
The Magazine for Agile Developers and Agile Testers

© Tyler Olson - Fotolia.com

October 2010

issue 4www.agilerecord.com	 	free	digital	version	 	made	in	Germany



14 www.agilerecord.com

Values for Value
by Tom Gilb & Lindsey Brodie

©
 M

ikhail Tolstoy - Fotolia.com

The	Agile	Manifesto	(Agile	Manifesto,	2001)	has	its	heart	in	the	
right	place,	but	I	worry	that	its	advice	doesn’t	go	far	enough	to	
really	ensure	delivery	of	stakeholder	value.	For	instance,	its	first	
principle,	“Our highest priority is to satisfy the customer through 
early and continuous delivery of valuable software”	focuses	on	
“the	customer”	rather	than	the	many	stakeholders	whose	views	
all	need	consideration.	 It	also	places	 the	 focus	on	 the	delivery	
of	“valuable	software”	rather	 than	the	delivery	of	“value”	 itself	
(If	 still	 in	 doubt	 about	 such	 a	 focus,	 the	 Agile	Manifesto	 itself	
states	 “working	software”).	 These	are	 the	same	problems	 that	
have	been	afflicting	all	software	and	IT	projects	long	before	agile	
appeared:	too	‘programmer-centric’.	Code	has	no	value	in	itself;	
it	is	perfectly	possible	to	deliver	bug-free	code	of	little	value.	We	
can	deliver	software	functions,	as	defined	in	the	requirements,	to	
the	‘customer’	–	but	still	totally	fail	to	deliver	critical	value	to	the	
many	critical	stakeholders.
I	should	probably	at	this	point	mention	that	I	do	agree	with	many	
of	 the	 ideals	of	 the	agile	 community.	 After	 all,	my	1988	book,	
‘Principles	 of	 Software	 Engineering	Management’	 (Gilb,	 1988)	
has	been	recognized	as	a	source	for	some	of	their	ideas.	I	also	
count	several	of	the	‘Agilistas’	as	friends.	It	is	just	that	what	I	see	
happening	in	everyday	agile	practices	leads	me	to	believe	a	more	
explicit	formulation	is	needed.	So	in	this	article,	I	set	out	my	set	
of	values	–	modified	from	the	Agile	values	-	and	
provide	 ten	 associated	 guidelines	 for	 delivering	
value.	Feel	free	to	update	them	and	improve	them	
as	you	see	the	need.
Perhaps	 a	 distinction	 between	 ‘guidelines’,	 ‘val-
ues’	and	‘value’	is	in	place.	‘Guidelines’	or	‘prin-
ciples’	 provide	advice:	 ‘follow	 this	 guideline	and	
things	will	probably	turn	out	better’.	 ‘Values’	are	
deep-seated	 beliefs	 of	 what	 is	 right	 and	wrong,	
and	 provide	 guidance	 as	 to	 how	 to	 consider,	 or	
where	 to	 look	 for	 value.	 ‘Value’	 is	 the	 potential	
perceived	 benefit	 that	will	 result	 from	 some	 ac-
tion	(for	example,	the	delivery	of	a	requirement)	or	
thing.	For	example,	you	might	follow	the	guideline	
of	always	buying	from	a	known	respected	source.	

Your	values	concerning	financial	affairs	and	the	environment	will	
probably	 influence	what	you	buy.	Your	perceived	or	actual	ben-
efits	of	what	you	will	gain	from	your	purchases	(say,	more	time,	
lower	costs,	and	increased	satisfaction)	reflect	their	value	to	you.	
Here	then	is	a	summary	of	my	values	for	building	IT	systems	–	ag-
ile	or	not!	These	values	will	necessarily	mirror	to	some	degree	the	
advice	given	in	the	principles	set	out	in	an	earlier	article	(Gilb	&	
Brodie,	2010),	but	I	will	try	to	make	a	useful	distinction	between	
them.	I	consider	there	are	four	core	values	–	simplicity, commu-
nication, feedback, and courage.

Simplicity
1. Focus on delivering real stakeholder value
I	believe	in	simplicity.	Some	of	our	software	methods,	like	CMMI	
(Capability	 Maturity	 Model	 Integrated)	 have	 become	 too	 com-
plicated.	 See	 for	 example,	 (CMMI,	 2008).	 Agile	 is	 at	 least	 a	
healthy	reaction	to	such	extremes.	But	sometimes	the	pendulum	
swings	too	far	in	the	opposite	direction.	Einstein	was	reputed	to	
have	said	(but	nobody	can	actually	prove	it!	(Calaprice,	2005)),	
“Things”	(like	software	methods)	“should	be	as	simple	as	possi-
ble,	but	no	simpler”.	My	main	argument	with	agile	practice	today	
is	that	we	have	violated	that	sentiment.	We	have	oversimplified.	
The	main	fault	is	in	the	front	end	to	the	agile	process:	the	require-

Part	2	of	2:
Some Alternative Ideas On Agile Values For Delivering Stakeholder Value
(Part	1,	Value-Driven Development Principles and Values – Agility is the Tool, Not the 
Master,	last	issue)

Figure 1. Value to stakeholders: most agile practices today usually fail to identify or clarify all the 
stakeholders, and their stakeholder value!



