
52 www.agilerecord.com

The Skeptical View
We agree with the ideals of user stories, in the ‘Myths’ [1, Den-
ning & Cohn] discussed below, but do not agree at all to Myth
arguments given, that user stories are a good, sufficient or even
best way to achieve the ideals. We are going to argue that we
need to improve user stories for serious and large projects. It is
possible for trivial projects that user stories are sufficient tools.
	
Myth 1: User stories and the conversations provoked by them
comprise verbal communication, which is clearer than written
communication.
There may be occasions where good, conversational communica-
tion can help clear up bad written communication.
In fact we see a lot of really bad written ‘user needs’ communica-
tion; where we have measured the density of unintelligible words
at 30% to 90% and more. [3]
	
It should be possible to reduce defective written requirements
defects by two orders of magnitude, as our clients have done. [4]
A good written specification of any requirement type should be
so clear and comprehensive that it is not necessary, as it is as-
sumed with user stories, to have an oral conversation to clarify it.
The useful power of the well-written specification increases with
the frequency of referring to it, and the number of people that
need to interpret it.
	
Try to have a ‘conversation’ about the following example of a
story:
“We want the most intuitive system possible”
	
Now compare your conversation with a specification like [5]:

Intuitiveness:
Type: Quality Requirement
Stakeholders: Product Marketing, end users, trainers
Ambition Level: To make the intuitive and immediate application

of our product clearly superior to all competitive products at all
times.
Scale: average seconds needed for defined [Users] to Correctly
Complete defined [Tasks] defined [Help]
Goal [Deadline = 1st Release, Users = Novice, Tasks = Most
Complex, Help = {No Training, No Written References}] 10 sec-
onds ± 5 seconds <- Product Marketing Manager.
Correctly Complete: defined as: the result would not ever need to
be corrected as an error or as sub-optimal.
	
If there are any questions about this spec, then the answer
needs to be written down in the spec, for reference by all future
users of the specification. Not just ‘discussed’ orally, and forgot-
ten in practice.

Myth 2: “User stories represent a common language. They are
intelligible to both users and developers.”
User stories are not necessarily intelligible to all users, all devel-
opers, or any of them.
In fact it is very easy to prove that user stories are normally NOT
intelligible.
We use the ambiguity test to measure intelligibility, and ask any
available set of people to write down their personal interpretation
of the words in the spec. Try, for example, the following state-
ment:
“We want the most intuitive system possible”
How many words are potentially ambiguous? All.
We collect the interpretations, and you will find everybody has
quite different interpretations, none are identical.
	
An alternative way to prove unintelligibility is counting defects
in relation to the following standard using the Spec QC review
method. [3]
Rule 1: The specification will be clear enough to test. Not later,
but in itself! Now!
Rule 2: The specification will be unambiguous to all intended

User Stories: A Skeptical View

Gilb’s Mythodology Column

by Tom and Kai Gilb

53www.agilerecord.com

readers, anywhere, anytime (including lawyers, and expert wit-
nesses in your lawsuit).
Now using the spec
“We want the most intuitive system possible”
How many of the words potentially violate those rules?
My personal answer is 7, but even 1 disqualifies the spec as
useful.
	
Myth 3: “User stories are the right size for planning and prioritiz-
ing.”
We have no idea what this ‘right size’ assertion means. ‘Right
size’ is highly ambiguous to all readers, and cannot, as it stands,
be clear enough to test.
Let me give you my definition of ‘right size’, but before you read it,
write down your own, and compare them.
	
Right Size [Requirement]: defined as:
The size that is sufficient for all requirements purposes, with-
out any ‘In project’ supplements, at a cost that is lower than the
costs of dealing with defects in the statement later.
	
Hint: if that is a page of 60 lines in a clear and complete spec,
for a single critical requirement, to do that, then that is the right
size. If a one liner does the trick, fine. There is no point in over-
simplifying the requirement just to have the project fail after a
year, is there?
	
Myth 4: User stories are ideal for iterative development, which is
the nature of most software development.
User stories are a disaster for iterative development because you
cannot understand their incremental and final consequences;
you cannot measure evolutionary value delivery progress toward
such objectives.
The nature of software development should not be to ‘write use
cases’, stories, and functions, as some seem to believe. The Ag-
ile ideal is to deliver incremental value to stakeholders.[6]
	
Myth 5: “User stories help establish priorities that make sense to
both users and developers.”
Ambiguous unintelligible written stories are a logically bad basis
for determining the priority of that story for anyone.
Here is my idea of ‘priority’.
A potential increment will be prioritized based on ‘stakeholder
value for costs’, with ‘respect to risk’.
Ambiguous written stories do not admit numeric evaluation of
value for defined stakeholders, or of all cost aspects, or of all risk
aspects. [7]
Also a well-defined requirement can be evaluated for potential
value to stakeholders, it cannot be evaluated for cost. The cost
resides entirely in the design, and the design is in principle not
chosen yet!
Consequently you cannot choose best value for money with user
stories alone.
Try the story:
“We want the most intuitive system possible”
What is the cost?
You cannot have any useful idea of cost, because the require-
ment is so vague that you cannot even understand it fully, let

alone choose a best design at all; and you cannot cost a design
that is not chosen. It is illogical! [8, Estimation paper in SQP
March 2011]
In addition, until you know the specific design, you cannot under-
stand the risk of deviation from your objectives and costs [9], so
you cannot prioritize iterations with regard to risk either.
So, the prioritization argument for user stories is logically unrea-
sonable.
	
