: 0.102. The correlation between these two

variables is statistically not significant. The correlation between these two variables is positive

indicating that the frequent synchronization improves productivity. The potential reason could be

that frequent synchronization would flush out any implementation issues or bugs immediately

when new code is integrated into the product. This reduces the possibility of a team member

continuing to extend the problematic area with new code, which at the end of the project might

require more time to fix reducing the time available for the team to implement new features.

Figure 3-40 - Build Frequency vs. productivity (all projects)

Build Frequency

1.21.0.8.6.4.20.0

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

75

3.6.4 Sensitivity Analysis:

In our data analysis to evaluate hypothesis 10 and hypothesis 11, there are some instances where

some outlier cases were observed for productivity variables. In order to study the effect of these

outlier cases on the analysis, sensitivity analysis was performed. The correlation analysis was

performed again with the data after filtering out the outlier case(s). The following correlation

table (Table 3-9) contains the analysis without the outlier case(s). There are no scatter graphs

following the table because there were no correlations between process and outcome variables,

which were statistically significant.

Table 3-13 - Correlation Table For Frequent Synchronization Measure – without the outlier
for productivity

1.000 .275 -.250 -.255 .301 -.071 -.138
. .255 .288 .277 .197 .767 .561

20 19 20 20 20 20 20
.275 1.000 -.032 .039 .278 .245 -.062
.255 . .898 .875 .249 .311 .801

19 19 19 19 19 19 19
-.250 -.032 1.000 .226 -.190 -.060 -.141
.288 .898 . .287 .423 .802 .512

20 19 24 24 20 20 24

-.255 .039 .226 1.000 -.496* -.071 .171
.277 .875 .287 . .026 .765 .425

20 19 24 24 20 20 24
.301 .278 -.190 -.496* 1.000 .072 -.099
.197 .249 .423 .026 . .762 .679

20 19 20 20 20 20 20
-.071 .245 -.060 -.071 .072 1.000 .171
.767 .311 .802 .765 .762 . .472

20 19 20 20 20 20 20
-.138 -.062 -.141 .171 -.099 .171 1.000
.561 .801 .512 .425 .679 .472 .

20 19 24 24 20 20 24

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original
Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Build Frequency
(Daily - 1; Other - 0)

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivi ty

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

Bui ld
Frequency
(Daily - 1;
Other - 0)

Correlation is significant at the .05 level (2-tailed).*.

76

3.6.5 Observations based on the data analysis for impact of frequent synchronization:

Hypothesis

Number

Summary of hypothesis Observations

10 Doing daily (frequent) builds gives rapid

feedback to the project team about how the

product is progressing

The correlation, between the

process and outcome variables

being used to measure the

impact of frequent builds, is

statistically not significant

11 Knowing where the team is, with respect to the

project, makes the overall product development

process more visible and predictable.

The correlation, between build

frequency and schedule

estimation error, is statistically

not significant.

Table 3-14 Summary of hypotheses on impact of frequent synchronization

There are no significant observations made about the hypotheses since the data analysis did not

yield any statistically significant correlation between process and outcome variables. A possible

reason why there are no significant observations regarding frequency of synchronizations is that

there is insufficient variance between building daily and building weekly or monthly, as opposed

to a traditional waterfall method where projects build the whole system only in the final

integration phase.

3.7 Impact of Design and Code Reviews

3.7.1 Hypothesis 12:

“Design reviews identify any consistency problems earlier than the later testing activities that

require a running product” (chapter 5, page 303 – Microsoft Secrets, Michael Cusumano and

Richard Selby, 1998). With the pressure of short development cycles and uncertain

environments, it is not clear if it is better to spend more time up front doing more reviews and

design work or to devise better ways of checking for the problems later.

77

• This could result in more feature evolution due to design changes for incorporating

changing requirements and/or market and technical feedback.

• As design reviews are done to reduce consistency problems, this potentially has neutral or

positive impact on bugginess (I.e. reduce bugginess).

• Design reviews potentially could create an opportunity to introduce more delay.

3.7.2 Hypothesis 13:

Code review helps in early detection of bugs

• Reducing the bugginess of the product

• Reducing schedule estimation error since it takes lot more time to track and fix bugs at a

late stage in the product development cycle. Alternately, reviews introduce opportunity

for more delay.

The process variables that are used to track design/code review are:

• Design review done or not

• Number of design reviews

• Code review done or not

• Number of people reviewing the code

Some of the outcome variables that were study to understand the impact of design and code

reviews are:

• % Of original features implemented in the final product

• Bugginess

• Schedule estimation error

78

3.7.3 Data analysis to evaluate the impact of design and code reviews

Table 3-15 - Correlation Table For Design and Code Review Measure

1.000 .297 -.225 -.284 .272 -.049 -.182 -.101 -.303 -.243
. .204 .327 .212 .233 .834 .429 .662 .182 .288

21 20 21 21 21 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 -.499* -.358 -.410 -.338
.204 . .927 .816 .348 .191 .025 .121 .073 .144

20 20 20 20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 .091 .082 .123 .168
.327 .927 . .361 .390 .822 .666 .696 .558 .421

21 20 25 25 21 21 25 25 25 25

-.284 -.056 .191 1.000 -.385 -.135 -.242 -.144 -.123 -.167
.212 .816 .361 . .085 .561 .244 .494 .558 .426

21 20 25 25 21 21 25 25 25 25
.272 .222 -.198 -.385 1.000 .032 .249 .362 -.184 -.118
.233 .348 .390 .085 . .891 .276 .107 .425 .610

21 20 21 21 21 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 .100 -.023 -.027 .005
.834 .191 .822 .561 .891 . .667 .920 .908 .983

21 20 21 21 21 21 21 21 21 21
-.182 -.499* .091 -.242 .249 .100 1.000 .666** .053 .130
.429 .025 .666 .244 .276 .667 . .000 .802 .535

21 20 25 25 21 21 25 25 25 25
-.101 -.358 .082 -.144 .362 -.023 .666** 1.000 -.070 -.064
.662 .121 .696 .494 .107 .920 .000 . .738 .761

21 20 25 25 21 21 25 25 25 25
-.303 -.410 .123 -.123 -.184 -.027 .053 -.070 1.000 .925**
.182 .073 .558 .558 .425 .908 .802 .738 . .000

21 20 25 25 21 21 25 25 25 25
-.243 -.338 .168 -.167 -.118 .005 .130 -.064 .925** 1.000
.288 .144 .421 .426 .610 .983 .535 .761 .000 .

21 20 25 25 21 21 25 25 25 25

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Design Review
(Yes -1; No - 0)

Number of
Design Reviews

Code Review
(Yes - 1; No - 0)

Number of
People reviewing
code

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

Design
Review

(Yes -1; No
- 0)

Number of
Design

Reviews

Code
Review
(Yes - 1;
No - 0)

Number of
People

reviewing
code

Correlation is significant at the .05 level (2-tailed).*.

Correlation is significant at the .01 level (2-tailed).**.

79

Correlation between Design review done(1) or not (0) and % original features implemented in

final product: -0.182. The correlation between these two variables is statistically not significant.

The negative correlation could be because design review might provide technical feedback to the

team, which may result in changing some of the features from the original list.

Correlation between Design review and Bugginess: -0.499. The Correlation between these two

variables is statistically significant at the 0.01 level (two-tailed). This validates our hypothesis

Figure 3-41- Design Review done or not vs. % Original Features implemented in final product (all
projects)

Figure 3-42 - Design Review done or not Vs. Bugginess (all projects)

Design Review

1.21.0.8.6.4.20.0

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

Design Review

1.21.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

80

and the reason for this negative correlation is because design reviews will provide technical

(engineering) feedback to the team and prevent potential situations, well into the project, where

the project team discovers the engineering issues and has to change their implementation possibly

leading to more bugs.

Correlation between Design review and % schedule estimation error: 0.091. The correlation

between these two variables is statistically not significant. The correlation is practically non-

existent between these two variables. There could be other factors affecting the schedule, for

example several of our cases have hardware dependencies.

Figure 3-43 - Design review vs. % schedule estimation error (all projects)

Design Review

1.21.0.8.6.4.20.0

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

-20

81

Correlation between Code review and Bugginess: -0.410. The correlation between these two

variables is statistically not significant. The reason for this negative correlation is because code

reviews will provide technical (engineering) feedback to the team (ex: potential logical errors in

an algorithm or possible constraints with a particular implementation and prevent potential

situations, well into the project, where the project team discovers the engineering issues and has

to change their implementation possibly leading to more bugs.

Figure 3-44 - Code Review done or not vs. Bugginess (all projects)

Code Review

1.21.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

82

Correlation between Code review and % schedule estimation error: 0.123. The correlation

between these two variables is statistically not significant. Depending on when the code reviews

are done and what types of issues are found i.e., if the code reviews find incorrect

implementations that require rework then it impacts the project schedule, increasing schedule

estimation error.

3.7.4 Observations based on the data analysis for impact of Design and Code review:

Hypothesis

Number

Summary of hypothesis Observations

12 Design reviews identify any consistency

problems earlier than the later testing activities

that require a running product

The correlation between

design review and bugginess

is statistically significant.

13 Code review helps in early detection of bugs. The correlation between code

review and bugginess is

statistically not significant.

Table 3-16 Summary of hypotheses on impact of design and code review

Figure 3-45 - Code Review done or not vs. % schedule estimation error (all projects)

Code Review

1.21.0.8.6.4.20.0

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

83

• Analysis shows that having design reviews reduces the bugginess of the product

validating our hypothesis.

3.8 Impact of simple compile and link test vs. regression testing

3.8.1 Hypothesis 14:

“PRINCIPLE: Continuously test the product as you build it”. Too many software producers

emphasize product testing primarily at the end of the development cycle, when fixing bugs can be

extraordinary difficult and time-consuming (chapter 5, pages 294-295 – Microsoft Secrets,

Michael Cusumano and Richard Selby, 1998). Running regression tests, each time developers

check changed or new code into the project build, improves product quality.

The process variable that was used to track the regression testing is:

• Regression test done or simple compile and link test done.

The outcome variable that we will study to understand the impact of regression testing is:

• Bugginess

84

3.8.2 Data analyses to evaluate Impact of simple compile and link test vs. regression testing

Table 3-17- Correlation Table For Regression Test Measure

1.000 .297 -.225 -.284 .272 -.049 -.152
. .204 .327 .212 .233 .834 .511

21 20 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 -.531*
.204 . .927 .816 .348 .191 .016

20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 -.066
.327 .927 . .361 .390 .822 .756

21 20 25 25 21 21 25

-.284 -.056 .191 1.000 -.385 -.135 -.107
.212 .816 .361 . .085 .561 .611

21 20 25 25 21 21 25
.272 .222 -.198 -.385 1.000 .032 -.253
.233 .348 .390 .085 . .891 .269

21 20 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 .157
.834 .191 .822 .561 .891 . .497

21 20 21 21 21 21 21
-.152 -.531* -.066 -.107 -.253 .157 1.000
.511 .016 .756 .611 .269 .497 .