15www.agilerecord.com

ments.	 The	current	agile	practices	put	 far	 too	much	emphasis	
on	user,	use	cases	and	functions.	They	say	‘value’	and	they	say	
‘customer’,	but	they	do	not	teach	or	practice	this	in	a	reasonable	
way	for	most	real	projects.	They	are	‘too	simple’.	
I’ll	return	to	discuss	this	point	later,	but	one	of	the	main	failings	
of	the	agile	process	is	not	recognizing	that	setting	the	direction	–	
especially	stating	the	qualities	people	want	and	the	benefits	(the	
received	value)	they	expect	when	they	invest	in	an	IT	system	–	is	
key.	 Iterative	and	 incremental	development	without	such	direc-
tion	is	much	less	effective.

If	you	want	to	address	this	failing,	then	the	simplest	thing	you	can	
do	 is	 to	 identify	and	deal	with	the	top	few	dozen	critical	stake-
holders	of	your	system.	To	deal	with	‘the	user’	and/or	‘the	cus-
tomer’	only	is	‘too	simple’.	The	‘top	few	critical	stakeholders’	can	
be	brainstormed	in	less	than	30	minutes,	and	refined	during	the	
project,	as	experience	dictates.	It	is	not	a	heavy	‘overhead’.	It	is	
one	of	the	necessities	for	project	success.

The	next	step	is	to	identify	the	primary	and	critical	quality	require-
ments	of	each	stakeholder.	As	a	rough	measure,	brainstorming	
this	to	get	an	initial	reasonable	draft	is	an	hour’s	work	for	a	small	
group.	For	example:
End Users:	Easy	To	Learn,	Easy	To	Use,	Difficult	to	Make	Errors,	
Fast	System	Response,	Reliable.
Financial Admin:	Up-to-Date,	Accurate,	Connectivity	 to	Finance	
Systems.
IT Maintenance:	 Easy	 to	 Understand,	 Easy	 to	 Repair,	 Defect-
Free.

Note:	 this	 is	 just	 a	 start!	We	 need	 to	 define	 the	 requirements	
well	enough	to	know	if	designs	will	work	and	if	projects	are	mea-
surably	delivering	value	incrementally!	The	above	‘nice	sounding	
words’	are	‘too	simple’	for	success.	For	brevity,	I’m	not	going	to	
explain	 about	 identifying	 scales	 of	measure	and	 setting	 target	

quality	 levels	 in	 this	paper,	see	(Gilb,	2005:	especially	Chapter	
5)	for	further	detail.
You	can	refine	the	list	of	quality	requirements	as	experience	dic-
tates.	You	can	also	often	reuse	 lists	of	stakeholders,	and	their	
known	quality	requirements	in	other	projects	within	your	domain.
Doing	this	is	NOT	a	heavy	project	overhead.	The	argument	is	that	
both	exercises	(identifying	the	stakeholders	and	their	quality	re-
quirements)	save	time	and	aid	successful	project	completion.	It	
is	part	of	 ‘the	simplest	path	to	success’.	There	are,	by	 implica-
tion,	even	simpler	paths	to	failure:	just	don’t	worry	about	all	the	
stakeholders	initially	–	but	they	will	‘get	you’	later.	

Communication
Now	we	 come	 to	my	 second	 value,	 communication.	 I	 am	 sure	
we	all	believe	in	‘good	communication’,	and	I	suspect	most	peo-
ple	are	probably	under	 the	 illusion	 that	 ‘communication	 is	not	
perfect,	but	it	is	pretty	good,	maybe	good	enough’.	However,	my	
experience	worldwide	in	the	IT/software	industry	is	that	commu-
nication	is	typically	poor.	

2. Measure the quality of communication quantitatively
I	have	a	simple	way	of	measuring	communication	that	never	fails	
to	surprise	managers	and	technical	people	alike.	I	use	a	simple	
(5	to	30	minutes)	specification	quality	control	(SQC)	exercise,	on	
‘good	requirements’	of	their	choice.	See	(Gilb	&	Graham,	1993;	
Gilb,	2005:	Chapter	10)	for	further	detail	on	this	method.
SQC	is	a	really	simple	way	to	measure	communication.	I	just	ask	
the	participants	to	look	at	a	selected	text	of	100	to	300	words.	I	
prefer	the	‘top	level	most	critical	project	requirements’	(because	
that	will	be	most	dramatic	when	they	are	shown	to	be	bad!).	I	get	
their	agreement	to	3	rules:

1.	 The	 text	 (words	 and	 phrases)	 should	 be	unambiguous to 
the intended readership

2.	 The	text	should	be	clear enough to test	successful	delivery	

Figure 2. Some examples of stakeholders: the source is re-crear.org, a voluntary-sector client of the author



16 www.agilerecord.com

of	it.
3.	 The	‘objectives’	should	not specify proposed designs or ar-

chitecture	for	getting	to	our	objectives.	