Myth 6: “The process enables transparency. Everyone under-
stands why.”
The arguments above, particularly the prioritization argument,
say no, everybody does not understand why.
They may feel they understand, but since the user story is incom-
plete and ambiguous, they cannot really understand anything;
for example anything about value, stakeholders, design, costs,
and risks.
There may be an illusion of understanding, but there is no ration-
ally defined understanding.
However, there may be social comfort if teams misunderstand it
together, but in non-transparently different interpretations.
That does not lead to value or system success, even for those
who thought they understood the consequences of the user story
choice. [10, Decision Rationale].
	
Summary:
If you think the user stories culture might be a problem for your
project domain, you may be right. Leading Agile leaders believe
we need something more relevant for the more demanding
project environments. User stories are useful at one level, but
‘too simple’, as a primary or sole tool, for many software and IT
environments. However, if they do work for you, there is no rea-
son to upgrade to more powerful tools, so don’t panic yet!
	
Who’re ya gonna call? The Myth Busters!
Tom and Kai Gilb, www.gilb.com

1.	 http://www.stevedenning.com/Business-Narrative/user-
stories-applied.aspx
Attributes of User Stories by Denning and Cohn.

2.	 http://en.wikipedia.org/wiki/User_story
3.	 Gilb, Agile Specification Quality Control:

http://www.gilb.com/tiki-download_file.php?fileId=264
in Testing Experience March 2009	
Agile SQC Paper Gilb, in Testing Experience	

4.	 DAC and Boeing experiences with aircraft design quality,
using Gilbs Inspection method (now called Spec QC [5] .
Case study.
http://www.gilb.com/tiki-download_file.
php?fileId=254	

5.	 Gilb, Tom (2005) Competitive Engineering: A Handbook for
Systems Engineering, Requirements Engineering, and Soft-
ware Engineering, Using Planguage, Elsevier Butterworth-
Heinemann. ISBN 0750665076.
Download of Chapter 10, Evolutionary Project Management
is available from http://www.gilb.com/tiki-download_file.
php?fileId=77
[Gilb 2005 b] Chapter 5 Scales of measure free sample

54 www.agilerecord.com

chapter
 http://www.gilb.com/tiki-download_file.php?fileId=26
[Both Chapters Accessed 3 January 2011].	

6.	 Gilb, Tom (2010c) Value-Driven Development Principles and
Values – Agility is the Tool, Not the Master. Agile Record,
July 2010, 3. Also available from:
http://www.gilb.com/tiki-download_file.php?fileId=431
	
See also part 2 of the paper at Part 2 “Values for Value”
 http://www.gilb.com/tiki-download_file.php?fileId=448
Agile Record 2010, www.agilerecord.com, October 2010,
Issue 4

7.	 Gilb and Maier, Managing Priorities.
http://www.gilb.com/tiki-download_file.
php?fileId=60	

8.	 Gilb Estimation or Control
http://homepage.mac.com/tomgilb/filechute/Estima-
tion%20or%20Control%202010%20MASTER.pdf
edit note, a major revision of this paper will be published
March 2011 in Software Quality Progress and we need
an updated reference to it. I can supply our edit of this on
request to readers. March 9 2011 tom gilb	

9.	 Gilb, Risk Management : A practical toolkit for identifying,
analyzing and coping with project risk.
http://www.gilb.com/tiki-download_file.php?fileId=20

10.	 Gilb, Decision Rationale: A Quantified Decision-Making
Basis Using Planguage, 2006
http://www.gilb.com/tiki-download_file.php?fileId=43

Tom Gilb and
Kai Gilb have,
together with
many professio-
nal friends and
clients, perso-
nally developed
the methods
they teach. The
methods have
been developed
over decades of
practice all over
the world in both
small companies

and projects, as well as in the largest companies and
projects.

Tom Gilb
Tom is the author of nine books, and hundreds of pa-
pers on these and related subjects. His latest book
‘Competitive Engineering’ is a substantial definition of
requirements ideas. His ideas on requirements are the
acknowledged basis for CMMI level 4 (quantification, as
initially developed at IBM from 1980). Tom has guest
lectured at universities all over UK, Europe, China, In-
dia, USA, Korea – and has been a keynote speaker at
dozens of technical conferences internationally.

Kai Gilb
has partnered with Tom in developing these ideas, hol-
ding courses and practicing them with clients since
1992. He coach managers and product owners, writes
papers, develops the courses, and is writing his own
book, ‘Evo – Evolutionary Project Management & Pro-
duct Development.’

Tom & Kai work well as a team, they approach the art
of teaching the common methods somewhat different-
ly. Consequently the students benefit from two different
styles.

There are very many organizations and individuals who
use some or all of their methods. IBM and HP were two
early corporate adopters. Recently over 6,000 (and gro-
wing) engineers at Intel have adopted the Planguage re-
quirements methods. Ericsson, Nokia and lately Symbi-
an and A Major Mulitnational Finance Group use parts
of their methods extensively. Many smaller companies
also use the methods.

> About the authors