21 20 25 25 21 21 25

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivity

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

Regression Test
(Yes - 1; No - 0)

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

Regressi
on Test
(Yes - 1;
No - 0)

Correlation is significant at the .05 level (2-tai led).*.

85

Correlation between Running Regression Test (1) or not (0) and Bugginess: -0.531. The

Correlation between these two variables is statistically significant at the 0.05 level (two-tailed)

3.8.3 Observations based on the data analysis for impact of simple compile and link test vs.

regression testing:

Hypothesis

Number

Summary of hypothesis Observations

14 Running regression tests, each time developers

check changed or new code into the project

build, improves product quality.

The correlation between

regression tests and bugginess

is statistically significant.

Table 3-18 Summary of hypothesis on impact of simple compile and link test vs. regression
testing

• Analysis validates our hypothesis that projects running regression test reduces the

bugginess of the product. As we see from the analysis, for projects running regression

test the number of bugs reported by customers is dropping.

Figure 3-46 - Running Regression Test or not Vs. Bugginess (all projects)

Regression Test

1.21.0.8.6.4.20.0

Bu
gg

in
es

s

100

80

60

40

20

0

86

3.9 Relative emphasis of developers testing vs. QA staff testing code

3.9.1 Hypothesis 15:

Knowledge of the code and product features help in testing the product. When developers, with

intimate knowledge of the code and features, spend more time testing their code, the product

bugginess decreases but the productivity also decreases.

3.9.2 Hypothesis 16:

As testing effort increases, the bugginess of the product decreases.

The process variables that are used to track the time spent by developers and QA staff testing the

code are:

• % Of total testing time developers tested their own code

• % Of total testing time separate QA staff tested code.

• Testing effort

Some of the outcome variables that were used to understand the impact of time spent by

developers and QA testing code are:

• Bugginess

• Productivity

87

3.9.3 Data analysis for Relative emphasis of developers testing vs. QA staff testing code

Table 3-19- Correlation Table For Developers and QA testing Code

1.000 .297 -.225 -.284 .272 -.049 -.044 .107 .291
. .204 .327 .212 .233 .834 .850 .645 .200

21 20 21 21 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 -.462* .375 -.029
.204 . .927 .816 .348 .191 .040 .103 .904

20 20 20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 -.012 -.053 .072
.327 .927 . .361 .390 .822 .955 .801 .733

21 20 25 25 21 21 25 25 25

-.284 -.056 .191 1.000 -.385 -.135 -.134 .105 .114
.212 .816 .361 . .085 .561 .525 .616 .587

21 20 25 25 21 21 25 25 25
.272 .222 -.198 -.385 1.000 .032 -.088 .141 -.049
.233 .348 .390 .085 . .891 .704 .543 .834

21 20 21 21 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 -.116 .040 -.433*
.834 .191 .822 .561 .891 . .615 .864 .050

21 20 21 21 21 21 21 21 21
-.044 -.462* -.012 -.134 -.088 -.116 1.000 -.961** -.328
.850 .040 .955 .525 .704 .615 . .000 .109

21 20 25 25 21 21 25 25 25
.107 .375 -.053 .105 .141 .040 -.961** 1.000 .299
.645 .103 .801 .616 .543 .864 .000 . .147

21 20 25 25 21 21 25 25 25
.291 -.029 .072 .114 -.049 -.433* -.328 .299 1.000
.200 .904 .733 .587 .834 .050 .109 .147 .

21 20 25 25 21 21 25 25 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original
Features
implemented

Bugginess (per
mil LOC)

% Schedule
Estimation Error

Productivi ty

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% of total testing
time dev. tested
their own code

% of total testing
time QA tested
code

Testing Effort

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% of total
testing

time dev.
tested

their own
code

% of total
testing time
QA tested

code
Testing
Effort

Correlation is significant at the .05 level (2-tai led).*.

Correlation is significant at the .01 level (2-tai led).**.

88

Correlation between % of total testing time developers tested their own code and bugginess: -

0.462. The Correlation between the two variables is statistically significant at the 0.05 level (two-

tailed). The reasoning for this is explained in hypothesis 15.

Correlation between % of total testing time developers tested their own code and productivity:

-0.134. The correlation between these two variables is statistically not significant. The

correlation between these two variables is negative implying that as the % of total testing time

developers tested their own code increased, the productivity decreased. The correlation between

Figure 3-47 - % of total testing time developers tested their own code vs. bugginess (all projects)

Figure 3-48 - % of total testing time developers tested their own code vs. productivity (all projects)

% total testing time developers tested their own code

120100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

% of total testing time developers tested their own code

120100806040200

Pr
od

uc
tiv

ity

12000

10000

8000

6000

4000

2000

0

89

these two variables is not significant even after the outlier productivity case was filtered out. One

reason could be because the productivity is a function of lines of code and there are many other

factors that might impact the lines of code written for a product.

Correlation between testing effort and bugginess: -0.029. The correlation between these two

variables is statistically not significant. Even though the correlation is negative, it is very small.

Correlation between testing effort and customer satisfaction perception rating: -0.433. The

Correlation between these two variables is statistically significant at the 0.05 level (two-tailed).

Figure 3-49 - Testing effort vs. bugginess (all projects)

Figure 3-50 - Testing effort vs. customer satisfaction perception rating (all projects)

Testing Effort

.6.5.4.3.2.10.0

Bu
gg

in
es

s

100

80

60

40

20

0

Testing Effort

.6.5.4.3.2.10.0

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

90

This correlation is not significant when the outlier for productivity is removed as seen from table

3-13.

3.9.4 Sensitivity Analysis:

In our data analysis to evaluate hypothesis 15 and hypothesis 16, there are some instances where

some outlier cases were observed for productivity variables. In order to study the effect of these

outlier cases on the analysis, sensitivity analysis was performed. The correlation analysis was

performed again with the data after filtering out the outlier case(s). The following correlation

table (Table 3-13) contains the analysis without the outlier case(s). There are no scatter graphs

following the table because there are no correlations between process and outcome variables,

which were statistically significant.

Table 3-20 - Correlation Table For Developers and QA testing Code Measure – without the
outlier for productivity

1.000 .275 -.250 -.255 .301 -.071 -.027 .086 .348
. .255 .288 .277 .197 .767 .912 .718 .133

20 19 20 20 20 20 20 20 20
.275 1.000 -.032 .039 .278 .245 -.456* .380 .071
.255 . .898 .875 .249 .311 .050 .108 .774

19 19 19 19 19 19 19 19 19
-.250 -.032 1.000 .226 -.190 -.060 .006 -.067 .083
.288 .898 . .287 .423 .802 .978 .754 .701

20 19 24 24 20 20 24 24 24

-.255 .039 .226 1.000 -.496* -.071 -.168 .130 .011
.277 .875 .287 . .026 .765 .432 .544 .960

20 19 24 24 20 20 24 24 24
.301 .278 -.190 -.496* 1.000 .072 -.097 .140 -.108
.197 .249 .423 .026 . .762 .683 .556 .649

20 19 20 20 20 20 20 20 20
-.071 .245 -.060 -.071 .072 1.000 -.106 .038 -.409
.767 .311 .802 .765 .762 . .658 .875 .073

20 19 20 20 20 20 20 20 20
-.027 -.456* .006 -.168 -.097 -.106 1.000 -.965** -.387
.912 .050 .978 .432 .683 .658 . .000 .061

20 19 24 24 20 20 24 24 24
.086 .380 -.067 .130 .140 .038 -.965** 1.000 .346
.718 .108 .754 .544 .556 .875 .000 . .098

20 19 24 24 20 20 24 24 24
.348 .071 .083 .011 -.108 -.409 -.387 .346 1.000
.133 .774 .701 .960 .649 .073 .061 .098 .

20 19 24 24 20 20 24 24 24

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivi ty

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% of total testing
time dev. tested
their own code

% of total testing
time QA tested code

Testing Effort

% Original
Features

implemen
ted

Bugginess
(per mi l

LOC)

% Schedule
Estimation

Error Productivi ty

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% of total
testing

time dev.
tested

their own
code

% of total
testing time
QA tested

code
Testing
Effort

Correlation is signi ficant at the .05 level (2-tailed).*.

Correlation is significant at the .01 level (2-tailed).**.

91

3.9.5 Observations based on analysis of developers and QA testing code:

Hypothesis

Number

Summary of hypothesis Observations

15 When developers, with intimate knowledge of

the code and features, spend more time testing

their code, the product bugginess decreases but

the productivity also decreases.

The correlation between % of

total testing time developers

tested their own code and

bugginess is statistically

significant.

The correlation between % of

total testing time developers

tested their own code and

productivity is statistically not

significant.

16 As testing effort increases, the bugginess of the

product decreases.

The correlation between

testing effort and bugginess is

statistically not significant.

Table 3-21 Summary of hypotheses on impact of developers and QA staff testing code

• Analysis validates our hypothesis that when developers spend more time testing their

own code then the product bugginess is decreased but affects the productivity.

92

3.10 Relative emphasis of component testing vs. integration testing vs. system testing

3.10.1 Hypothesis 17:

More emphasis on component testing (% of total testing time spent in component testing) reduces

product bugginess (but does not necessarily mean there would be no issues with system

integration).

3.10.2 Hypothesis 18:

More emphasis on integration testing (% of total testing time spent in integrating testing) reduces

product bugginess and reduces schedule estimation error due to less integration issues at the end

of the product development cycle. Alternately, if the team is spending increased amount of time

in integrating testing, it could be because the team may be facing integration issues thus affecting

the project schedule and increasing the schedule estimation error.

3.10.3 Hypothesis 19:

More emphasis on system testing may find and help resolve bugs that would not be apparent in

component testing leading to improved customer satisfaction.

The process variables that are used to track the emphasis of testing are:

• % Of total testing time spent in component testing

• % Of total testing time spent in integration testing

• % Of total testing time spent testing the complete system.

Some of the outcome variables that we will study to understand the impact of different emphasis

of testing are:

• Bugginess

• Schedule estimation error

• Customer satisfaction perception rating

93

3.10.4 Data analysis for relative emphasis of component testing vs. integration testing vs.

system testing

Table 3-22 - Correlation Table For Emphasis of Testing

1.000 .297 -.225 -.284 .272 -.049 .011 -.211 .220
. .204 .327 .212 .233 .834 .964 .358 .337

21 20 21 21 21 21 21 21 21
.297 1.000 -.022 -.056 .222 .305 -.381 -.230 .428
.204 . .927 .816 .348 .191 .098 .329 .060

20 20 20 20 20 20 20 20 20
-.225 -.022 1.000 .191 -.198 -.052 -.082 .414* -.200
.327 .927 . .361 .390 .822 .696 .040 .338

21 20 25 25 21 21 25 25 25

-.284 -.056 .191 1.000 -.385 -.135 -.155 .179 .003
.212 .816 .361 . .085 .561 .459 .392 .987

21 20 25 25 21 21 25 25 25
.272 .222 -.198 -.385 1.000 .032 -.286 .016 .338
.233 .348 .390 .085 . .891 .209 .945 .134

21 20 21 21 21 21 21 21 21
-.049 .305 -.052 -.135 .032 1.000 -.131 -.253 .222
.834 .191 .822 .561 .891 . .572 .268 .333

21 20 21 21 21 21 21 21 21
.011 -.381 -.082 -.155 -.286 -.131 1.000 -.206 -.810**
.964 .098 .696 .459 .209 .572 . .322 .000

21 20 25 25 21 21 25 25 25
-.211 -.230 .414* .179 .016 -.253 -.206 1.000 -.279
.358 .329 .040 .392 .945 .268 .322 . .177

21 20 25 25 21 21 25 25 25
.220 .428 -.200 .003 .338 .222 -.810** -.279 1.000
.337 .060 .338 .987 .134 .333 .000 .177 .