The	participants	have	to	agree	that	these	rules	are	logically	nec-
essary.	I	then	ask	them	to	spend	5	to	30	minutes	identifying	any	
words,	terms	or	phrases,	which	fail	these	rules.	And	ask	them	to	
count	the	number	of	such	failures	(the	‘specification	defects’).
I	then	collect	the	number	of	defects	found	by	each	participant.	
That	is	in	itself	enough.	In	most	cases,	everyone	has	found	‘too	
many’	defects:	typically	5	to	40	defects	per	100-300	words.	So	
this	written	communication	–	though	critical	-	is	obviously	‘bad’.	
Moreover,	 it	 gets	even	more	serious	when	 you	 realize	 that	 the	
best	defect	finder	 in	a	group	probably	does	not	find	more	 that	
1/6	of	the	defects	actually	provably	there,	and	a	small	team	finds	
only	1/3	of	them!	(Gilb	&	Graham,	1993).
The	sad	thing	is	that	this	poor	communication	is	pervasive	within	
IT	projects,	and	clear	communication	(we	can	define	this	as	“less	
than	one	defect	per	300	words	potentially	remaining,	even	if	un-
identified”)	 is	 exceptional.	 Clear	 communication	 is	 in	 fact	 only	

the	 result	of	persistent	management	attention	 to	 reducing	 the	
defects.	One	of	my	clients	managed	to	reduce	their	level	of	major	
defects	per	page	from	82	to	10	in	6	months.	The	documentation	
of	most	 IT	projects	 is	at	about	100-200	defects	per	page,	and	
many	in	IT	do	not	even	know	it.	

3. Estimate expected results and costs in weekly steps and 
get quantified measurement feedback on your estimates the 
same week
My	experience	of	humans	 is	 that	 they	are	not	good	at	making	
estimates	for	IT	systems:	for	example,	at	estimating	project	costs	
(Gilb,	2010a).	In	fact,	rather	than	estimating,	it	is	far	simpler	and	
more	accurate	to	observe	what	happens	to	the	cost	and	quality	
attributes	of	actual,	real	systems	as	changes	are	introduced.
One	great	benefit	with	evolutionary	projects	(which	include	both	
iterative	cycles	of	delivery	and	feedback	on	costs	and	capability,	
and	the	incrementing	of	system	capability)	is	that	we	can	let	the	
project	inform	us	about	what’s	actually	happening,	and	we	can	
then	 relate	 that	 to	 our	 estimated	 quality	 levels	 and	 estimated	
incremental	costs:	we	can	learn	from	unexpected	deviation	from	

Figure 3. Extract from a case study at Confirmit.



17www.agilerecord.com

plans	how	good	we	are	at	estimating	(Gilb,	2005:	Chapter	10).	
However,	in	order	to	support	evolutionary	project	measurement,	
we	have	to	do	better	than	the	typical	way	of	measuring	–	that	is,	
better	than	using	the	rate	of	user	story	‘burn-down’.	We	have	to	
measure	 the	 real	 top-level	stakeholder	value	 that	 is	being	pro-
duced	(or	not).	Yet	most	 IT	projects	fail	 to	specify	upfront	what	
stakeholder	value	 is	expected.	 In	such	a	situation,	 it	 is	difficult	
to	learn.

To	give	an	example	of	better	communication,	see	Figure	3,	which	
is	an	extract	 from	a	 case	study	at	Confirmit	 (Johansen	&	Gilb,	
2005).	Using	the	Evo	Agile	method,	4	small	development	teams	
with	 13	 developers	 in	 total	 worked	 on	 a	 total	 of	 25	 top-level	
critical	software	product	requirements	for	a	12-week	period	with	
weekly	delivery	cycles.	Figure	3	is	a	snapshot	of	cycle	9	of	12.	If	
you	look	at	the	“%”	under	“Improvements”,	you	can	see	that	they	
are	on	track	to	meeting	the	required	levels	for	delivery	–	which	
in	fact	they	are	very	good	at	doing.	This	is	a	better	way	of	track-
ing	project	progress	than	monitoring	user	story	burn-down	rates	
-	they	are	directly	tracking	delivery	of	the	quality	requirements	of	
their	stakeholders.