21 20 25 25 21 21 25 25 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivi ty

Schedule and
Budget Perf.
perception rating

Customer
satisfaction
perception rating

% of total testing
time spent testing
components

% of total testing
time spent on
integration testing

% of total testing
time spent on
system testing

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivi ty

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% of total
testing time

spent
testing

components

% of total
testing

time spent
on

integration
testing

% of total
testing
time

spent on
system
testing

Correlation is significant at the .05 level (2-tailed).*.

Correlation is significant at the .01 level (2-tailed).**.

94

Correlation between % of total testing time spent in component testing and Bugginess: -0.381.

The correlation between these two variables is statistically not significant. The negative

correlation implies that if the team spends more % of total testing time in component testing, the

bugginess of the product decreases which seems to be logical since the team would be spending

considerable time testing each component.

Figure 3-51 - % of total testing time spent in component testing vs. Bugginess (all projects)

Figure 3-52 - % of total testing time spent in integration testing vs. bugginess (all projects)

% of total testing time spent testing components

100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

% of total testing time spent on integration testing

706050403020100

Bu
gg

in
es

s

100

80

60

40

20

0

95

Correlation between % of total testing time spent in integration testing and bugginess: -0.230.

The correlation between these two variables is statistically not significant.

Correlation between % of total testing time spent in integration testing and Schedule Estimation

Error: 0.414. The Correlation between these two variables is statistically significant at the 0.05

level (two-tailed). The reason for the positive correlation between these two variables could be

because the team if the team spends more time in integrating testing could be due to integrating

issues being encountered by the team. The above scenario would impact the project schedule,

increasing schedule estimation error.

Figure 3-53 - % of total testing time spent in integration testing Vs. Schedule Estimation Error (all
projects)

Figure 3-54 - % of total testing time spent in system testing Vs. Bugginess (all projects)

% of total testing time spent on integration testing

706050403020100

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

% of total testing time spent on system testing

120100806040200

Bu
gg

in
es

s

100

80

60

40

20

0

96

Correlation between % of total testing time spent in system testing and Bugginess: 0.428. The

correlation between these two variables is statistically not significant. The correlation is a very

interesting one because as the % of total testing spends in system testing increases the bugginess

is also increasing. One would think that the bugginess would go down. The question to consider,

to better understand this relation, is whether the team is spending less time in other testing areas

like component testing and integration testing when they spend more time, as % of total testing

time, system testing. If that is the case then one possible explanation for this positive correlation

is that the bugs in components may not have been completely identified and resolved.

Correlation between % of total testing time spent in system testing and customer satisfaction

perception rating: 0.222. The correlation between these two variables is statistically not

significant. The interesting part about this correlation is that when viewed with the previous case

(figure 3-54), it is puzzling in the sense that a system with increased bugginess seems to have

high customer satisfaction perception rating. The only explanation that seems to be reasonable is

that the features implemented meet the customer needs and the positive user experience because

of this may be shadowing the inconvenience caused by the bugs.

Figure 3-55 - % of total testing time spent in system testing Vs. Customer satisfaction perception
rating (all projects)

% of total testing time spent on system testing

120100806040200

C
us

to
m

er
 S

at
is

fa
ct

io
n

Pe
rc

ep
tio

n
R

at
in

g

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

97

3.10.5 Observations based on analysis of Relative Emphasis of Testing:

Hypothesis

Number

Summary of hypothesis Observations

17 More emphasis on component testing (% of total

testing time spent in component testing) reduces

product bugginess.

The correlation between % of

total testing time spent in

component testing and

bugginess is statistically not

significant.

18 More emphasis on integration testing (% of total

testing time spent in integrating testing) reduces

product bugginess and reduces schedule

estimation error due to less integration issues at

the end of the product development cycle

The correlation between % of

total testing time spent in

integrating testing and

bugginess is statistically not

significant.

The correlation between % of

total testing time spent in

integrating testing and

schedule estimation error is

statistically significant.

19 More emphasis on system testing may find and

help resolve bugs that would not be apparent in

component testing leading to improved customer

satisfaction.

The correlation between % of

total testing time spent in

system testing and bugginess

is statistically not significant.

Table 3-23 Summary of hypotheses on impact of relative emphasis of testing

• For integration testing, analysis shows that the % schedule estimation error is increasing

with increase in relative emphasis on integration testing. This validates our alternate

hypothesis.

98

3.11 Impact of Final Stabilization Phase

3.11.1 Hypothesis 20:

If the project team has enough time for final product stabilization phase then they have completed

the project on time. This results in:

• Lower schedule estimation error

3.11.2 Hypothesis 21:

The project team may decide to spend time on final product stabilization versus making late

design changes that incorporate market and technical feedback. This may result in increased % of

original features implemented in the final product. Alternately, if the project team is

incorporating market and technical feedback then the project team will have less time for final

product stabilization phase

99

3.11.3 Data analysis for Impact of Final Stabilization Phase

Table 3-24- Correlation Table For Final Product Stabilization Phase

1.000 .236 -.247 -.253 .227 -.071 .360 .244 .330 .680**
. .303 .268 .255 .311 .753 .100 .286 .144 .001

22 21 22 22 22 22 22 21 21 21
.236 1.000 .064 -.160 .323 .348 -.285 .575** .151 .183
.303 . .781 .489 .154 .122 .210 .008 .525 .441

21 21 21 21 21 21 21 20 20 20
-.247 .064 1.000 .114 -.111 -.006 -.437* -.037 .063 -.498*
.268 .781 . .578 .623 .978 .026 .864 .769 .011

22 21 26 26 22 22 26 24 24 25

-.253 -.160 .114 1.000 -.450* -.178 -.042 -.212 -.098 -.138
.255 .489 .578 . .035 .429 .839 .321 .648 .510

22 21 26 26 22 22 26 24 24 25
.227 .323 -.111 -.450* 1.000 .096 .051 .142 .154 .276
.311 .154 .623 .035 . .670 .822 .540 .506 .226

22 21 22 22 22 22 22 21 21 21
-.071 .348 -.006 -.178 .096 1.000 -.458* .260 -.500* -.247
.753 .122 .978 .429 .670 . .032 .256 .021 .280

22 21 22 22 22 22 22 21 21 21
.360 -.285 -.437* -.042 .051 -.458* 1.000 .054 .383 .540**
.100 .210 .026 .839 .822 .032 . .802 .064 .005

22 21 26 26 22 22 26 24 24 25
.244 .575** -.037 -.212 .142 .260 .054 1.000 .466* .472*
.286 .008 .864 .321 .540 .256 .802 . .022 .020

21 20 24 24 21 21 24 24 24 24
.330 .151 .063 -.098 .154 -.500* .383 .466* 1.000 .449*
.144 .525 .769 .648 .506 .021 .064 .022 . .028

21 20 24 24 21 21 24 24 24 24
.680** .183 -.498* -.138 .276 -.247 .540** .472* .449* 1.000
.001 .441 .011 .510 .226 .280 .005 .020 .028 .

21 20 25 25 21 21 25 24 24 25

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N
Correlation Coefficient
Sig. (2-tai led)
N

% Original Features
implemented

Bugginess (per mil
LOC)

% Schedule
Estimation Error

Productivity

Schedule and Budget
Perf. perception rating

Customer satisfaction
perception rating

% Prj Duration spent
in stabilization phase

% final product
functionality in first
prototype

% final product
functionality in first
system integration

% final product
functionality in first
beta

% Original
Features

implemen
ted

Bugginess
(per mil

LOC)

% Schedule
Estimation

Error Productivity

Schedule
and Budget

Perf.
perception

rating

Customer
satisfaction
perception

rating

% Prj
Duration
spent in

stabil izati
on phase

% final
product

functionality
in first

prototype

% final
product

functionali t
y in first
system

integration

% final
product

functionali ty
in first beta

Correlation is significant at the .01 level (2-tai led).**.

Correlation is significant at the .05 level (2-tai led).*.

100

Correlation between % project duration spent in stabilization phase and % schedule estimation

error: -0.437. The Correlation between these two variables is statistically significant at the 0.05

level (two-tailed). This validates our hypothesis. The reason for the project team to have an

increased % project duration spent in final product stabilization phase could be because the team

would have completed implementation of all the features. This would lead to on time delivery of

the product thus reducing schedule estimation error.

Figure 3-56- % project duration spent in stabilization phase vs. % schedule estimation error (all
projects)

Figure 3-57 - % project duration spent in stabilization phase vs. % Original features implemented in
final product (all projects)

% Project duration spent in final product stabilization phase

403020100

%
 S

ch
ed

ul
e

Es
tim

at
io

n
Er

ro
r

80

60

40

20

0

% Project duration spent in final product stabilization phase

403020100

%
 O

rig
in

al
 F

ea
tu

re
s

im
pl

em
en

te
d

in
 F

in
al

 P
rd

110

100

90

80

70

60

50

40

30

101

Correlation between % project duration spent in stabilization phase and % Original features

implemented in final product: 0.360. The correlation between these two variables is statistically

not significant. The reason for the correlation is the same as in the previous case.

Correlation between % project duration spent in stabilization phase and % Final product

functionality in first prototype: 0.054. The correlation between these two variables is statistically

not significant and there seems to be very little correlation.

Figure 3-58 - % project duration spent in stabilization phase vs. % final product functionality in first
prototype

Figure 3-59 - % project duration spent in stabilization phase vs. % final product functionality in first
system integration

% Final product functionality in first prototype

100806040200

%
 P

ro
je

ct
 d

ur
at

io
n

sp
en

t i
n

st
ab

iliz
at

io
n

ph
as

e

40

30

20

10

0

% Final product functionality in first system Integration

120100806040200

%
 P

rj
du

ra
tio

n
sp

en
t i

n
fin

al
 p

rd
 s

ta
bi

liz
at

io
n

ph
as

e

40

30

20

10

0

102

Correlation between % project duration spent in stabilization phase and % final product

functionality in first system integration: 0.383. Even though the correlation is statistically not

significant but the correlation is stronger than the correlation at the first prototype.

Correlation between % project duration spent in stabilization phase and % final product

functionality in first beta: 0.540. The Correlation between these two variables is statistically

significant at the 0.01 level (two-tailed). Compared to the previous two cases, the correlation is

stronger and also significant. Based on this observation it appears that the project team should

implement the functionality of the product at a steady rate between the three major milestones.

Figure 3-60 - % project duration spent in stabilization phase vs. % final product functionality in first
beta (all projects)

% Final product functionality in first beta

110100908070

%
 P

rj
du

ra
tio

n
sp

en
t i

n
fin

al
 P

rd
 s

ta
bi

liz
at

io
n

ph
as

e

40

30

20

10

0

103

3.11.4 Observations based on analysis of Final product stabilization phase variables:

Hypothesis

Number

Summary of hypothesis Observations

20 If the project team has enough time for final

product stabilization phase then they have

completed the project on time. This results in

lower schedule estimation error.

The correlation between %

project duration spent in

stabilization phase and %

schedule estimation error is

statistically significant.

21 The project team may decide to spend time on

final product stabilization versus making late

design changes that incorporate market and

technical feedback. This may result in increased

% of original features implemented in the final

product.

The correlation between %

project duration spent in

stabilization phase and % final

product functionality in first

beta is statistically significant.

Table 3-25 Summary of hypotheses on impact of final product stabilization phase

• Analysis shows that an increase in the duration for final product stabilization phase is

decreasing the % schedule estimation error. This validates our hypothesis.

• Our second hypothesis is also validated which states that as the % of original features

implemented in the final product increases, so is the duration for final product

stabilization phase.

104

Chapter 4: Conclusions

4.1 Current state of project practices:

This research has analyzed software projects at Hewlett Packard and Agilent. The current

software product development practices at these firms are very diverse. Some of the projects use

sequential (waterfall) approach while some others are leaning towards iterative (evolutionary)

approach. Based on the data analysis here is a summary of current state of project practices:

• One of the observations based on the data analysis was that about 50% of the projects did

not have project requirements available at the design start time.

• On average the projects were reusing about 60% of code from various sources including

previous versions of the products. This is a significant amount of code reuse.

• On average the proportion of resources (development + testing) allocated to full time QA

was 25%. This does not include the testing undertaken by the developers.

• About 92% of the projects had some sort of prototype. On average the first prototypes

had about 37% of final product functionality implemented. The range of final product

functionality implemented at the first prototype is 0 to 90%. These prototypes were

completed 33% of the way through the product development cycle and this ranged from 4

to 83%.

• On average at the time of first system integration of the system the team had

implemented about 63% of final product functionality. The range of the final product

functionality implemented at the first system integration is 15 to 100%. The first system

integration, on average, occurred 58% of the way through the product development cycle

and this ranged from 25 to 93%.

• About 73% of the projects had a beta release. On average the first beta had about 92% of

final product functionality implemented. The range of final product functionality

implemented at the first beta is 80 to 100%. The first beta was released about 78% of the

way through the product development cycle and this ranged from 30 to 100%.

105

• In the area of daily builds, 11 projects built daily while the other 15 ranged from weekly

to monthly.

4.2 Practices for flexible product development:

There are some commonly used product development approaches in practice, such as sequential

(waterfall) approach, iterative (evolutionary) approach, iterative approach combined with synch-

and-stabilize approach. Based on the data analysis, some of the important factors that influence a

flexible product development strategy are:

• With increased competition and constantly changing technological landscape, there is

increased burden on the project teams to deliver a product that meets the customer needs

in the first try itself. To achieve this the project teams should obtain customer feedback

(both feedback on the prototype and feedback on the beta release of the product) early in

the project, with respect to functionality. This provides the project team the opportunity

to incorporate the customer feedback without extensive rework.

• The project teams should be aware of the fact that obtaining and incorporating customer

feedback results in feature evolution, which may be significantly different than their

original feature list. This will impact the project schedules. Allowing time, for obtaining

and incorporating customer feedback, in the project schedule is critical so that the project

team does not find itself in a situation where they have to cut corners in various project

activities. As our data analysis shows that incorporating more % of final product

functionality in the first beta reduces the schedule estimation error but the tradeoff is that

the project team may not be in a situation to incorporate the customer feedback obtained

during the beta phase. One approach to solve this dilemma would be to obtain customer

feedback more frequently even before first beta and this could be achieved by utilizing

the iterative (evolutionary) approach. Before the project team adopts the iterative

(evolutionary) approach, they should put in place a process that would help them manage

the feedback process. Another option is for the project teams to release earlier betas or

prototypes.

• It has always been a point of discussion as to how much architectural effort should be put

into the product design. From the analysis, the conclusion is that the project team should

put in high-level architecture and quickly move to the implementation. This provides the

106

team with the flexibility to incorporate the customer feedback without being bogged

down by rigid rules developed through detailed architecture and design. The team should

keep in mind partition of the architecture if they are interested in incorporating customer

feedback. Clean interfaces between modules could help the team in localizing the

changes to the product implementation when they are incorporating the customer

feedback.

• As has been shown by many experts in the software product development area, our

analysis shows that design reviews help improve the product quality. In the iterative

(evolutionary) approach one of the areas that the design review could help is evaluating

how the architecture is partitioned and whether the interfaces between various modules

clean and independent. As was mentioned earlier, clean interfaces could help the project

team localize the changes to the product implementation due to customer feedback.

• The data analysis shows repeatedly that the project is in good shape, with respect to

project schedule, if the product has higher % of final product functionality implemented

in the product at first beta release. As was mentioned earlier, to reduce the amount of

changes to the product after first beta release due to customer feedback, the project team

should get continuous feedback through out the product development. The basic idea

here is that if the project team involves the customer actively through out the product

development cycle, the feature evolution will reduce significantly by first beta release.

With this approach the project team potentially will be in a situation where they are able

to implement higher % of final product functionality by first beta thus reducing the

schedule estimation error. This will also allow the project team with time for final

product stabilization phase where the project team will have the opportunity to improve

the quality of the product.

• The proportion of testing (QA) staff and the development staff should be balanced. The

testing staff should work closely with the development staff right from the beginning of

the product development cycle so that the testing staff is equally knowledgeable about the

product, its design and implementation to carry out an effective testing strategy. This

will potentially reduce the % of total testing time spent by the developers in testing their

own code but at the same time not impact the quality of the product because the testing

staff is equally familiar with the product usage and its design and implementation. This

107

will allow the users to spend more time implementing new features for the product and in

turn have higher productivity.

Having mentioned the various factors affecting a flexible product development strategy, it is

important for the project managers to realize that the strategies for product development will

typically differ based on the type of project being implemented. It is the project manager’s

responsibility to customize the software development approach to the project at hand. Some of

the factors that should be considered when customizing the development strategy are:

• Is the product being developed in a segment with mature technology?

• Are there any uncertainties in the product requirements that the team has to address as the

product is being developed?

• How many sub-cycles should the product development cycle be divided into?

• How early (with respect to functionality) in the project should the project team start

getting customer feedback?

• How often should the various modules in the system be integrated?

• What are the various dependencies that the project has that impact the product

implementation (ex: hardware availability)?

Addressing these issues will help the project team put in a process and a product development

strategy that would help them develop and deliver products that benefit all stakeholders.

4.3 Limitations of the research:

There are several hypotheses that have not been validated from the data analysis. One of the

reasons for this is the context or the project environment. For example, in the case of frequent

synchronization we should further evaluate the project context to understand if the outcome of the

data analysis is being impacted by such things as hardware availability and the dynamics

associated with it. Since several projects had dependencies on hardware availability, depending

on how much and when the project team adds new code the team may not be building daily. In

contrast an application software project does not have such hardware dependencies and could be

108

synchronized frequently with daily builds. In the sample only 8 projects are application software

while the remaining 18 have hardware dependencies because they are embedded software or

system (device drivers) software. One way to evaluate all projects in similar context, for the

projects with hardware dependencies, some additional data should be collected which would

allow the research team to discount the impact of the hardware dependencies on the project

schedule.

4.4 Next Steps:

The current research study was a pilot study. The academic and industry members of the research

team plan to expand this study globally. The study will be performed at various organizations to

further gain better insight into software product development with market and technical

uncertainties and also to further validate the findings from the pilot study.

4.5 Areas for inclusion in the survey instrument (addition for future surveys):

Architecture:

• Is it modular or monolithic? This has an impact on whether the team has the flexibility to

incorporate feedback easily.

Feature churn:

• What % of original features are implemented in the final product?

• What % of features in final product are new features (not in the original features list) or

changes due to market and technical feedback?

Rework:

• Rework due to changes in architecture

• Rework due to technical feedback or technological changes

• Rework due to customer feedback

Group expertise:

109

• Expertise in the functional (domain) area

• Technical expertise

Product quality:

• Number of bugs found during various milestones or sub-cycles

• Reason for bugs

o Because of rework due to customer feedback

o Because of rework due to technical feedback

Customer feedback:

• How many numbers of customers were used for obtaining feedback for prototype and

beta releases?

• What % of customer feedback was incorporated in the final product?

• Does the project team have a process/infrastructure to keep track of the customer

feedback obtained and incorporated into the product?

110

Appendix-A One Way ANOVA (Analysis Of Variance) Reports

Dependent Variables: % Functionality in First Prototype
 % Functionality in First System Integration
 % Functionality in First Beta

Independent Variable (Factor): S/W Use Type (External Use or Internal Use)

Descriptives

8 16 24 8 16 24 8 17 25
33.7500 39.2500 37.4167 70.0000 59.5625 63.0417 90.6250 92.3529 91.8000
26.6927 25.1860 25.2499 15.1186 22.6155 20.6976 7.2887 7.0882 7.0475
9.4373 6.2965 5.1541 5.3452 5.6539 4.2249 2.5769 1.7191 1.4095

11.4343 25.8293 26.7546 57.3606 47.5115 54.3018 84.5315 88.7085 88.8910
56.0657 52.6707 48.0788 82.6394 71.6135 71.7815 96.7185 95.9974 94.7090

.00 .00 .00 40.00 15.00 15.00 80.00 80.00 80.00
80.00 90.00 90.00 90.00 100.00 100.00 100.00 100.00 100.00

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Internal
Use

External
Use Total

Internal
Use

External
Use Total

Internal
Use

External
Use Total

% Functionality in First
Prototype

% Functionality in First System
Integration % Functionality in First Beta

Test of Homogeneity of Variances

.007 1 22 .933
1.200 1 22 .285

.014 1 23 .908

% Functionality in First Prototype
% Functionality in First System Int.
% Functionality in First Beta

Levene
Statistic df1 df2 Sig.

ANOVA

161.333 1 161.333 .245 .626
161.333 1 161.333 .245 .626

161.333 1 161.333 .245 .626

14502.500 22 659.205
14663.833 23

581.021 1 581.021 1.379 .253
581.021 1 581.021 1.379 .253

581.021 1 581.021 1.379 .253

9271.937 22 421.452
9852.958 23

16.243 1 16.243 .318 .578
16.243 1 16.243 .318 .578

16.243 1 16.243 .318 .578

1175.757 23 51.120
1192.000 24

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

%
Functionality
in First
Prototype

%
Functionality
in First
System
Integration

%
Functionality
in First Beta

Sum of
Squares df Mean Square F Sig.