Feedback
4. Install real quantified improvements for real stakehold-

ers, weekly
I	 value	getting	 real	 results.	Tangible	benefits	 that	stakeholders	
want!	I	value	seeing	these	benefits	delivered	early	and	frequently.
I	have	seen	one	project	where	user	stories	and	use	cases	were	
delivered	 by	 an	 experienced	 Scrum	 team,	 systems	 develop-
ment	successfully	delivered	 their	code,	but	 there	was	 just	one	
‘small’	problem	-	the	stakeholder	business	found	that	their	sales	
dropped	dramatically	as	soon	as	the	fine	new	system	was	deliv-
ered	(Kai	Gilb,	2009).	Why?	It	was	taking	about	300	seconds	for	
a	customer	to	find	the	right	service	supplier.	Nobody	had	tried	to	
manage	that	aspect.	After	all,	computers	are	so	fast!	The	problem	
lay	in	the	total	failure	to	specify	the	usability	requirements	quan-
titatively.	For	example,	there	should	have	been	a	quality	require-
ment,	 ‘maximum	
time	 to	 find	 the	
right	 supplier	 will	
be	 30	 seconds,	
and	 average	 10	
seconds’.	The	sys-
tem	 needed	 bet-
ter	 requirements	
specified	 by	 the	
business,	 not	 the	
Scrum	 team.	 As	
it	was,	the	project	
‘succeeded’	 and	
delivered	 to	 the	
wrong	 require-
ments:	 the	 code	was	 bug-free,	 but	 the	 front	 end	was	 not	 suf-
ficiently	 usable.	 It	 was	 actually	 a	management	 problem,	 not	 a	
programming	problem.	It	required	several	levels	of	management	
value	analysis	above	the	developer	level	to	solve!
Stakeholders	do	not	EVER	value	function	(user	stories	and	use	
cases)	alone.	They	need	suitable	quality	attributes	delivered,	too.	

Traditional	agile	practice	needs	to	take	this	on	board.
It	 is	 also	 very	 healthy	 to	 prove	 that	 you	 can	 deliver	 real	 value	
incrementally,	not	just	assume	that	user	stories	are	sufficient	–	
they	are	NOT.	Such	real	value	delivery	means	that	we	must	apply	
total	systems	thinking:	people,	hardware,	business	processes	 -	
much	more	than	code.

5. Measure the critical aspects in the improved system, 
weekly.

Some,	in	fact	most	developers	seem	to	never	ever	measure	the	
critical	aspects	of	their	system!	And	we	wonder	why	our	IT	system	
failure	rates	are	notoriously	high!
Some	developers	may	carry	over	to	agile	a	Waterfall	method	con-
cept	of	measuring	critical	quality	attributes	(such	as	system	per-
formance)	only	at	the	end	of	a	series	of	delivery	cycles	-	before	
a	major	handover,	or	 contractual	handover.	 I	 think	we	need	 to	
measure	(test)	some	of	the	critical	quality	attributes	every	weekly	
cycle.	That	is	we	measure	any	of	the	critical	quality	attributes	that	
we	think	could	have	been	impacted,	and	not	just	the	ones	we	are	
targeting	for	improvement	in	the	requirements.
Measurement	need	not	be	expensive	for	short-term	cycles.	We	
can	use	appropriate	simplification	methods,	such	as	sampling,	to	
give	early	indications	of	progress,	the	order	of	magnitude	of	the	
progress,	and	any	possible	negative	side	effects.	This	is	known	
as	good	engineering	practice.
The	Confirmit	project	(Johansen	&	Gilb,	2005),	for	example,	sim-
ply	decided	they	would	spend	no	more	than	30	minutes	per	week	
to	get	a	rough	measure	of	the	critical	quality	attributes.	So	they	
measured	a	few,	each	week.	That	worked	for	them.

6. Analyze deviations from value and cost estimates
The	 essence	 of	 ‘feedback’	 is	 to	 learn	 from	 the	 deviation	 from	
your	expectations.	This	requires	using	numbers	 (quantification)	
to	specify	requirements,	and	it	requires	measuring	numerically,	
with	enough	accuracy	to	sense	interesting	deviations.	To	give	an	
example,	 see	Figure	4,	which	 is	 from	 the	Confirmit	 case	study	
previously	mentioned.

Figure 4. Another extract from the Confirmit case study

In	this	case	when	the	impact	of	the	‘Recoding’	design	deployed	
in	Step	9	was	almost	twice	as	powerful	as	expected	(actual	95%	
of	 the	 requirement	 level	was	met	as	opposed	 to	 the	50%	 that	
was	estimated),	 the	project	 team	was	able	 to	 stop	working	on	



18 www.agilerecord.com

the	Productivity	attribute	and	focus	their	attention	for	the	3	re-
maining	 iterations	before	 international	 release	on	the	other	re-
quirements,	like	Intuitiveness,	which	had	not	yet	met	their	target	
levels.	The	weekly	measurements	were	carried	out	by	Microsoft	
Usability	Labs.	This	 feedback	 improved	Confirmit’s	ability	 to	hit	
or	exceed	almost	all	value	targets,	almost	all	the	time.	I	call	this	
‘dynamic	prioritization’.
You	 cannot	 learn	 about	 delivery	 of	 the	 essential	 stakeholder	
quality	attributes	any	other	way	–	it	has	to	be	numeric.	However,	
numeric	 feedback	 is	hardly	mentioned,	and	hardly	practiced	 in	
agile	systems	development.	Instead,	we	have	‘apparent	numer-
acy’	by	 talking	about	velocity	and	burn-down	rates	–	 these	are	
indirect	measures.	
All	 the	quality	attributes	 (‘-ilities’,	 like	 reliability,	usability,	 secu-
rity)	or	work	capacity	attributes	(throughput,	response	time,	stor-
age	capacity)	are	quantifiable	and	measurable	in	practice	(Gilb,	
2005:	Chapter	5),	 though	few	developers	are	trained	to	under-
stand	 that	 about	 the	 ‘quality’	 requirements	 (For	 example,	 ask	
how	they	measure	‘usability’).	