111

Dependent Variables: % Elapsed time till Last Major Requirements Change
 % Elapsed time till Last Major Functional Spec., Change
 % Elapsed time till Last Major Code Addition

Independent Variable (Factor): S/W Use Type (External Use or Internal Use)

Descriptives

8 17 25 8 16 24 8 18 26
63.3723 65.9439 65.1210 67.7423 69.7947 69.1105 94.8790 88.8419 90.6994
29.7896 24.2515 25.5425 18.4421 16.5601 16.8327 11.0357 12.8825 12.4510
10.5322 5.8819 5.1085 6.5203 4.1400 3.4360 3.9017 3.0364 2.4418
38.4675 53.4750 54.5776 52.3243 60.9704 62.0027 85.6530 82.4355 85.6704
88.2770 78.4129 75.6644 83.1603 78.6189 76.2184 104.1051 95.2482 95.7285

14.29 7.69 7.69 37.50 30.77 30.77 75.00 59.09 59.09
100.00 100.00 100.00 88.89 95.65 95.65 111.11 108.33 111.11

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Internal
Use

External
Use Total

Internal
Use

External
Use Total

Internal
Use

External
Use Total

% Elapsed time till Last Major
Requirements Change

% Elapsed time till Last Major
Functional Spec Change

% Elapsed time till Last Major
Code addition

Test of Homogeneity of Variances

.276 1 23 .605

.108 1 22 .746

.470 1 24 .500

% Elapsed time till Last
Major Req. Change
% Elapsed time till Last
Major Funcional Spec
Change
% Elapsed time till Last
Major Code Addition

Levene
Statistic df1 df2 Sig.

ANOVA

35.978 1 35.978 .053 .820
35.978 1 35.978 .053 .820

35.978 1 35.978 .053 .820

15622.115 23 679.222
15658.093 24

22.465 1 22.465 .076 .785
22.465 1 22.465 .076 .785

22.465 1 22.465 .076 .785

6494.327 22 295.197
6516.793 23

201.864 1 201.864 1.319 .262
201.864 1 201.864 1.319 .262

201.864 1 201.864 1.319 .262

3673.808 24 153.075
3875.672 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

% Elapsed
time till Last
Major Req.
Change

% Elapsed
time till Last
Major
Funcional
Spec
Change

% Elapsed
time till Last
Major Code
Addition

Sum of
Squares df Mean Square F Sig.

112

Dependent Variables: Architectural Effort
 % Code Reuse

Independent Variable (Factor): S/W Use Type (External Use or Internal Use)

Descriptives

7 18 25 8 18 26
.3124 .2896 .2960 .4625 .6656 .6031
.2261 .2998 .2767 .3215 .1817 .2460

8.546E-02 7.065E-02 5.533E-02 .1137 4.282E-02 4.825E-02
.1033 .1405 .1818 .1937 .5752 .5037
.5215 .4387 .4102 .7313 .7559 .7024

.02 .03 .02 .00 .25 .00

.60 1.00 1.00 .85 .90 .90

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Internal
Use

External
Use Total

Internal
Use

External
Use Total

Architectural Effort % Code Reuse

Test of Homogeneity of Variances

.147 1 23 .705
6.828 1 24 .015

Architectural Effort
% Code Reuse

Levene
Statistic df1 df2 Sig.

ANOVA

2.619E-03 1 2.619E-03 .033 .858
2.619E-03 1 2.619E-03 .033 .858

2.619E-03 1 2.619E-03 .033 .858

1.834 23 7.975E-02
1.837 24
.228 1 .228 4.266 .050
.228 1 .228 4.266 .050

.228 1 .228 4.266 .050

1.285 24 5.353E-02
1.513 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

Architectural
Effort

% Code
Reuse

Sum of
Squares df Mean Square F Sig.

113

Dependent Variables: % Total Testing Time Developers Tested Their Code
 % Total Testing Time QA Staff Tested Code

Independent Variable (Factor): S/W Use Type (External Use or Internal Use)

Descriptives

8 18 26 8 18 26
52.7500 53.3333 53.1538 42.250 46.667 45.308
27.8093 31.7620 30.0436 26.709 31.762 29.834

9.8321 7.4864 5.8920 9.443 7.486 5.851
29.5008 37.5385 41.0190 19.921 30.872 33.258
75.9992 69.1282 65.2887 64.579 62.462 57.358

7.0 10 7.0 .0 .0 .0
100 100 100 93 90 93

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Internal
Use

External
Use Total

Internal
Use

External
Use Total

% Total Testing Time Developers
tested their own Code

% Total Testing Time QA Staff
tested Code

Test of Homogeneity of Variances

1.367 1 24 .254

1.667 1 24 .209

% Total Testing Time Developers
tested their own Code
% Total Testing Time QA Staff
tested Code

Levene
Statistic df1 df2 Sig.

ANOVA

1.885 1 1.885 .002 .965
1.885 1 1.885 .002 .965

1.885 1 1.885 .002 .965

22563.500 24 940.146
22565.385 25

108.038 1 108.038 .117 .735
108.038 1 108.038 .117 .735

108.038 1 108.038 .117 .735

22143.500 24 922.646
22251.538 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

% Total
Testing
Time
Developers
tested their
own Code

% Total
Testing
Time QA
Staff tested
Code

Sum of
Squares df Mean Square F Sig.

114

Dependent Variables: % Total Testing Time Spent in Component Testing
 % Total Testing Time Spent in Integration Testing
 % Total Testing Time Spent in System Testing

Independent Variable (Factor): S/W Use Type (External Use or Internal Use)

Descriptives

8 18 26 8 18 26 8 18 26
31.250 31.389 31.346 26.875 25.000 25.577 40.6250 43.6111 42.6923
27.223 22.083 23.219 16.677 16.088 15.958 21.6197 25.4261 23.9262
9.625 5.205 4.554 5.896 3.792 3.130 7.6437 5.9930 4.6923
8.491 20.407 21.968 12.933 17.000 19.131 22.5505 30.9670 33.0283

54.009 42.371 40.724 40.817 33.000 32.022 58.6995 56.2552 52.3563
5 .0 .0 .0 .0 .0 15 10 10

85 70 85 50 60 60 70 100 100

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Internal
Use

External
Use Total

Internal
Use

External
Use Total

Internal
Use

External
Use Total

% Total Testing Time Spent in
Component Testing

% Total Testing Time Spent in
Integration Testing

% Total Testing Time Spent in
System Testing

Test of Homogeneity of Variances

.241 1 24 .628

.001 1 24 .978

.063 1 24 .803

% Total Testing Time Spent
in Component Testing
% Total Testing Time Spent
in Integration Testing
% Total Testing Time Spent
in System Testing

Levene
Statistic df1 df2 Sig.

ANOVA

.107 1 .107 .000 .989

.107 1 .107 .000 .989

.107 1 .107 .000 .989

13477.778 24 561.574
13477.885 25

19.471 1 19.471 .074 .788
19.471 1 19.471 .074 .788

19.471 1 19.471 .074 .788

6346.875 24 264.453
6366.346 25

49.386 1 49.386 .083 .776
49.386 1 49.386 .083 .776

49.386 1 49.386 .083 .776

14262.153 24 594.256

14311.538 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups

Total

% Total
Testing
Time Spent
in
Component
Testing

% Total
Testing
Time Spent
in
Integration
Testing

% Total
Testing
Time Spent
in System
Testing

Sum of
Squares df Mean Square F Sig.

115

Dependent Variables: % Functionality in First Prototype

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

PFUNCPTY

8 6 4 6 24
35.6250 35.8333 25.0000 49.6667 37.4167
16.3527 35.8353 28.8675 21.5097 25.2499

5.7816 14.6297 14.4338 8.7813 5.1541
21.9538 -1.7735 -20.9347 27.0936 26.7546
49.2962 73.4401 70.9347 72.2397 48.0788

10.00 5.00 .00 25.00 .00
50.00 90.00 50.00 80.00 90.00

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embedded

S/w Other Total

Test of Homogeneity of Variances

PFUNCPTY

3.089 3 20 .050

Levene
Statistic df1 df2 Sig.

ANOVA

PFUNCPTY

1557.792 3 519.264 .792 .512
321.918 1 321.918 .491 .491
374.083 1 374.083 .571 .459

1183.708 2 591.854 .903 .421
13106.042 20 655.302
14663.833 23

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.

116

Dependent Variables: % Functionality in First System Integration

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

PFUNCSI

8 6 4 6 24
64.3750 60.0000 48.7500 73.8333 63.0417
11.1604 30.3315 23.9357 14.6754 20.6976

3.9458 12.3828 11.9678 5.9912 4.2249
55.0447 28.1690 10.6630 58.4325 54.3018
73.7053 91.8310 86.8370 89.2342 71.7815

50.00 20.00 15.00 50.00 15.00
80.00 100.00 70.00 90.00 100.00

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embedded

S/W Others Total

Test of Homogeneity of Variances

PFUNCSI

2.126 3 20 .129

Levene
Statistic df1 df2 Sig.

ANOVA

PFUNCSI

1585.500 3 528.500 1.279 .309
96.416 1 96.416 .233 .634

114.083 1 114.083 .276 .605
1471.417 2 735.708 1.780 .194
8267.458 20 413.373
9852.958 23

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.

117

Dependent Variables: % Functionality in First Beta

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

PFUNCBTA

8 6 5 6 25
89.6250 93.3333 92.0000 93.0000 91.8000
7.1502 7.5277 7.5829 7.2111 7.0475
2.5280 3.0732 3.3912 2.9439 1.4095

83.6473 85.4335 82.5846 85.4324 88.8910
95.6027 101.2332 101.4154 100.5676 94.7090

80.00 80.00 80.00 80.00 80.00
100.00 100.00 100.00 100.00 100.00

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embedded

S/W Others Total

Test of Homogeneity of Variances

PFUNCBTA

.004 3 21 1.000

Levene
Statistic df1 df2 Sig.

ANOVA

PFUNCBTA

60.792 3 20.264 .376 .771
25.836 1 25.836 .480 .496
31.867 1 31.867 .592 .450
28.924 2 14.462 .268 .767

1131.208 21 53.867
1192.000 24

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.

118

Dependent Variables: % Elapsed Time till Last Major Requirements Change
 % Elapsed Time till Last Major Functional Spec., Change
Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

8 6 5 6 25 7 6 5 6 24
72.4077 60.0783 55.8937 68.1375 65.1210 67.6407 67.6443 71.2271 70.5278 69.1105
12.9774 38.1791 19.9150 30.1560 25.5425 16.2126 22.6128 12.5068 18.4111 16.8327

4.5882 15.5866 8.9062 12.3111 5.1085 6.1278 9.2316 5.5932 7.5163 3.4360
61.5583 20.0118 31.1660 36.4907 54.5776 52.6465 43.9136 55.6978 51.2065 62.0027
83.2570 100.1449 80.6214 99.7842 75.6644 82.6349 91.3750 86.7564 89.8491 76.2184

58.33 7.69 25.00 14.29 7.69 37.50 30.77 58.33 42.86 30.77
95.83 100.00 73.91 100.00 100.00 83.33 95.65 88.89 91.30 95.65

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embed

ded S/W Other Total App S/W
System

S/W
Embed

ded S/W Other Total

% Elapsed Time At Last Major Req Change % Elapsed Time At Last Major Func. Spec Change

Test of Homogeneity of Variances

3.933 3 21 .023
.338 3 20 .798

% Elapsed Time At Last Major Req Change
% Elapsed Time At Last Major Func Spec Change

Levene
Statistic df1 df2 Sig.

ANOVA

1057.642 3 352.547 .507 .682
96.548 1 96.548 .139 .713

137.904 1 137.904 .198 .661
919.738 2 459.869 .661 .527

14600.451 21 695.260
15658.093 24

62.472 3 20.824 .065 .978
47.557 1 47.557 .147 .705
45.073 1 45.073 .140 .713
17.400 2 8.700 .027 .973

6454.320 20 322.716
6516.793 23

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

% Elapsed
Time At Last
Major Req
Change

% Elapsed
Time At Last
Major Func
Spec
Change

Sum of
Squares df Mean Square F Sig.

119

Dependent Variables: % Elapsed Time till Last Major Code Addition

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

PLSTCDAD

8 6 5 7 26
90.0450 86.8785 94.7826 91.8060 90.6994
10.9038 11.4170 11.6664 16.6549 12.4510

3.8551 4.6610 5.2174 6.2949 2.4418
80.9292 74.8971 80.2968 76.4028 85.6704
99.1608 98.8599 109.2684 107.2092 95.7285

75.00 73.33 73.91 59.09 59.09
108.33 104.35 100.00 111.11 111.11

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embedded

S/W Others Total

Test of Homogeneity of Variances

PLSTCDAD

.179 3 22 .910

Levene
Statistic df1 df2 Sig.

ANOVA

PLSTCDAD

182.957 3 60.986 .363 .780
62.613 1 62.613 .373 .548
46.573 1 46.573 .277 .604

136.384 2 68.192 .406 .671
3692.715 22 167.851
3875.672 25

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.

120

Dependent Variables: Architectural Effort
 % Code Reuse

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

7 6 5 7 25 8 6 5 7 26
.1475 .3803 .2655 .3939 .2960 .6625 .5500 .5360 .6286 .6031

9.358E-02 .3386 .4126 .2087 .2767 .2167 7.746E-02 .3510 .3134 .2460
3.537E-02 .1382 .1845 7.889E-02 5.533E-02 7.662E-02 3.162E-02 .1570 .1185 4.825E-02
6.092E-02 2.497E-02 -.2468 .2009 .1818 .4813 .4687 .1001 .3387 .5037

.2340 .7356 .7778 .5870 .4102 .8437 .6313 .9719 .9184 .7024
.03 .10 .02 .09 .02 .20 .45 .10 .00 .00
.25 1.00 1.00 .67 1.00 .85 .65 .88 .90 .90

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W

Embe
dded
S/W Others Total App S/W

System
S/W

Embe
dded
S/W Others Total

Architectural Effort % Code Reuse

Test of Homogeneity of Variances

2.114 3 21 .129
2.524 3 22 .084

Architectural Effort
% Code Reuse

Levene
Statistic df1 df2 Sig.

ANOVA

.269 3 8.962E-02 1.200 .334

.133 1 .133 1.778 .197

.149 1 .149 1.996 .172

.120 2 5.993E-02 .803 .461
1.568 21 7.467E-02
1.837 24

7.220E-02 3 2.407E-02 .367 .777
4.827E-03 1 4.827E-03 .074 .789
5.667E-03 1 5.667E-03 .087 .771
6.653E-02 2 3.327E-02 .508 .609

1.441 22 6.550E-02
1.513 25

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Architectural
Effort

% Code
Reuse

Sum of
Squares df Mean Square F Sig.

121

Dependent Variables: % Total Testing Time Developers Tested Their Code
 % Total Testing Time QA Staff Tested Code

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

8 6 5 7 26 8 6 5 7 26
63.1250 62.0000 58.0000 30.7143 53.1538 36.875 38.000 42.000 63.571 45.308
29.3911 39.2683 10.9545 23.8797 30.0436 29.391 39.268 10.954 28.094 29.834
10.3913 16.0312 4.8990 9.0257 5.8920 10.391 16.031 4.899 10.619 5.851
38.5534 20.7904 44.3983 8.6293 41.0190 12.303 -3.210 28.398 37.589 33.258
87.6966 103.2096 71.6017 52.7993 65.2887 61.447 79.210 55.602 89.554 57.358

15 7.0 50 10 7.0 .0 .0 30 25 .0
100 100 70 75 100 85 93 50 90 93

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embed

ded S/W Others Total App S/W
System

S/W
Embed

ded S/W Others Total

% Total Testing Time Developers Test Their Code % Total Testing Time QA Staff Test Code

Test of Homogeneity of Variances

2.436 3 22 .092
2.678 3 22 .072

% Total Testing Time Developers Test Their Code
% Total Testing Time QA Staff Test Code

Levene
Statistic df1 df2 Sig.

ANOVA

4907.081 3 1635.694 2.038 .138
3689.788 1 3689.788 4.597 .043
3760.299 1 3760.299 4.685 .042
1146.782 2 573.391 .714 .501

17658.304 22 802.650
22565.385 25
3278.949 3 1092.983 1.267 .310
2545.927 1 2545.927 2.952 .100
2586.601 1 2586.601 2.999 .097
692.348 2 346.174 .401 .674

18972.589 22 862.390
22251.538 25

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

% Total
Testing
Time
Developers
Test Their
Code

% Total
Testing
Time QA
Staff Test
Code

Sum of
Squares df Mean Square F Sig.

122

Dependent Variables: % Total Testing Time Spent in Component Testing
 % Total Testing Time Spent in Integration Testing

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

8 6 5 7 26 8 6 5 7 26
35.000 42.500 23.000 23.571 31.346 29.375 18.333 26.000 27.143 25.577
22.520 31.265 10.954 22.120 23.219 15.222 16.021 8.216 21.381 15.958

7.962 12.764 4.899 8.360 4.554 5.382 6.540 3.674 8.081 3.130
16.173 9.689 9.398 3.114 21.968 16.649 1.521 15.799 7.369 19.131
53.827 75.311 36.602 44.029 40.724 42.101 35.146 36.201 46.917 32.022

5 10 10 .0 .0 10 .0 20 .0 .0
70 85 40 70 85 50 40 40 60 60

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App
S/W

System
S/W

Embe
dded
S/W Others Total

App
S/W

System
S/W

Embe
dded
S/W Others Total

% Total Testing Time Spent in Component
Testing % Total Testing Time Spent in Integration Testing

Test of Homogeneity of Variances

1.896 3 22 .160
1.719 3 22 .192

% Total Testing Time Spent in Component Testing
% Total Testing Time Spent in Integration Testing

Levene
Statistic df1 df2 Sig.

ANOVA

1624.670 3 541.557 1.005 .409
1041.594 1 1041.594 1.933 .178
889.525 1 889.525 1.651 .212
735.146 2 367.573 .682 .516

11853.214 22 538.782
13477.885 25

448.281 3 149.427 .555 .650
.339 1 .339 .001 .972

1.108 1 1.108 .004 .949
447.173 2 223.586 .831 .449

5918.065 22 269.003
6366.346 25

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

% Total
Testing
Time Spent
in
Component
Testing

% Total
Testing
Time Spent
in
Integration
Testing

Sum of
Squares df Mean Square F Sig.

123

Dependent Variables: % Total Testing Time Spent in System Testing

Independent Variable (Factor): Project Type (Application, System, Embedded, Others –
combination of application, system and embedded software)

Descriptives

PSYSTST

8 6 5 7 26
35.6250 39.1667 51.0000 47.8571 42.6923
22.9031 24.5798 11.4018 31.8665 23.9262

8.0975 10.0347 5.0990 12.0444 4.6923
16.4775 13.3717 36.8429 18.3855 33.0283
54.7725 64.9616 65.1571 77.3288 52.3563

10 10 40 10 10
70 70 65 100 100

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

App S/W
System

S/W
Embedded

S/W Others Total

Test of Homogeneity of Variances

PSYSTST

1.839 3 22 .170

Levene
Statistic df1 df2 Sig.

ANOVA

PSYSTST

1005.973 3 335.324 .554 .651
847.971 1 847.971 1.402 .249
798.734 1 798.734 1.321 .263
207.239 2 103.619 .171 .844

13305.565 22 604.798
14311.538 25

(Combined)
Unweighted
Weighted
Deviation

Linear Term
Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.

124

Dependent Variables: % Functionality in First Prototype
 % Functionality in First System Integration
 % Functionality in First Beta

Independent Variable (Factor): New Project or Product Extension

Descriptives

7 17 24 7 17 24 8 17 25
37.1429 37.5294 37.4167 55.8571 66.0000 63.0417 93.7500 90.8824 91.8000
23.6039 26.5991 25.2499 24.0862 19.1409 20.6976 3.4949 8.1462 7.0475
8.9214 6.4512 5.1541 9.1037 4.6424 4.2249 1.2356 1.9757 1.4095

15.3129 23.8534 26.7546 33.5812 56.1586 54.3018 90.8282 86.6940 88.8910
58.9728 51.2054 48.0788 78.1331 75.8414 71.7815 96.6718 95.0707 94.7090

10.00 .00 .00 15.00 20.00 15.00 87.00 80.00 80.00
70.00 90.00 90.00 86.00 100.00 100.00 98.00 100.00 100.00

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

% Functionality in First Prototype
% Functionality in First System

Integration % Functionality in First Beta

Test of Homogeneity of Variances

.014 1 22 .905

.376 1 22 .546
7.274 1 23 .013

% Functionality in First Prototype
% Functionality in First System Integration
% Functionality in First Beta

Levene
Statistic df1 df2 Sig.

ANOVA

.741 1 .741 .001 .974

.741 1 .741 .001 .974

.741 1 .741 .001 .974

14663.092 22 666.504
14663.833 23

510.101 1 510.101 1.201 .285
510.101 1 510.101 1.201 .285

510.101 1 510.101 1.201 .285

9342.857 22 424.675
9852.958 23

44.735 1 44.735 .897 .353
44.735 1 44.735 .897 .353

44.735 1 44.735 .897 .353

1147.265 23 49.881
1192.000 24

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

%
Functionality
in First
Prototype

%
Functionality
in First
System
Integration

%
Functionality
in First Beta

Sum of
Squares df Mean Square F Sig.

125

Dependent Variables: % Elapsed time till Last Major Requirements Change
 % Elapsed time till Last Major Functional Spec., Change
 % Elapsed time till Last Major Code Addition

Independent Variable (Factor): New Project or Product Extension

Descriptives

8 17 25 8 16 24 8 18 26
63.7877 65.7484 65.1210 64.2391 71.5462 69.1105 89.7600 91.1170 90.6994
17.5060 29.0387 25.5425 14.4930 17.8170 16.8327 12.3643 12.8231 12.4510
6.1893 7.0429 5.1085 5.1241 4.4543 3.4360 4.3714 3.0224 2.4418

49.1523 50.8181 54.5776 52.1227 62.0522 62.0027 79.4231 84.7402 85.6704
78.4232 80.6787 75.6644 76.3556 81.0403 76.2184 100.0968 97.4938 95.7285

27.78 7.69 7.69 37.50 30.77 30.77 73.91 59.09 59.09
85.00 100.00 100.00 88.89 95.65 95.65 108.33 111.11 111.11

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

% Elapsed Time at Last Major
Req Change

% Elapsed Time at Last Major
Func Spec Change

% Elapsed Time at Last Major
Code Addition

Test of Homogeneity of Variances

2.709 1 23 .113
1.013 1 22 .325

.004 1 24 .952

% Elapsed Time at Last Major Req Change
% Elapsed Time at Last Major Func Spec Change
% Elapsed Time at Last Major Code Addition

Levene
Statistic df1 df2 Sig.