Courage
Courage	 is	needed	to	do	what	 is	right	 for	 the	stakeholders,	 for	
your	organization,	and	for	your	project	team	–	even	if	there	are	
strong	pressures	(like	the	deadline)	operating	to	avoid	you	doing	
the	right	thing.	Unfortunately,	I	see	few	signs	of	such	courage	in	
the	 current	agile	 environment.	 Everybody	 is	 happy	 to	 go	along	
with	a	weak	interpretation	of	some	agile	method.	Many	people	
don’t	seem	to	care	enough.	If	things	go	too	badly	–	get	another	
job.	If	millions	are	wasted	–	who	cares,	‘it’s	not	my	money’.	But	
if	the	project	money	were	your	money,	would	you	let	things	con-
tinue	 as	 they	 are?	 Even	when	 your	 family	 home	 is	 being	 fore-
closed	on,	and	you	cannot	feed	or	clothe	your	children	very	well,	
because	your	project	is	$1	million	over	budget?

7. Change plans to reflect quantified learning, weekly
One	capability,	which	is	implicit	 in	the	basic	agile	notion,	is	the	
ability	to	change	quickly	from	earlier	plans.	One	easy	way	to	do	
this	 is	 to	have	no	plans	at	all,	but	 that	 is	a	bit	extreme	 for	my	
taste.	
The	feedback	we	get	numerically	and	iteratively	should	be	used	
to	 attack	 ‘holy	 cows’.	 For	 example,	 say	 the	 directors,	 or	 other	
equally	powerful	forces	in	the	organization,	had	agreed	that	they	
primarily	 wanted	 some	 particular	 quantified	 quality	 delivered	
(say,	 ‘Robustness’),	 and	 it	was	 clear	 to	 you	 from	 the	 feedback	
that	a	major	architectural	idea	supported	by	these	directors	was	
not	at	all	delivering	on	the	promise.	Courage	would	be	to	attack	
and	change	the	architectural	idea.
Of	 course,	 one	 problem	 is	 that	 these	 same	 directors	 are	 the	
main	culprits	in	NOT	having	clear	numeric	critical	objectives	for	
the	quality	values	of	the	system.	The	problem	is	that	they	are	not	
even	trained	at	Business	School	to	quantify	qualities	(Hopper	&	
Hopper,	2007),	and	the	situation	may	be	as	corrupt	or	political	
as	described	 in	 ‘Plundering	 the	Public	Sector’	 (Craig	&	Brooks,	
2006).
In	my	experience,	 however,	 the	major	 problem	 is	 closer	 to	 the	
project	 team,	 and	 is	 not	 corruption	 or	 politics,	 or	 even	 lack	 of	
caring.	It	is	sheer	ignorance	of	the	simple	fact	that	management	
must	primarily	 drive	projects	 from	a	quantified	 view	of	 the	 top	
critical	 objectives	 (Gilb,	 2008b).	 Intelligent,	 but	 ignorant:	 they	
might	be	‘champions’	in	the	area	of	financial	budgets,	but	they	
are	‘children’	when	it	comes	to	specifying	quality.

One	lesson	I	have	learned,	which	may	surprise	most	people,	 is	
that	it	seems	if	you	really	try	to	find	some	value	delivery	by	the	
second	week	and	every	week	thereafter,	you	can	do	it.	No	matter	
what	the	project	size	or	type.	The	‘big	trick’	 is	that	we	are	NOT	
constructing	a	large	complex	system	from	scratch.	We	invariably	
leverage	off	of	existing	systems,	even	those	that	are	about	to	be	

Figure 5. Concepts of weekly delivery cycles with stakeholder feedback. From HP, a client applying the Evo 
method on a large scale (Cotton 1996; May & Zimmer 1996; Upadhyayula, 2001)



20 www.agilerecord.com

retired,	which	 need	 improvement.	We	make	 use	 of	 systematic	
decomposition	 principles	 (Gilb,	 2010b;	 2008a;	 2005:	 Chapter	
10).	The	big	trick	is	to	ignore	the	‘construction	mode’	that	most	
developers	have,	and	focus	instead	on	the	‘stakeholder	value	de-
livery’	mode.

Figure 6. Evo decomposition policies

See	Figure	6	(Gilb,	2010b)	for	my	advice	to	top	managers,	when	
they	ask	me	how	 they	 can	 support	deploying	 the	Evo	method,	
and	getting	rapid	results:	put	in	place	these	decomposition	poli-
cies	as	guidance.	Demand	this	practice	from	your	development	
teams.	If	they	complain,	re-train	or	re-place.	No	excuses!	They	will	
just	delay	necessary	results	if	not	led	by	management.	History	is	
clear.	

8. Immediately implement the most-valued stakeholder 
needs by next week

Don’t	wait,	don’t	study	(analysis	paralysis),	and	don’t	make	ex-
cuses.	Just	do	it!	This	attitude	really	 is	courageous.	In	develop-
ment	environments,	where	managers	are	traditionally	happy	to	
wait	years	with	no	results	at	all,	it	takes	courage	to	suggest	we	
should	try	to	start	delivering	the	value	stream	immediately	and	
continuously.	 It	 is	 rather	revolutionary.	Yet	surely	no	one	would	
argue	it	is	not	desirable?	
Part	of	being	courageous	 is	having	 the	courage	 to	say	you	are	
sure	we	will	succeed	in	finding	small	(weekly)	high-value	delivery	
increments.	The	issue	is	that	most	people	have	no	training	and	
no	theory	for	doing	this.	Most	people	have	never	seen	it	happen	
in	practice.	Agile	developers	have	now	a	widely	established	prac-
tice	of	delivery	of	functionality	(user	stories)	in	small	increments.	
That	is	a	start,	culturally,	towards	breaking	work	down	into	small-
er	timescales.	But	as	I	pointed	out	earlier	(several	times!),	func-
tions	are	not	the	same	thing	as	value	delivery	to	stakeholders.
Assuming	you	can	deliver	reasonable	value	for	the	effort	spent	
(the	costs)	-	week	after	week	–	a	surprising	thing	happens:
•	 People	cease	to	care	about	‘the	deadline’
•	 People	cease	to	ask	for	estimates	of	the	monetary	budget
•	 You	are	strongly	encouraged	to	keep	on	going,	until	value	is	

less	than	costs
•	 You	end	up	delivering	far	more	real	value	than	other	projects	

do,	well	before	‘the	deadline’	(that	would	have	been	set,	and	
would	have	been	overrun)

•	 Management	shifts	focus	from	budget	and	costs	to	return	
on	investment	(ROI)

I	 sometimes	 simplify	 this	method	 by	 calling	 it	 the	 ‘1.1.1.1.1.1’	
method,	or	maybe	we	could	call	it	the	‘Unity’	method:

Plan,	in	1	week
To	deliver	at	least	1%

Of	at	least	1	requirement
To	at	least	1	real	stakeholder
Using	at	least	1	design	idea,

On	at	least	1	function	of	the	system.
The	practical	power	of	this	simple	idea	is	amazing.	If	you	really	
try,	and	management	persists	in	providing	encouragement	and	
support,	it	almost	always	works.	It	sure	beats	waiting	for	weeks,	
months,	and	years,	and	‘nothing	happens’	of	any	real	value	for	
stakeholders.
As	a	consultant,	I	always	have	the	courage	to	propose	we	do	this,	
and	the	courage	to	say	I	know	our	team	will	find	a	way.	Manage-
ment	is	at	least	curious	enough	to	let	us	try	(it	costs	about	a	week	
or	two).	And	it	always	works.	Management	does	not	always	actu-
ally	go	for	real	delivery	the	second	week.	There	can	be	political,	
cultural	and	contractual	constraints,	but	they	get	the	point	that	
this	is	predictably	doable.
Delivering	value	to	 ‘customers’	 is	 in	 fact	what	 the	agile	people	
have	declared	they	want	to	do,	but	in	my	view	they	never	really	
took	sufficient	steps	to	ensure	that.	Their	expression	of	value	is	
too	implicit,	and	(of	course!)	the	focus	should	be	on	all	the	stake-
holders.	

9. Tell stakeholders exactly what quantified improvement 
you will deliver next week (or at least next release!)

Confirmit	used	impact	estimation	(IE)	[4,	10,	19]	to	estimate	what	
value	would	be	delivered	 the	next	week	 (see	Figure	3).	 I	 think	
they	did	not	directly	 tell	 the	affected	stakeholders	what	quality	
levels	they	predicted.	However,	most	of	the	stakeholders	got	to	
see	 the	 actual	 delivered	 results	 each	 quarter.	 And	 the	 results	
were	incredibly	good.	In	fact,	once	Confirmit	realized	they	could	
continually	get	such	great	improvements,	they	did	brag	about	it	
numerically	on	their	website!	
Since	it	 is	quite	unpredictable	to	fully	understand	what	precise	
quality	improvements	are	going	to	result	and	when,	it	is	perhaps	
foolhardy	 (rather	 than	courageous)	 to	announce	 to	 your	 stake-
holders	precisely	what	they	are	going	to	get	weekly/fortnightly/
monthly	in	the	next	cycle.	However,	based	on	your	understanding	
of	the	improvements	you	are	getting	each	cycle,	it	is	safe	to	an-
nounce	what	improvements	in	value	you	were	going	to	deliver	in	
the	next	major	release!