ANOVA

20.912 1 20.912 .031 .862
20.912 1 20.912 .031 .862

20.912 1 20.912 .031 .862

15637.181 23 679.877
15658.093 24

284.767 1 284.767 1.005 .327
284.767 1 284.767 1.005 .327

284.767 1 284.767 1.005 .327

6232.025 22 283.274
6516.793 23

10.199 1 10.199 .063 .803
10.199 1 10.199 .063 .803

10.199 1 10.199 .063 .803

3865.473 24 161.061
3875.672 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

% Elapsed
Time at Last
Major Req
Change

% Elapsed
Time at Last
Major Func
Spec
Change

% Elapsed
Time at Last
Major Code
Addition

Sum of
Squares df Mean Square F Sig.

126

Dependent Variables: Architectural Effort
 % Code Reuse

Independent Variable (Factor): New Project or Product Extension

Descriptives

8 17 25 8 18 26
.2268 .3285 .2960 .7600 .5333 .6031
.1742 .3131 .2767 .1093 .2595 .2460

6.160E-02 7.593E-02 5.533E-02 3.864E-02 6.117E-02 4.825E-02
8.118E-02 .1675 .1818 .6686 .4043 .5037

.3725 .4895 .4102 .8514 .6624 .7024
.07 .02 .02 .60 .00 .00
.50 1.00 1.00 .88 .90 .90

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

Architectural Effort % Code Reuse

Test of Homogeneity of Variances

2.319 1 23 .141
3.229 1 24 .085

Architectural Effort
% Code Reuse

Levene
Statistic df1 df2 Sig.

ANOVA

5.622E-02 1 5.622E-02 .726 .403
5.622E-02 1 5.622E-02 .726 .403

5.622E-02 1 5.622E-02 .726 .403

1.781 23 7.742E-02
1.837 24
.285 1 .285 5.559 .027
.285 1 .285 5.559 .027

.285 1 .285 5.559 .027

1.229 24 5.119E-02
1.513 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

Architectural
Effort

% Code
Reuse

Sum of
Squares df Mean Square F Sig.

127

Dependent Variables: % Total Testing Time Developers Tested Their Code
 % Total Testing Time QA Staff Tested Code

Independent Variable (Factor): New Project or Product Extension

Descriptives

8 18 26 8 18 26
45.2500 56.6667 53.1538 54.750 41.111 45.308
32.7185 29.0537 30.0436 32.718 28.417 29.834
11.5677 6.8480 5.8920 11.568 6.698 5.851
17.8967 42.2186 41.0190 27.397 26.980 33.258
72.6033 71.1147 65.2887 82.103 55.242 57.358

7.0 10 7.0 .0 .0 .0
100 100 100 93 90 93

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

% Total Testing Time Developers
Tested Their Code

% Total Testing Time QA Staff
Tested Code

Test of Homogeneity of Variances

.052 1 24 .822

.138 1 24 .714
% Total Testing Time Developers Tested Their Code
% Total Testing Time QA Staff Tested Code

Levene
Statistic df1 df2 Sig.

ANOVA

721.885 1 721.885 .793 .382
721.885 1 721.885 .793 .382

721.885 1 721.885 .793 .382

21843.500 24 910.146
22565.385 25
1030.261 1 1030.261 1.165 .291
1030.261 1 1030.261 1.165 .291

1030.261 1 1030.261 1.165 .291

21221.278 24 884.220
22251.538 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

% Total
Testing
Time
Developers
Tested
Their Code

% Total
Testing
Time QA
Staff Tested
Code

Sum of
Squares df Mean Square F Sig.

128

Dependent Variables: % Total Testing Time Spent in Component Testing
 % Total Testing Time Spent in Integration Testing
 % Total Testing Time Spent in System Testing

Independent Variable (Factor): New Project or Product Extension

Descriptives

8 18 26 8 18 26 8 18 26
30.625 31.667 31.346 34.375 21.667 25.577 35.0000 46.1111 42.6923
22.903 24.010 23.219 18.792 13.284 15.958 17.9284 25.8705 23.9262
8.097 5.659 4.554 6.644 3.131 3.130 6.3387 6.0977 4.6923

11.478 19.727 21.968 18.665 15.061 19.131 20.0115 33.2460 33.0283
49.772 43.606 40.724 50.085 28.273 32.022 49.9885 58.9762 52.3563

10 .0 .0 .0 .0 .0 15 10 10
85 70 85 60 50 60 70 100 100

N
Mean
Std. Deviation
Std. Error

Lower Bound
Upper Bound

95% Confidence
Interval for Mean
Minimum
Maximum

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

Prd
Extension

New
Product Total

% Total Testing Time Spent in
Component Testing

% Total Testing Time Spent in
Integration Testing

% Total Testing Time Spent in
System Testing

Test of Homogeneity of Variances

1.597 1 24 .218
1.793 1 24 .193
2.146 1 24 .156

% Total Testing Time Spent in Component Testing
% Total Testing Time Spent in Integration Testing
% Total Testing Time Spent in System Testing

Levene
Statistic df1 df2 Sig.

ANOVA

6.010 1 6.010 .011 .918
6.010 1 6.010 .011 .918

6.010 1 6.010 .011 .918

13471.875 24 561.328
13477.885 25

894.471 1 894.471 3.923 .059
894.471 1 894.471 3.923 .059

894.471 1 894.471 3.923 .059

5471.875 24 227.995
6366.346 25
683.761 1 683.761 1.204 .283
683.761 1 683.761 1.204 .283

683.761 1 683.761 1.204 .283

13627.778 24 567.824

14311.538 25

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups
Total

(Combined)
Unweighted
Weighted

Linear Term
Between
Groups

Within Groups

Total

% Total
Testing
Time Spent
in
Component
Testing

% Total
Testing
Time Spent
in
Integration
Testing

% Total
Testing
Time Spent
in System
Testing

Sum of
Squares df Mean Square F Sig.

129

Appendix B – Survey Instrument

SOFTWARE DEVELOPMENT PROCESS STUDY

by

MIT Sloan School of Management

Katz Graduate School of Business, University of Pittsburgh

Harvard Business School

This survey has two fundamental objectives for the current study of software
development process:

• To identify and document best-known methods for increasing performance in
software development, such as speed, flexibility, and quality.

• To identify and understand what types of approaches to software development
work best in different types of projects.

This research, an industry-academia cooperative effort, is sponsored by HP’s Product
Generation Solutions team with the goal of understanding how to keep HP and Agilent’s
product generation processes ahead of the curve in the Internet age. Survey results will be
published in academic and industry publications, including a master’s thesis. HP and
Agilent will get an early look at the results. You are being asked to provide information
from a specific software development project.

All project-specific identifying data will be kept confidential by the researchers; only
summary results and project data that cannot be matched to a specific project will be
included in the publications.

Contact Information:

HP/Agilent Contacts:

• Bill Crandall, (650) 857-6543 or telnet 857-6543, bill_crandall@hp.com

130

• Guy Cox, (650) 857-8980 or telnet 857-8980, guy_cox@hp.com

Academic Contacts:

• Prof. Michael Cusumano (MIT Sloan School of Management), cusumano@mit.edu
• Prof. Chris F. Kemerer (Katz Graduate School of Business, University of Pittsburgh),

ckemerer@katz.pitt.edu
• Prof. Alan MacCormack (Harvard Business School), amaccormack@hbs.edu

Student Contact: (responsible for maintaining the research questionnaire and data collection)

• Sharma Upadhyayula, supadhy@mit.edu

Some reference material that would be helpful in filling out the Survey:

• Project data sheets • Project schedules • Project resource
plans

• Project results • Project checkpoint
presentations

Name of the project you are describing in this questionnaire
(including version number, if any):

Today's date:
Name of the person filling out this form:

Your role on the project (e.g., project manager, lead architect,
developer, etc.):

Your email address (in the event that there are questions):

Your phone number (in the event that there are questions):
If you wish to be provided with a summary of the results of this
research, please indicate that here (select one): Yes No

Part 1

1.1 Project Description and Environment:

131

In this section you will be answering questions about the main software deliverable from the
project.

• A ‘project’ here is the entire effort devoted toward delivering a specific software deliverable
where the activity was separately managed and tracked from other software deliverables.

• The software deliverable from a project might be a product or a service. In particular, it
might be a new release of a previously existing piece of software.

Throughout this survey the focus will generally be on the software project, but some questions will
ask about the software deliverable, the product or service. When questions ask about the product
or service, they are referring only to the version created by this project.

1.1.1 Into what category (type and primary customer) does the deliverable fall? (check one if
possible. If multiple categories, please check the primary category only)

For example: HP Unix is systems software sold primarily to enterprises. Microsoft Office is
applications software sold both to enterprises and individuals. Yahoo’s search engine
software for its web site is applications software primarily for customer service (i.e. it is not
primarily sold to enterprises or individuals). Control software for HP printers is embedded
software sold both to enterprises and individuals. A Cisco router software project would be
embedded software sold primarily to enterprises.

 Sold Primarily Sold Primarily Primarily For In-House

Systems Software

Applications Software

Embedded Software

1.1.2 Outline briefly the main functions of the software:

1.2 Size of the Project:

Budget and Schedule

132

1.2.1 What was the software development budget for the project in dollars
(please give budget in $M)? $M

1.2.2 What was the software development budget for the project in effort
in Person-years?

1.2.3 What was the original software development schedule (duration in
calendar months)?

Software

1.2.4 What programming language (e.g. C, C++, HTML, Assembly) was
the software primarily written in?

1.2.5 Please estimate the size of the delivered software in source lines of
code:

1.2.6 Does this figure include comments? (select one) Yes No

1.2.7 If "yes", estimate percentage of comments here: %

1.2.8 What was the origin of the software code in the finished release according to the following
categories?

Category Percentage of Code

Off-the-shelf code retained from the previous version of this
product

Off-the-shelf code from other sources

New code developed for this product in other project team(s)
(e.g. core code, components)

New code developed for this product in this project team

TOTAL 100%

1.3 Project Team Roles Composition:

1.3.1 What was the structure of the software development team?

133

Position Average Staff
(number of

people)

Peak Staff
(number of

people)

Total staff
Resources
(person-
years)

Project Management (includes project
managers and directors, but not team or
technical leads)

Architecture and Design

Development/Programming

Testing (QA/QE) & Integration

Project Support (e.g., configuration
management, documentation, etc.)

Other:

TOTAL

1.4 Design and Development Process:

Specifications – Architecture, Functional, and Detailed Design

1.4.1 Did the team have an architectural specification (i.e., a document that provided a
high level description of the subsystems and interfaces of the eventual product or service)?
Select one:

Yes

No
1.4.2 If "yes," what percentage of the architectural specification
was completed before the team started coding?