10. Use any design, strategy, method or process that works 
well quantitatively in order to get your results

Be	a	systems	engineer,	not	a	just	a	programmer	(a	‘softcrafter’	
(Gilb,	1988)).	Have	the	courage	to	do	whatever	it	takes	to	deliver	
first-class	results!
In	current	agile	software	practices,	the	emphasis	is	on	program-
ming,	and	coding.	Design	and	architecture	often	mean	only	the	
program	logic	and	the	application	architecture.	Agile	developers	

Policies for Evo Decomposition

•	 PP1:	Budget:	No	Evo	cycle	shall	exceed	2%	of	total	
budget	before	delivering	measurable	 results	 to	a	
real	environment.

•	 PP2:	Deadline:	No	Evo	cycle	will	exceed	2%	of	total	
project	time	(that’s	one	week,	for	a	one-year	proj-
ect)	before	 it	demonstrates	practical	measurable	
improvement,	of	the	kind	you	targeted.

•	 PP3:	 Priority:	 Evo	 cycles	 which	 deliver	 the	 most	
‘planned	value’	to	stakeholders,	for	the	‘resources	
they	 claim’,	 shall	 be	 delivered	 first,	 to	 the	 stake-
holders.	Do	the	juicy	bits	first!



21www.agilerecord.com

often	do	not	include	in	their	design	aspects	such	as	maintenance,	
system	porting,	 training,	motivation,	contractual	deals,	working	
practices,	responsibility,	operations	and	all	other	elements	of	a	
real	system.	They	seem	narrowly	focused	on	their	code.	In	fact,	
as	I	have	discussed	earlier,	they	focus	on	the	code

functionality,	 and	 not	 even	 the	 code	 qualities!	 Listen	 to	 them	
write,	speak,	and	tweet	–	 it	 is	all	about	code,	user	stories	and	
use	cases.	In	order	to	get	competitive	results,	someone	else	–	a	
real	systems	engineer	-	will	have	to	take	over	the	overall	respon-
sibility.	

Summary
Agile	development	embraces	much	that	is	good	practice:	moving	
to	rapid	iteration	is	a	‘good	thing’.	However,	it	fails	to	worry	suf-
ficiently	about	setting	and	monitoring	the	direction	for	projects,	
and	 instead	 concentrates	 on	 programmer-focused	 interests,	
such	as	use	cases	and	functions.	It	fails	to	adequately	address	
multiple	stakeholders	and	achievement	of	real,	measured	stake-
holder	 value.	 Instead	 it	 has	 ‘solo’	 product	 owners	 and	 implicit	
stakeholder	 value.	Here	 in	 this	 article,	 I	 have	presented	 some	
ideas	about	what	really	matters	and	how	agile	systems	develop-
ment	needs	to	change	to	improve	project	delivery	of	stakeholder	
value.
Systems	engineering	is	still	a	young	discipline.	The	software	com-
munity	has	now	seen	many	failed	fads	come	and	go	over	the	last	
50	years.	Maybe,	it	 is	time	to	review	what	has	actually	worked.	
After	all,	we	have	many	experienced	intelligent	people:	we	ought	
to	be	able	to	do	better.	I	think	we	need	to	aim	to	get	the	IT	project	
failure	 rate	 (challenged	44%	and	 total	 failure	24%)	down	 from	
about	68%	(Standish,	2009)	to	less	than	2%.	Do	you	think	that	

might	be	managed	by	my	80th	birthday?	■

Acknowledgments
Thanks	are	due	to	Lindsey	Brodie	for	editing	this	article.

References
Alice	 Calaprice	 (Editor)	 (2005)	 “The	 New	 Quotable	 Einstein”,	
Princeton	University	Press.	

Agile	 Manifesto	 (2001).	 See	 http://agilemanifesto.org/princi-
ples.html	[Last	Accessed:	September	2010].

Todd	Cotton	 (1996)	 “Evolutionary	 Fusion:	 A	Customer-Oriented	
Incremental	Life	Cycle	for	Fusion.”	See	http://www.hpl.hp.com/
hpjournal/96aug/aug96a3.pdf

Daniel	Craig	and	Richard	Brooks	 (2006)	Plundering	 the	Public	
Sector,	Constable.

Kai	Gilb	(2009)	A	Norwegian	Post	case	study.	See	http://www.
gilb.com/tikidownload_file.php?fileId=277

Tom	Gilb	(2010a)	Estimation	or	Control.	Draft	paper,	see	http://
www.gilb.com/tiki-download_file.php?fileId=433

Tom	 Gilb	 (2010b)	 Decomposition.	 A	 set	 of	 slides,	 see	 http://
www.gilb.com/tiki-download_file.php?fileId=350	

Tom	 Gilb	 (2008a)	 “Decomposition	 of	 Projects:	 How	 to	 Design	
Small	 Incremental	 Steps”,	 Proceedings	 of	 INCOSE	 2008.	 See	
http://www.gilb.com/tiki-download_file.php?fileId=41

Figure 7. A ‘Competitive Engineering’ view of systems engineering (Gilb, 2005). This shows a set of processes and artifacts needed within systems engineering.



22 www.agilerecord.com

Tom	 Gilb	 (2008b)	 “Top	 Level	 Critical	 Project	 Objectives”.	
Set	 of	 slides,	 see	 http://www.gilb.com/tiki-download_file.
php?fileId=180

Tom	Gilb	(2005)	Competitive	Engineering,	Elsevier	Butterworth-
Heinemann.	For	Chapter	10,	Evolutionary	Project	Management,	
see	 http://www.gilb.com/tiki-download_file.php?fileId=77/	 For	
Chapter	 5,	 Scales	 of	 Measure,	 see	 http://www.gilb.com/tiki-
download_file.php?fileId=26/

Tom	 Gilb	 (1988)	 Principles	 of	 Software	 Engineering	 Manage-
ment,	Addison-Wesley.

Tom	 Gilb	 and	 Lindsey	 Brodie	 (2010)	 “What’s	 Fundamentally	
Wrong?	 Improving	 our	 Approach	 Towards	 Capturing	 Value	 in	
Requirements	Specification”.	See	http://www.requirementsnet-
work.com/node/2544#attachments	[Last	Accessed:	September	
2010].

Tom	Gilb	and	Dorothy	Graham	(1993)	Software	Inspection,	Ad-
dison-Wesley.

CMMI	(2008)	“CMMI	or	Agile:	Why	Not	Embrace	Both!”,	Software	
Engineering	 Institute	 (SEI).	 See	 http://www.sei.cmu.edu/pub/
documents/08.reports/08tn003.pdf	 [Last	 Accessed:	 Septem-
ber	2010].

Kenneth	Hopper	and	William	Hopper	(2007)	“The	Puritan	Gift”,	I.	
B.	Taurus	and	Co.	Ltd..

Trond	 Johansen	 and	 Tom	 Gilb,	 From	Waterfall	 to	 Evolutionary	
Development	 (Evo):	How	we	 created	 faster,	more	user-friendly,	
more	productive	software	products	for	a	multi-national	market,	
Proceedings	 of	 INCOSE,	 2005.	 See	 http://www.gilb.com/tiki-
download_file.php?fileId=32

Elaine	 L.	 May	 and	 Barbara	 A.	 Zimmer	 (1996)	 “The	 Evolution-
ary	Development	Model	for	Software”,	Hewlett-Packard	Journal,	
August	1996,	Vol.	47,	No.	4,	pages	39-45.	See	http://www.gilb.
com/tiki-download_file.php?fileId=67/

The	Standish	Group	(2009)	“Chaos	Summary	2009”.	See
http://www.standishgroup.com/newsroom/chaos_2009.php	
[Last	Accessed:	August	2010].

Sharma	 Upadhyayula	 (2001)	 MIT	 Thesis:	 “Rapid	 and	 Flex-
ible	Product	Development:	An	Analysis	of	Software	products	at	
Hewlett	 Packard	 and	 Agilent”.	 See	 supadhy@mit.edu.	 http://
www.gilb.com/tiki-download_file.php?fileId=65

Tom Gilb
 (born 1940, California) has 

lived in UK since 1956, 
and Norway since 1958. 
He is the author of 9 pub-
lished books, including 
Competitive	Engineering:	A	
Handbook	For	Systems	En-
gineering,	 Requirements	
Engineering,	and	Software	
Engineering	 Using	 Plan-

guage, 2005. He has taught and consulted world-wide 
for decades, including having direct corporate methods-
change influence at major corporations such as Intel, 
HP, IBM, Nokia. He has had documented his founding 
influence in Agile Culture, especially with the key com-
mon idea of iterative development. He coined the term 
‘Software Metrics’ with his 1976 book of that title. He 
is co-author with Dorothy Graham of the static testing 
method ‘Software Inspection’ (1993). He is known for 
his stimulating and advanced presentations, and for 
consistently avoiding the oversimplified pop culture that 
regularly entices immature programmers to waste time 
and fail on their projects. More detail at www.gilb.com.

Lindsey Brodie
is currently carrying out 
research on prioritiza-
tion of stakeholder value, 
and teaching part-time 
at Middlesex University. 
She has an MSc in Infor-
mation Systems Design 
from Kingston Polytech-
nic. Her first degree was 
Joint Honours Physics and 

Chemistry from King’s College, London University. Lind-
sey worked in industry for many years, mainly for ICL. 
Initially, Lindsey worked on project teams on customer 
sites (including the Inland Revenue, Barclays Bank, and 
J. Sainsbury’s) providing technical support and develop-
ing customised software for operations. From there, she 
progressed to product support of mainframe operating 
systems and data management software: databases, 
data dictionary and 4th generation applications. Hav-
ing completed her Masters, she transferred to systems 
development - writing feasibility studies and user re-
quirements specifications, before working in corporate 
IT strategy and business process re-engineering. Lind-
sey has collaborated with Tom Gilb and edited his book, 
“Competitive Engineering”. She has also co-authored a 
student textbook, “Successful IT Projects” with Darren 
Dalcher (National Centre for Project Management). She 
is a member of the BCS and a Chartered IT Practitioner 
(CITP). 

> About the author