1.4.3 If "yes," and if the architectural specification was adopted
from a previous project, what percentage of the architectural
specification was modified before the team started coding?

1.4.4 How long were the architectural specifications for this
system or product in terms of pages?

1.4.5 Did the team write a functional specification (i.e., a document that
described how features worked but not the underlying structure of the code
or modules)? Select one:

Yes

No

134

1.4.6 If "yes," what percentage of the functional specification
was completed before the team started coding?

1.4.7 How long were the functional specifications for this
system or product in terms of pages?

1.4.8 Did the team write a detailed design specification (i.e. a document that
provides the structure of the modules and an outline of algorithms where
needed)? Select one:

Yes No

1.4.9 If "yes," what percentage of the detailed design
specification was completed before the team started coding?

1.4.10 How long were the detailed design specifications for this
system or product in terms of pages?

Development

1.4.11 Were there any design reviews done? Yes No

1.4.12 If yes, please note approximate dates: (mm/yy)

Builds

1.4.13 During the development phase, how frequently was the system "built" (i.e., how
often were design changes, including bug fixes, integrated into the code base and then
recompiled, e.g. daily, twice per week, weekly, twice per month, once per month, once at
end of development phase)?

1.4.14 How many people typically review another person’s
code before it can be checked into the system build? People

1.4.15 Was any type of integration or regression test (as
opposed to a simple compile and link test) run each time
developers checked changed or new code into the project
build?

Yes No

1.4.16 If yes, how long did the integration test usually take
to run? Hours

1.4.17 When the product was "built," how long did it take
(in hours) to get feedback on the performance of the system
using the most comprehensive set of system tests assembled
during the project (whether these were manual or

 Days OR Hours

135

automated)?

1.5 Testing and Debugging Process:

1.5.1

Responsibility for Testing Percentage of Total Testing Time

Developers tested their own code

Separate QA or testing staff tested
code

TOTAL 100%

1.5.2 What was the relative emphasis on different types of testing during the project?

Focus of Testing Percentage of Total Testing Time

Component testing (testing individual
features or blocks of code)

Integration testing (testing several
blocks of code integrated together)

System testing (testing the complete
product)

TOTAL 100%

1.5.3 Approximately what percentage of the test cases run on the product or system were

automated? %

1.6 Interaction with Customers (A customer can be internal or external):

1.6.1 Estimate the percentage of the final product functionality which existed in the design at the
following project events (assume the functionality in the design is 0% at the start of the project

136

and 100% at the time the product is launched):

Project Event Percentage of Final Product
Functionality

The first prototype shown to customers (even if only a
mock-up)

The first system integration (even if modules only
partially complete)

The first beta version (the initial full version for external
customer use)

Part 2

Please consider the following definitions:

Requirements Planning: Phase that outlines the project goals

Architectural and Functional Design: Phase that outlines the high-level system
design and a functional description of the product

Detailed Design and Development: Phase that covers detailed design, coding, unit-
level testing, and debugging.

Integration and System Testing: Phase that integrates and stabilizes modules, and
tests the performance of the whole system.

Development Sub-Cycle: A typical software development cycle consists of "Design",
"Develop", "Build", "Test" and "Release" activities. Some projects might not have
all the five activities for each sub-cycle.

Please consider the following general model of a software development project -- note
that your organization may not track all these steps, or may use slightly different
terminology.

2.1.1 Please fill in the dates for the following events on your project in the format
MM/YY.

137

Activity Number Activity Description Activity Date

1 Project start date

2 Requirements specification document first available
on

3 Last major change to requirements specification

4 Architecture design start date

5 Functional design start date

6 Last major change to the functional design
specification (e.g. feature complete milestone)

7 Development start date

8 Last addition of new code, excluding bug fixes (e.g.
code complete)

9 First system integration test date

10 Final system test date

11 System launch date

2.1.2 When was the first prototype of any sort shown to customers (e.g. a
mock-up of the user interface)?

2.1.3 How many beta versions, if any, did you release to customers?
2.1.4 If you released a beta version, when was the first beta version
released to customers?

2.1.5 For projects that included hardware development, at which point
during the project did the hardware platform for which the software was
designed become available and stable?

2.1.6 Did you divide the Development phase of the project into separate
development sub-cycles that built and tested a subset of the final product’s
functionality?

Yes No

2.1.7 If "yes," how many separate development sub-cycles were there on
this project?

2.1.8 If "yes", after which sub-cycle was the first alpha released?

138

2.1.9 If "yes", after which sub-cycle was the first beta released?

2.1.10 How were the size and deliverables for each development sub-cycle determined?

2.2 Project Performance Metrics:

Financial Performance

2.2.1 If you sold your product, please estimate the total dollar revenues that the product generated
in the first 12 months after shipment of the final release, including extra charges for design
changes, if applicable. If your product included charges for hardware, please estimate revenues
solely attributable to the software part of the product (for example, as tracked by your internal
accounting procedures).

Actual market revenues: OR

If you sold your product in-house at a special transfer price, please estimate what the revenues
generated from the product would have been using market prices.

Estimated market revenues:

2.2.2 Are the product revenues from: Hardware + Software OR Software Only

Market Performance

2.2.3 If you sold the results of your project in the market, please estimate the increase/decrease in

market or user share of your product in the first 12 months after release:

(Note: if <12 months have passed, note the number of months here: months)

Schedule Performance

2.2.4 What was the (A) actual duration of the project: months

139

2.2.5 What was the (B) schedule for the project estimated at the end of the requirements planning

phase months

Budget Performance

2.2.6 Please provide an answer to either 1 or 2 below.

2.2.7 What was the (A) actual outcome expenditure for the project (in $million):

2.2.8 What was the (B) budget (in $million) for the project established during the up-front planning

phase:

Quality

Software quality is often thought of as the relative absence of defects, or ‘bugs’. Most
organizations have mechanisms in place for testers and customers to report bugs, (e.g. ‘software
problem reports’). The following questions ask about these bugs in terms of their volume and
timing.

2.2.9 Estimate the approximate peak (maximum) number of ‘bugs open’ (i.e., bugs that were
reported but not yet fixed) and the approximate average number of ‘bugs open’ during the
following periods.

Period Peak Bugs
Open

Average Bugs
Open

Between the start of coding and the first system
integration

If there was a beta release, please answer 1 and 2 below:

1 Between the first system integration and the first
beta release

2 Between the first beta release and the system
launch

If there was no beta release, then please answer 3 below:

3 Between the first system integration and the
system launch

140

If there was a beta release, please answer the following question:

2.2.10 Estimate the proportion of all bugs discovered after the first beta version that came from the
following sources?

Source Percentage of Bugs Found After First
Beta

Bugs found by development engineers
themselves

Bugs found by QA and test engineers during
testing activities

Bugs found by customers using the beta release

TOTAL 100%

Follow on questions used to gather information on % original features implemented and

project performance perception ratings:

1. What percentage of the features that were implemented in the final product were contained in

the original functional specification?______

2. Please indicate the extent to which you perceive the project met expectations in terms of:

• Schedule and budget performance _____

• Customer satisfaction with the end-product _____

• Financial returns from the project as a whole _____

(Answer using a 5-point scale, where 1= Significantly below, 2=Below, 3=Met expectations,

4=Above, 5=Significantly above)

3 (a). Estimate the number of bugs reported by customers (end users) in the first 12 months after

the system was launched: _____

141

Note: If less than 12 months have passed since the system launch, please note the number of

months here: _____

142

References

1. Michael A. Cusumano and Richard W. Selby, Microsoft Secrets, Free Press 1995

2. Alan MacCormack, Roberto Verganti, and Marco Iansiti, “Developing Products on

“Internet Time”: The Anatomy of a Flexible Development Process”, Harvard Business

School Working paper 99-118, 1999

3. Alan MacCormack, Roberto Verganti, Marco Iansiti, and Bo Kemp, “Product

Development Performance In Internet Software”, Harvard Business School, September

1997

4. Michael A. Cusumano and David B. Yoffe, Competing on Internet Time: Lessons from

Netscape and its Battle with Microsoft, Free Press, 1998

5. Alan MacCormack and Roberto Verganti, “Managing the Sources Of Uncertainty:

Matching Process and Context in New Product Development”, EIASM Final draft

6. Nancy Staudenmayer and Michael A. Cusumano, “Alternative Designs for Product

Component Integration”, Sloan working paper #4021, April 1998

7. Tom Gilb, Principles of Software Engineering Management, Addison Wesley, 1988

8. Michael A. Cusumano and Chris F. Kemerer, “A Quantitative Analysis of U.S. and

Japanese Practice and Performance in Software Development”, Management Science,

November 1990, pp 1384-1406

9. Michael A. Cusumano and Richard W. Selby, “How Microsoft Builds Software”,

Communications of the ACM, June 1997, Vol.40 No.6, pp 53-61

10. Ian Sommerville, Software Engineering, 4th Edition, Addison Wesley, 1992

	List of Tables
	Table of Figures
	Chapter 1: Introduction
	1.1 Motivation:
	1.2 Existing methodologies and techniques common to software product development
	1.2.1 Sequential (Waterfall) Methodology:
	1.2.2 Iterative (Evolution) Methodology:
	1.2.3 Synch and Stabilize technique:

	Chapter 2: Research Methodology
	2.1 Questionnaire Development:
	2.2 Data collection:
	2.3 Variables (Context, Process and Outcome):
	2.3.1 Some of the contexts variables available from the research data:
	2.3.2 Some of the process variables available from the research data:
	2.3.3 Some of the outcome variables available from the research data:

	2.4 Generic project description (size, complexity etc):

	Chapter 3: Data Analysis
	3.1 Hypothesis and data analysis:
	3.2 Impact Of Market and Technical Feedback
	3.2.1 Hypothesis 1:
	3.2.2 Hypothesis 2:
	3.2.3 Hypothesis 3:
	3.2.4 Hypothesis 4:
	3.2.5 Hypothesis 5:
	3.2.6 Data Analysis to evaluate impact of market and technical feedback
	3.2.7 Sensitivity Analysis:
	3.2.8 Observations based on the data analysis for market and technical feedback:

	3.3 Impact of Separate Development Sub-Cycles
	3.3.1 Hypothesis 6:
	3.3.2 Hypothesis 7:
	3.3.3 Data Analysis to evaluate the impact of separate development sub-cycles
	3.3.4 Sensitivity Analysis:
	3.3.5 Observations based on the data analysis for separate development sub-cycles:

	3.4 Flexibility in Project Activities
	3.5 Impact of Code Reuse
	3.6 Impact of Frequent Synchronization
	3.7 Impact of Design and Code Reviews
	3.8 Impact of simple compile and link test vs. regression testing
	3.9 Relative emphasis of developers testing vs. QA staff testing code

	Chapter 4: Conclusions
	4.1 Current state of project practices:
	4.2 Practices for flexible product development:
	4.3 Limitations of the research:
	4.4 Next Steps:
	4.5 Areas for inclusion in the survey instrument (addition for future surveys):

	Appendix-A One Way ANOVA (Analysis Of Variance) Reports
	Appendix B – Survey Instrument
	References

